Particle Flow Calorimetry for a future Linear Collider.

Or: How to build a calorimeter for using it the least possible.

Oskar Hartbrich READi Workshop 2014 Hamburg, 07.04.2014

BERGISCHE Universität Wuppertal

Universität Hamburg

Particle Collider Experiment Detectors

- Measure all particles resulting from collision
 - Detector built around collision point
 - Maximum coverage (hermeticity)
 - Detector parts measure different properties
- > Tracking system
 - Tracks from charged particles
- > Calorimeter system
 - Particle energy determination
 - ECAL: photons, electrons
 - HCAL: hadrons
- > Magnet system
 - Field lines parallel to beam axis
 - High field strength (~3T)

Tracking

- > Tracing particles with minimal interference
- Charged particle induces signal in active material
 - Reconstruct path from signals → "track"
- Magnetic field bends flight path
 - Depending on charge and momentum
 - Helical paths
- > Track curvature \rightarrow momentum
 - High precision (~0.1%)
 - Resolution worsens with higher momenta
- > This talk is not about trackers...
 - ... but tracking is important later.

Calorimetry

- > Collider detectors: energy of particles
 - Convert particle energy into measurable quantity
- Stop particle and measure ΔT
 - Very unfeasible (20GeV $e^- \rightarrow \Delta T \sim 10^{-12} \text{ K}$)
- Instead: count number of fragments
 - Need active material to detect particles
 - Good absorbtion != good detection
- Sandwich calorimeter concept
 - Interleaved absorption/detection layers

"Calorimetry is the science [...] of deriving the heat or heat transfer of [an object]."

(MIT cosmic ray group)

EM Shower Mechanism

- > At high energies:
 - Electrons lose energy by Bremsstrahlung
 - Photons convert to e⁺e⁻ pairs
- > Electron/photon cascade
 - N_p increases, E_p decreases
 - Particle multiplication stops at E_p<E_c
 - $N_{tot} \sim E_{tot}/E_{c}$ (20GeV e⁻ in Fe: $N_{tot} \sim 1000$)
 - Statistical process
- > EM showers are compact
 - Shower depth dependance ~log(E_{tot})

Calorimetric Resolution

Resolution: Spread of particle responses

Relative width, usually 1σ

> Particle showers are statistical process

- Poisson statistics $\sigma_{\text{Poisson}} = \sqrt{N}$
- Relative width $\frac{\sqrt{N}}{N} = \frac{1}{\sqrt{N}}$
- > Calorimetric resolution is limited!
 - Resolution improves with higher energies

> ATLAS ECAL
$$\sim \frac{10\%}{\sqrt{E \text{ [GeV]}}}$$

= CMS ECAL (non-sampling) $\sim \frac{3\%}{\sqrt{E \text{ [GeV]}}}$

Hadronic Showers

> Hadron showers much more complex

- Elementary particles ↔ composite particles
 - \rightarrow Nuclear interactions, neutrons, binding energies ...
- Few hard interactions, high multiplicity
- MC simulations not always reliable
- > Large fluctuations everywhere
 - Many particle types involved
 - EM subshowers
 - Resolution much worse than EM

> Best HCAL: ZEUS ~
$$\frac{35\%}{\sqrt{E \text{ [GeV]}}}$$

= ATLAS ~ $\frac{45\%}{\sqrt{E \text{ [GeV]}}}$
= CMS ~ $\frac{75\%}{\sqrt{E \text{ [GeV]}}}$

The Way Out: Particle Flow!

> Tracker resolution better than calorimeters

■ Particle mass mostly negligible → p~E

> Use momentum measurement as energy

- Only works for charged particles
- Still use calorimeter depositions for neutrals
- ~27% photons \rightarrow good ECAL resolution
- ~10% neutral hadrons

> Association of tracks to calorimeter hits

Particle Flow Algorithm Illustration

- > Find tracks ending in calorimeter depositions
- Remove calorimeter depositions associated to track
 - Use momentum from track as shower energy
- Remaining calorimeter hits should be neutrals
 - Use energy measured in calorimeter

Problem: Confusion

- Neutral shower overlapping → lose energy
- charged shower interpreted as neutral \rightarrow double counting
- Solution: highly segmented calorimeters
 - Thousands of channels → millions of channels
 - Imaging calorimetry

The CALICE Collaboration

- CALICE: Calorimeters for a Linear Collider Experiment
- International collaboration effort for PFA calorimeters
 - 60 groups/institutes, ~350 people
- Different concepts under investigation
 - ECALs, HCALs
 - Readout, segmentation, digitisation options
 - Absorber materials (mainly Fe and W)
 - Devision, construction, validation of prototypes
- > Extensive testbeam campaigns
 - At CERN, FNAL, DESY
 - Since 2006 and ongoing

The CALICE AHCAL

- > AHCAL: Analog Hadron Calorimeter
- > Germany centric effort
 - DESY leading institute
- Scintillator tile + Silicon Photomultiplier (SiPM)
 - 30*30*5mm³ plastic tiles
 - First large scale SiPM detector
- > 1m³ prototype
 - Up to 38 layers
 - 8184 channels
 - Testbeams 2006-2012

Oskar Hartbrich | Particle Flow Calorimetry | 07.04.2014 | Page 11

The Next AHCAL Prototype

Scalable to full collider experiment

- Technology
- Production processes
- > Integration!
 - ~8 million channels
 - Sensors, readout, power...
 - Minimum height

The Next AHCAL Prototype

> Sensors

- SiPMs improve rapidly
- Multiple tile designs under investigation

> Electronics

- Custom readout ASIC
- No cooling \rightarrow power pulsing (45µW/ch)
- Integrated SiPM calibration system
- Readout software
- > Mechanics
 - 5.4mm total thickness of active layer
 - ILD absorber prototype available
- > Nine assembled units available
 - 1296 channels

AHCAL DESY Testbeams

Oskar Hartbrich | Particle Flow Calorimetry | 07.04.2014 | Page 14

AHCAL DESY Testbeams

ADC Chip129 Channel14, clean selection

Entries

Oskar Hartbrich | Particle Flow Calorimetry | 07.04.2014 | Page 15

Upcoming CERN Testbeam

- Four weeks beam time Oct/Dec 2014
- Shower start finder setup
 - Less material than full instrumentation
 - Validate calorimeter performance
 - Hadron shower timing correlations
- > Biggest prototype system yet
 - ~3000 channels
 - All hardware available/ordered
 - Mass production/commissioning
 - Full ILD mechanics/cabling
- > Exciting times!

Upcoming CERN Testbeam

- Four weeks beam time Oct/Dec 2014
- Shower start finder setup
 - Less material than full instrumentation
 - Validate calorimeter performance
 - Hadron shower timing correlations
- > Biggest prototype system yet
 - ~3000 channels
 - All hardware available/ordered
 - Full ILD mechanics/cabling
 - Mass production/commissioning

> Exciting times!

Summary

- > Hadronic calorimetry is hard!
 - Classical approach hardly further optimisable
- > Particle Flow Algorithms can greatly improve on this
 - Combination of tracker information into energy measurement
 - Needs very finely segmented calorimeters
- The CALICE collaboration develops such calorimeters
- > The CALICE AHCAL ...
 - ... is Scintillator-SiPM based hadron calorimeter concept.
 - ... first generation prototype has taken data 2006-2012.
 - ... is now being developed into a second generation prototype to showcase full integration into a realistic collider detector.

Acknowledgements

> Thanks to all off whom I stole ideas, material and time:

- Erika Garutti
- Katja Krüger
- José Repond
- Felix Sefkow
- Frank Simon
- Mark Thompson

