### **SRF Cavity Activities at DESY**

<u>Detlef Reschke</u> for all involved DESY colleagues TTC Meeting, 25. – 28. September 2006

- Nine-cell cavities
  - Fourth production (Zanon cavities)
  - Large grain nine-cells
  - Upcoming fifth production
- Test cavity program for XFEL (single-cells)
  - Large grain activities
  - DESY inhouse production
- CARE activities



### Fourth cavity production: Introduction

- Fourth cavity production series:
  - 30 nine-cells fabricated by Zanon company (incl. 3 prototypes with irregularities during fabrication)
  - 15 cavities of Teledyne Wah Chang Nb; 14 cavities of Tokio Denkai Nb;
     1 mixed cavity
  - delivery from mid 2004 to end of 2005
- "Standard" cavity preparation:
  - i) first EP of 150µm, outside etching, 800C firing, final EP of (40 50) µm
  - ii) first EP of 150µm, outside etching, 800C firing, final BCP of 10µm
  - => 4 of 8 cavities done





### Fourth cavity production: Introduction II

#### Exceptions in cavity processing:

- Z82 Z84 (prototype cavities) got 1350C titanisation
- partially 120C bake is skipped due to lack of time (=> module completion)

#### Cavity Testing:

- 20 cavities vertically tested
- 7 cavities Chechia tested; 2 under preparation
- many delays caused by infrastructure problems

#### Remark:

- Z84 not included due to multiple Q-disease!!
- Z82 + Z83 after 1350C not included



# Fourth cavity production: E<sub>acc,max</sub>



### Fourth cavity production: Z103

- Best E<sub>acc.max</sub> last week
- Z103 tested after EP + 800C treatment:

 $E_{acc} = 38 \text{ MV/m} @ Q_0 = 9.10^9$ ; strong FE (>25 / 30), lim. by Quench



Q(E) - curve at 2K before and after bake



### Fourth cavity production: Results after EP

- Analysis of 16 cavities after final EP + before 120C bake:
- Maximum gradient E<sub>acc,max</sub>
  - 9 cavities limited by quench (bd)
  - 6 cavities limited by power
  - 1 cavity by FE (extremely high x-ray level)
  - => 7 of 9 cavities limited by quench below 25 MV/m, with some quenches maybe field emission induced e.g. Z82, test1 !!!
- Analysis of 8 cavities after final EP + after 120C bake :
- Maximum gradient E<sub>acc,max</sub>
  - 7 cavities limited by quench (bd) between 24,5 MV/m and 38 MV/m
  - 1 cavities limited by rf-problems
  - => 3 cavities limited by quench just below 25 MV/m !!
- Only 1 of 7 cavities exceed x-rays of 10<sup>-2</sup> mGy/min !!
- => Often no improvement after 120C bake due to quench limitation!!



### Fourth cavity production: Results after BCP

- final BCP of 10µm after 800C + 150µm EP before 120C bake
- Intended to treat and test 8 cavities => 4 cavities done
- Maximum gradient E<sub>acc.max</sub>
  - 3 cavities limited by quench (bd) at 27-28 MV/m
  - 1 cavity limited by power at 30MV/m
- 3 cavities after 120C bake (one cavity not tested):
- Maximum gradient E<sub>acc,max</sub>
  - 2 cavities limited by quench at 27 MV/m and 31 MV/m
  - 1 cavity limited by power at 31 MV/m
- => Q-slope not cured completely at 120C 135C for 48h



### Fourth cavity production: Quench locations

#### - Table of quench locations:

| Cavity      | Gradient | Quench location                                                     | Preparation + remark |  |  |
|-------------|----------|---------------------------------------------------------------------|----------------------|--|--|
| Z82, test 2 | 28 MV/m  | cell 9, equator                                                     | EP + 127C; no FE     |  |  |
| Z83, test 2 | 25 MV/m  | cell 1 with two hot areas i) equator; ii) upper cup                 | EP + 127C; no FE     |  |  |
| Z85, test 2 | 33MV/m   | cell 3, equator area; but highest dT 2 resistors off the equator ?? | EP + 124C; some FE   |  |  |
| Z87, test 1 | 29 MV/m  | cell 4, lower cup; far off equator                                  | EP; no FE            |  |  |
| Z89, test 2 | 28 MV/m  | 7/9pi-mode(!): cell 5, lower cup, hot area from equator to iris ??  | EP + 120C; some FE   |  |  |
| Z94, test 2 | 28 MV/m  | cell 3, upper cup, 3 resistors off the equator                      | BCP; few FE          |  |  |
|             |          |                                                                     |                      |  |  |
|             |          |                                                                     |                      |  |  |



### Fourth cavity production: Chechia-Results

- Up to now 7 cavities Chechia-tested (incl. Z83 after 1350C-heat treatment)
- All cavities EP-processed with 2 cavities not baked => bad Qo in Chechia
- Maximum gradient E<sub>acc,max</sub>

=> all cavities limited by quench between 23,5 MV/m to 35 MV/m



### Fourth cavity production: Summary

- Broad scatter of E<sub>acc.max</sub> (also usable gradient) in vertical and Chechia tests !!!
- EP final treatment: 7 of 16 tested cavities are quench limited below 25 MV/m!!
  - partially "real" quench; partially FE induced
  - T-mapping of bad cavities missing
  - 120C-bake after EP: Often no improvement in E<sub>acc</sub> due to quench limitation
- BCP final treatment: 4 cavities between 27 and 31 MV/m
  - 120C-bake after BCP: Cure of Q-slope not complete?? => more tests
- Many cavities show significant field emission => preparation process not reproducable !!
- Next steps: Completing of vertical tests of remaining cavities
  - Re-treatment, measurement + analysis of "bad" cavities
- Assembly of module 7 with accepted cavities



### Nine cell cavities of large grain niobium

- 3 cavities built of Heraeus Nb cut from ingot with RRR ~ 500 at Accel
- AC114 tested after BCP + 800C treatment:

 $E_{acc} = 28.7 \text{ MV/m} @ Q_0 = 7.3 \cdot 10^9$ ; strong FE (>18 / 23), lim. by Quench

=> FE induced ????; LPP at 2MV/m observed; no Q-disease



First and final Q(E) - curve at 2K

**Detlef Reschke** 

# Large grain nine-cell AC114 test 1: T-Maps

- T-Maps at 2K during Quench (after mode measurement):





=> Quench in cell 2, upper cup, between iris and equator

=> FE- induced quench??

Detlef Reschke



#### AC114: Mode measurement of test 1

|        |            |       | Best CW-Test     |                 |              |                    |       |             |                    |
|--------|------------|-------|------------------|-----------------|--------------|--------------------|-------|-------------|--------------------|
| Cavity | Prod<br>No | Cells | BCP/EP<br>Cavity | CW-Test<br>Date | Max.<br>Eacc | Qo at<br>Max. Eacc | Limit | FE<br>Onset | Eacc at<br>Q=1e+10 |
| AC114  | 5          | ALL   | BCP              | 07-Jul-06       | 28.74        | 6.5E+09            | bd    | 17.50       | 27.22              |
|        |            | 1&9   |                  |                 | 32.36        |                    | bd    |             |                    |
|        |            | 2&8   |                  |                 | 31.68        |                    | bd    |             |                    |
|        |            | 3&7   |                  |                 | 36.03        |                    | bd    |             |                    |
|        |            | 4&6   |                  |                 | 32.89        |                    | bd    |             |                    |
|        |            | 5     |                  |                 | 32.98        |                    | bd    |             |                    |

- All cells are quench limited
- All cells have higher max. E<sub>acc</sub> than pi-mode
- => inconsistency caused by influence of FE



### Fifth nine-cell production

#### Material:

- 594 Nb sheets delivered by Tokyo Denkai
- all sheets accepted according to DESY spec.
- all sheets eddy current scanned with 21 suspicious (3,5%) => re-scanning and SQUID-analysis
- shipping to Accel and Zanon in July 06

#### Fabrication:

- Contract split with 15 cavities each to Zanon + Accel
- Production of cups starts now
- Zanon:

delivery of first cavities end of Nov 06; production complete Feb 07

- Accel:

delivery of first cavities Feb 07; production complete Jun 07



- Four single-cell cavities (+ three nine-cell cavities) fabricated at Accel Co. of "large grain"-Nb by Heraeus with RRR = 500 (two Nb batches/ingots)
- DESY in-house production of large grain single-cells under preparation
- Two mono-crystal cavities fabricated at Accel by CBMM (1AC6) and Heraeus niobium (1AC8: prepared and tested by Peter Kneisel)

significant mechanical problems during deep-drawing

(shape + tolerances !!!)

- First tests at DESY after EP processing
- Full comparison of EP vs. BCP final treatment ongoing





- Comparison of EP vs. BCP final treatment:
- EP treatment of single-cells at Henkel Co.
  - BCP treatment of single-cells at Accel (or DESY)
  - final HPR, assembly, bake at DESY
- Best result of 1AC3 after 150µm EP, 800C, 40µm EP + 120C, 48h bake :



Q(E)- curves at 2K before and after bake

**Detlef Reschke** 

|                        |           | 1AC3       | 1AC4      | 1AC5<br>spun cup | 1AC7      | 1AC6 mc    | 1AC8 mc<br>(JLab) |
|------------------------|-----------|------------|-----------|------------------|-----------|------------|-------------------|
| ED before belo         | Eacc      | 28,4 (FE)  | 29 (pwr)  | -                | -         | -          | -                 |
| EP before bake         | Qo        | 3e9        | 3e9       | -                | -         | -          | -                 |
|                        |           | 34,4 (FE)  | 37,2 (BD) | 29,3 (BD)        | -         | -          | -                 |
| + bake                 | + bake    |            | 6,3e9     | 1,3e10           |           |            | -                 |
|                        |           | 41 (BD)    | Dry-ice   | -                | -         | -          | -                 |
| + re-nPR               | + re-HPR  |            |           | -                | -         | -          | -                 |
| + BCP(40-50um or or    | nly BCP ) | 30,5 (pwr) | 30 (pwr)  | next test        | 25,2 (BD) | 21,5 (BD)  | 37,5 (BD)         |
| + HPR                  |           | 2,2e9      | 2,2e9     |                  | 1,5e10    | 1,8e10     |                   |
| + bake                 |           | 28,5 (BD)  | 28,2 (BD) |                  | -         | -          |                   |
|                        |           | 1,2e10     | 1,2e10    |                  | <u>-</u>  | -          |                   |
| + BCP (40 μm)<br>+ HPR |           | next test  |           |                  |           |            |                   |
|                        |           |            |           |                  | <u> </u>  |            |                   |
| + EP (100μm)<br>+ HPR  |           |            |           |                  | next test | 29,4 (pwr) |                   |
|                        |           |            |           |                  |           | 2,2e9      | 4.7               |

Detlef Reschke 25.09.2006 17

- Comparison of EP vs. BCP final treatment (ctd.):
- Preliminary results:
  - Two cavities degraded after add. BCP-treatment (- 11MV/m and -8 MV/m)
  - Mono-crystal single cell 1AC6 improved after EP (+ 8MV/m) (test after bake still missing)
- Contradiction to excellent BCP results at JLab???
- Full cycles (EP → BCP → EP) or (BCP → EP → BCP) for all large grain cavities on the way



#### XFEL test cavities: DESY in-house production

- Objects of the program:
  - Qualification of further niobium vendors
    - => Plansee, Ningxia, Cabot, Giredmet
  - Qualification of modified welding procedure
  - Development of dry-ice cleaning as additional cleaning process (CARE,..)
  - Check + optimisation of "120C-bake" parameters
  - Comparison of EP processes at Henkel and DESY
  - (- s.c. photo cathode gun cavity)



#### XFEL test cavities: Further Nb vendors

#### Plansee :

- Three cavities fabricated of Heraeus/Plansee Nb with RRR ~ 300
- First result of 1DE16 after 800C, EP + bake:

$$E_{acc} = 28.5 \text{ MV/m} @ Q_0 = 2.5 \cdot 10^9$$
; FE (>19 / 25MV/m); limited by pwr

- Two cavities send to Henkel for EP

#### Ningxia:

- Three cavities fabricated of chinese Ningxia Nb with RRR ~ 300
- Cavities under preparation



#### XFEL test cavities: Further Nb vendors

#### Cabot:

- Two cavities fabricated in-house of Cabot Nb with RRR ~ 230 !!
- Preparation: >100µm BCP@Accel, 800C firing, >100µm EP@Henkel, (HPR, 130C bake)

 $E_{acc} = 33 \text{ MV/m} @ Q_0 = 9,5 \cdot 10^9$ ; low FE(>30 / -MV/m); limited by bd



Q(E)- curve at 2K after bake

25.09.2006 21

#### XFEL test cavities: Further Nb vendors

#### Giredmet/ITEP:

- Three cavities fabricated in-house of russian Giredmet Nb RRR > 600
   (2x completed)
- Preparation: 150μm EP, 800C firing, 40μm EP, HPR, (add. HPR or add. 130C/136C bake) => Qualification successful!!



Q(E)-curves of 1DE4 before and after bake (some FE present before and after bake)



Q(E)-curves of 1DE5 before and after bake (some FE present before and after bake



### XFEL test cavities: Modified weld preparation

- Up to now: max 8h between final etching of weld area and EB welding ("8h – rule")
- Modification of present spec for welding preparation during cavity fabrication:
  - 1x reference cavity: max 8h between final etching of weld area and EB welding
  - 2x cavities with 168h storage under vacuum of components after final etch of weld area
  - 2x cavities with 168h storage under nitrogen atmosphere of components after final etch of weld area



# XFEL test cavities: Modified weld preparation

#### Results:

|                           |       | Reference cavity | Vacuum storage for<br>168h |           | Nitrogen storage for 168h |               |
|---------------------------|-------|------------------|----------------------------|-----------|---------------------------|---------------|
|                           |       | 1DE7             | 1DE8                       | 1DE9      | 1DE10                     | 1DE11         |
| EP + HPR +<br>bake (+HPR) | Eacc: | 38,2 (BD)        | 31,3 (BD)                  | 33,8 (BD) | 34,7 (BD)                 | 35,8 (BD)     |
|                           | Qo:   | 1,1e10           | 1,5e10                     | 1,4e10    | 1,6e10                    | 2,6e9         |
|                           |       |                  |                            |           |                           | FE<br>present |

### XFEL test cavities: Summary

#### **Maximum Gradients per Cavity of all Tests**



#### **CARE** activities

CARE (Coordinated Accelerator Research in Europe):

- contains 3 JRA's (Joint Research Activities)

SRF => Research and Development on Superconducting Radio Frequency

PHIN => Charge production with Photo Injectors

HIPPI => High Intensity Pulsed Photon Injector

NED => Next European Dipol

- and 3 networks

ELAN => Electron Linear Accelerator Network

BENE => Beams for European Neutrino Experiments

HHH => High Energy, High Intensity Hadron Beams

All activities fill more than one workshop ....



# **CARE** activities:



| Work package / task                            | Work package /<br>task leader | Institution    |  |
|------------------------------------------------|-------------------------------|----------------|--|
| 2 Improved Standard Cavity Fabrication (ISCF)  | P.Michelato                   | INFN Mi        |  |
| 2.1 Reliability analysis                       | L. Lilje                      | DESY           |  |
| 2.2 Improved component design                  | P.Michelato                   | INFN Milano    |  |
| 2.3 EB welding                                 | J. Tiessen                    | DESY           |  |
| 3 Seamless Cavity Production (SCP)             | WD. Moeller                   | DESY           |  |
| 3.1 Seamless cavity production by spinning     | E. Palmieri                   | INFN LNL       |  |
| 3.2 Seamless eavity production by hydroforming | W. Singer                     | DESY           |  |
| 4 Thin Film Cavity Production (TFCP)           | M. Sadowski                   | IPJ            |  |
| 4.1 Linear are cathode                         | J. Langner                    | IPJ            |  |
| 4.2 Planar arc cathode                         | S. Tazzari                    | INFN Roma2     |  |
| 5 Surface Preparation (SP)                     | A. Matheisen                  | DESY           |  |
| 5.1 EP on single cells                         | C. Antoine                    | CEA            |  |
| 5.2 EP on multicells                           | N. Steinhau-Kühl              | DESY           |  |
| 5.3 Automated EP                               | E. Palmieri                   | INFN LNL       |  |
| 5.4 Dry ice cleaning                           | D. Reschke                    | DESY           |  |
| 6 Material Analysis (MA)                       | E. Palmieri                   | INFN LNL       |  |
| 6.1 Squid scanning                             | W. Singer                     | DESY           |  |
| 6.2 Flux gate magnetometry                     | M. Valentino                  | INFN LNL       |  |
| 6.3 DC field emission studies of Nb samples    | X. Singer                     | DESY           |  |
| 7 Couplers (COUP)                              | A. Variola                    | IN2P3-Orsay    |  |
| 7.1 New proto-types                            | L. Grandsire                  | IN2P3-Orsay    |  |
| 7.2 Titanium-nitride coating system            | L. Grandsire                  | IN2P3-orsay    |  |
| 7.3 Conditioning studies                       | P. Lepercq                    | IN2P3-Orsay    |  |
| 8 Tuners (TUN)                                 | P. Sekalski                   | TUL            |  |
| 8.1 UMI Tuner                                  | A. Bosotti                    | INFN-Milano    |  |
| 8.2 Magnetostrictive Tuner                     | A. Grecki                     | TUL            |  |
| 8.3 CEA Tuner                                  | P. Bosland                    | CEA            |  |
| 8.4 IN2P3 activities                           | M. Fouaidy                    | IN2P3 Orsay    |  |
| 9 Low Level RF (LLRF)                          | S. Simrock                    | DESY           |  |
| 9.1 Operability and Technical performance      | S. Simrock                    | DESY           |  |
| 9.2 Cost and reliabilty                        | M. Grecki                     | TUL            |  |
| 9.3 Hardware technolgy                         | R. Romaniuk                   | WUT-ISE        |  |
| 9.4 Software technology                        | Jezynski                      | WUT-ISE        |  |
| 10 Cryostat Integration Tests                  | B. Visentin                   | CEA/DSM/DAPNIA |  |
| 11 Beam Diagnostics (BD)                       | M. Castellano                 | INFN-Frascati  |  |
| 11.1 Beam position monitor                     | C. Simon                      | CEA/DSM/DAPNIA |  |
| 11.2 Emittance monitor                         | C. Magne                      | CEA            |  |
| 11.3 HOM beam position monitor                 | O. Napoli                     | IN2P3-Orsay    |  |

# CARE activities: Dry-ice cleaning

Set-up:



# CARE activities: Dry-ice cleaning

 Prototype for horizontal cleaning under successful commssioning





Explanation:

1: motor; 2: IR-Heater; 3: IR-Temp.sensor; 4: nozzle system; 5: horizontal nozzle; 6: liqiufier:

7: Gases; 8: motion control,Interlock,Temp.; 9: exhaust of  ${\rm CO_2}$  and  ${\rm N_2}$ 



# WP3.2 Seamless by Hydroforming (W.Singer)

Seamless cells for 9-cell cavity (three three cell units) have been produced at DESY by hydroforming



Fabrication of a seamless cavity (without equator welds) is in work at the industry and includes following steps:

- Fabrication of the long and short end groups connected with three cell units
- Machining, preparation and welding of three units together in a 9 cell cavity (two iris welds done from outside)
- Machining, preparation and weld on of the stiffening rings