FastPV in $\mu + 2 b$ jets trigger: rate

Andrey Popov

26 Nov 2013

Introduction and setup

- Attempted to measure rate of HLT_Mu12_eta2p1_DiCentral_40_20_> DiBTagIP3D1stTrack_v8 from 8e33v2 menu and two modifications with FastPV (details in <u>this talk</u>):
 - $\circ~$ One uses FastPV at L2 only and runs standard vertex reconstruction at L3
 - Another exploits FastPV at both L2 and L3
- Checked 8 TeV 50 ns data and 13 TeV 25 ns simulation $(t\bar{t})$
- Study performed with CMSSW_5_3_11

Datasets with real data

- First tried running over datasets in /store/group/comm_trigger/ TriggerStudiesGroup/Timing/ recommended at <u>TriggerStudies</u> page
 - The datasets are skims over various HLT_Physics_* triggers
 - Contain about 50k events per pile-up point
 - No event passes any of the triggers under study
- Finally, used RAW datasets from the SingleMu PD
 - Run 208307 is available at EOS: /store/data/Run2012D/SingleMu/ > RAW/v1/000/208/307/
 - Processed it with the "golden" JSON file from 22Jan2013 rereco
 - 1.5M events, pile-up from 28 to 12
- In order to select well-defined data, asked for HLT_IsoMu24_eta2p1_v*
 - $\circ~$ Muon leg of the triggers under study is fired almost always
 - FastPV affects hadron fragment only. If it changes trigger rate, the effect would still be visible
 - \circ Cannot deduce actual trigger rate \Rightarrow measure efficiency w.r.t. HLT_IsoMu24_eta2p1_v* instead

Trigger efficiency in data

• Efficiency of the triggers under study w.r.t. HLT_IsoMu24_eta2p1_v*:

Trigger eff., $ imes 10^{-4}$	PU [12, 16)	PU [16, 20)	PU [20, 25)	PU [25, 30)
Original path	10.0 ± 0.5	9.1 ± 0.4	9.3 ± 0.5	9.0 ± 0.6
FastPV @ L2	9.4 ± 0.5	8.5 ± 0.4	8.6 ± 0.4	8.2 ± 0.6
FastPV @ L2 + L3	9.4 ± 0.5	8.7 ± 0.4	8.6 ± 0.4	9.2 ± 0.7

• Number of *pp* interactions in bunch crossing calculated using the pile-up JSON file

Trigger efficiency in simulation

• Ran over two 13 TeV 25 ns *tt* datasets:

- /TTbar_TuneZ2star_13TeV-pythia6-tauola/Summer13dr53X-> PU25bx25_START53_V19D-v1/GEN-SIM-RAW
- /TTbar_TuneZ2star_13TeV-pythia6-tauola/Summer13dr53X-> PU45bx25_START53_V19D-v1/GEN-SIM-RAW
- Measured trigger efficiencies (w.r.t. all events in a dataset):

Trigger eff., %	PU 25	PU 45
Original path	5.00 ± 0.02	5.94 ± 0.02
FastPV @ L2	4.92 ± 0.02	5.64 ± 0.02
FastPV @ L2 + L3	5.07 ± 0.02	5.87 ± 0.02

Conclusions

- No significant change of trigger rate is observed when the trigger is switched to FastPV
- When FastPV is used at L2 only, even a marginal descrease of efficiency is visible
 - Though, it is likely to be accompanied by a similar descrease in signal selection efficiency; hence, lower rate does not indicate this version of the trigger is better