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Introduction — High Luminosity LHC

> High Luminosity LHC (HL-LHC) planned to start operation after long
shutdown 3

= Will provide ~3000 fb™" Vs = 14 TeV p-p collisions
= Will operate at an instantaneous luminosity of 5x10* cm™s™

= Rich experimental landscape, Challenging experimental conditions...
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Pile-up at HL-LHC

> |ncrease in instantaneous
luminosity implies increased pile-up

= Standard assumption for performance
studies <u>=140

= Some studies being performed up to
pile-up of 400!

= Beam spot parameters (length, profile)
affect track/vertex density

> Consequences for Phase-l|
Upgrade Tracker design must be
considered

= Granularity: IP resolution and
track/vertex separation

= Material: Minimize multiple scattering
and bremsstrahlung

= Occupancy: Avoid readout dead time
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Baseline ATLAS Phase-ll Tracker - ITK

> Baseline design for ATLAS Phase-Il Tracker

= All-silicon tracker; TRT (straw tracker) occupancy too high under HL-LHC conditions

= Radiation damage of current Tracker will necessitate replacement, even if no upgrade
were to take place

= Aim of upgraded tracker — maintain at least current physics performance under high
pile-up conditions

> Extensive design phase ahead of Letter of Intent

= Design may be revisited ahead of Technical Design Report

——
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Simulation challenges for Phase 2 tracker design

> Simulation and Monte Carlo studies are an invaluable tool in designing a
new detector

= Both for overall global design choices/parameters, and very specific aspects of
technology

> Detector design is a 'highly-coupled' problem

= Many aspects to be explored which are interdependent, ideally studied in conjunction,
and under realistic conditions

= Turn-around time for developing/validating/running/analysing detailed simulation for
each variation makes this unfeasible

> Different studies must use a variety of different approaches

= To provide the appropriate level of detail to answer questions

= To provide information on timescale required
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Computing challenges

> Increased pile-up has significant
consequences for CPU resources
needed

= Combinatorial complexity especially
affects Inner Detector track
reconstruction

= Very large samples of minimum bias
events must be simulated

> Expensive in terms of time, CPU
cycles, manpower

= Much work going in to software
improvements

= In future, new technologies and
increased parallelisation will also help

= Nevertheless, high threshold must be
set for producing samples under such
conditions
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First design stages — analytical 'simulation’

> For many initial design considerations, used 'IDRes' tool for analytical
track resolution calculation

= Useful for purely geometrical studies; hit coverage for given beam spot size, maximum
distance between hit points, track resolutions for isolated muons

= Used to develop layouts to be considered and studied further

= Very fast, but not strictly even Monte Carlo simulation...
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Initial simulation tests — single particle, tracker only

> Promising layouts can be tested further in
Geant4

= Simulated only tracker; no calorimeters or
muons

= |solated single particles, no pile-up

= Track efficiencies, confirm muons resolutions,
electron/pion resolutions

> FATRAS has also been used in place of
Geant4

= Offers speed-up with respect to Geant4

= Access to multiple simulation engines useful for
debugging purposes
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Pile-up, Tracker-only simulation
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Going beyond the Inner Tracker...

> Bulk of tracker performance studies for ATLAS Phase-Il Letter of Intent
produced as just described

= Such a sample (tracker only, pile-up 140) can plausibly be produced by an individual
user with their own grid quota, up to reasonable statistics (few hundred kEvents)

= Reconstructing 100 events@pile-up 140 takes ~8 hours

> Tracker-only samples not sufficient to build HL-LHC and ATLAS Phase-lI
upgrade Physics case

= Very few physics analyses rely solely on Inner Detector tracks; need also to be able to
extrapolate tracks to Calorimeters and Muon System

= Not feasible to produce full simulation of ATLAS+ITK at full HL-LHC conditions for each
signal sample to be studied + backgrounds

= Different approach needed for performing ATLAS Phase-Il physics studies at this point
= Will be outlined in coming slides...

N. Styles | Fast MC in HEP Workshop | 16/01/2014 | Slide 10


mailto:events@pile-up

ATLAS+ITK Simulation for ECFA Studies

> Provided physics input to 2013 ECFA
HL-LHC Workshop

= Show the physics reach of an upgraded
ATLAS at HL-LHC
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B-tagging

> Single operating point
= Average b-tagging efficiency of 70%
= Extracted from tt sample
> Parameterised in both eta and pT

= B-tag efficiency, and mistag efficiencies for c-jets and light jets separately
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Muon Smearing
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Other performance parameterisations
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Future plans for Upgrade Simulation

> Up to this point, fast simulation techniques under-used for ATLAS
Upgrade studies

= Potential speed-up in layout testing + comparisons

= Fully-detailed simulation often not really necessary for many studies
> Still early in the process

= Alot more Monte Carlo productions to come
= Not just for layout development

= Alot of Monte Carlo will be needed for physics studies once layout is closer to final

> Opportunities to extend use of fast techniques

= Will go over some particularly interesting examples in following slides
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Fast Si Digitization

> Required granularity of pixel
& strip sensors an open
guestion

= 'Trivial' change to layout

= Implementation often has
complications

= Testing different granularities
requires re-running simulation
(signal and min bias)

> Fast digitization could help

! \L = Re-process the same simulation
. ¥

= Provide different granularities
only at digitization stage
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Truth-based Tracking

> Track reconstruction using MC

truth info
= In place of pattern recognition,
track seeding, and ambiguity E
SOIVing s 4 HITCon‘gainer<)t?ngJ5>

= Offers considerable speed-up,
particularly in dense environments

> Limited to use for specific
cases

¥
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= Likely provides an unattainable < ® 0D - uth nformation
. - , DD = — Ineficiencies,

upper bound on tracking B manipulations, refit

performance D ae
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= This can nevertheless be useful

= Very valuable debugging tool
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Integrated Simulation Framework

Calorimeter
default FastCaloSim

Full Geant4 1 best passible

Geant4 with FastCaloSim ~25 approximated calorimeter

. - , _ all subdetectors

» ’ J ~p-  Fatras with FastCaloSim 750 approximated
Fatras with FastCaloSim all subdetectors
only simulating particels inside ~3000 approximated +
cones around photons partial event simulated

example I5F sedup

pa rticles in cone
around electron:
use Geantd

> Challenge of producing sufficient MC for 3000 fb™" analyses, with HL-LHC
conditions will necessitate use of fast simulation techniques

= Very large CPU savings possible, and will be very welcome

> ISF designed to make selection of desired combination of simulation
techniques straightforward

= Will be invaluable for future production campaigns
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Summary & Outlook

> Phase 2 Upgrade simulation can benefit greatly from more extensive use
of fast simulation techniques

= Both for studies of detector design and physics potential

> Care must be taken to choose the right combination of techniques to
answers the necessary questions

= Do not want to 'wash out' effects of certain design choices

= In some case, advantage of fast techniques could be lost if a long validation or tuning
process is needed for a new layout

> Some fast reconstruction techniques may also help to decouple effects
of detector design and reconstruction algorithms

= Using reconstruction optimized for ATLAS on a new detector may give non-optimal
results

= Tuning software for each layout variant unfeasible
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