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Detector simulation

● Full simulation (GEANT):
         
         -   simulates particle-matter interaction (including e.m. showering, nuclear int., 
brehmstrahlung, photon conversions, etc ...)  →  10-100 s /ev

●  Experiment Fast simulation (ATLAS, CMS ...):

         -   simplifies and makes faster simulation and reconstruction

         -   mixes G4, parametric, libraries   →  1 s /ev

●  Parametric simulation:

    Delphes, PGS:

        -   parameterize detector response, reconstruct complex objects  →  10 ms /ev

    TurboSim

        -   no detector, 4-momentum smearing, look-up table (parton ↔  reco)
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DELPHES
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Development

● Delphes project started back in 2007 at UCL

● Since 2009, its development is community-based
 -   ticketing system for improvement and bug-fixes

         → user proposed patches
    -   Quality control and core development is done at the UCL

● In 2013, DELPHES 3 was released:
 -   modular software 
 -   new features
 -   included in MG/ME suite

● Widely tested and used by the community (mainly pheno)

● Website and manual: https://cp3.irmp.ucl.ac.be/projects/delphes

● Paper:  arXiv:1307.6346                 

https://cp3.irmp.ucl.ac.be/projects/delphes
http://arxiv.org/pdf/1307.6346v2.pdf
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DELPHES in a nutshell

● Delphes is a modular framework that simulates of the response of a 
multipurpose detector

● Simulates:
  -   pile-up

     -   charged particle propagation in 
         magnetic field: tracking
     -   electromagnetic and hadronic calorimeters  

  -   muon system  

● Reconstructs:
  
  -   leptons (electrons and muons)
  -   photons
  -   jets and missing transverse energy (particle-flow)
  -   taus and b's

Remark :  Hadron collider specific, but easily extendible to e+ e-
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Particle Propagation

● Charged and neutral particles are propagated in the magnetic field until 
they reach the calorimeters

● Propagation parameters:

     -   magnetic field B
     -   radius and half-length (R

max
, z

max
) 

● Efficiency/resolution depends on:
  
  -   particle ID
  -   transverse momentum
  -   pseudorapidity

Not real tracking/vertexing !!
  → no fake tracks/ conversions (but can be easily implemented)
  → no dE/dx measurements
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Calorimetry

● em/had calorimeters have same 
segmentation in eta/phi 

● Each particle that reaches the 
calorimeters deposits a fraction of its 
energy in one ECAL cell (fEM) and HCAL 
cell (fHAD), depending on its type:

● Particle energy is smeared 
according to the calorimeter 
cell it reaches
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Particle-Flow reconstruction  
 

● Idea: optimally combine all sub-detectors information

● In practice, in DELPHES use tracking and calo info 
to reconstruct high reso. input objects for later use 
(jets, E

T
miss, H

T
)

 → assume σ(trk) < σ(calo)
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Particle-Flow reconstruction  
 

● Idea: optimally combine all sub-detectors information

● In practice, in DELPHES use tracking and calo info 
to reconstruct high reso. input objects for later use 
(jets, E

T
miss, H

T
)

 → assume σ(trk) < σ(calo)

   EMC(π+) =  10 GeV    →  EHCAL(π+) =   9  GeV 

                                         ETRK(π+)   =  11 GeV

   
   Particle-Flow algorithm creates:

   → PF-track, with energy  EPF-trk     =  11 GeV
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π +
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Particle-Flow reconstruction  
 

● Idea: optimally combine all sub-detectors information

● In practice, in DELPHES use tracking and calo info 
to reconstruct high reso. input objects for later use 
(jets, E

T
miss, H

T
)

 → assume σ(trk) < σ(calo)

   EMC(π+) =  10 GeV    →  EHCAL(π+) =  15 GeV 

                                         ETRK(π+)   =  11 GeV

   
   Particle-Flow algorithm creates:

   → PF-track, with energy  EPF-trk     =  11 GeV
   → PF-tower, with energy EPF-tower  =  4 GeV
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Particle-Flow reconstruction  
 

● Idea: optimally combine all sub-detectors information

● In practice, in DELPHES use tracking and calo info 
to reconstruct high reso. input objects for later use 
(jets, E

T
miss, H

T
)

 → assume σ(trk) < σ(calo)
 

   EMC(γ)   =  20 GeV    →  EECAL(γ)    =  18 GeV

   EMC(π+) =  10 GeV    →  EHCAL(π+) =  15 GeV 

                                         ETRK(π+)   =  11 GeV

Particle-Flow algorithm creates:

   → PF-track, with energy  EPF-trk     =  11 GeV
   → PF-tower, with energy EPF-tower  =  4 + 18 GeV

       
   

ECAL

HCAL

π +
γ
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Particle-Flow reconstruction  
 

● Idea: optimally combine all sub-detectors information

● In practice, in DELPHES use tracking and calo info 
to reconstruct high reso. input objects for later use 
(jets, E

T
miss, H

T
)

 → assume σ(trk) < σ(calo)
 

   EMC(γ)   =  20 GeV    →  EECAL(γ)    =  18 GeV

   EMC(π+) =  10 GeV    →  EHCAL(π+) =  15 GeV 

                                         ETRK(π+)   =  11 GeV

Particle-Flow algorithm creates:

   → PF-track, with energy  EPF-trk     =  11 GeV
   → PF-tower, with energy EPF-tower  =  4 + 18 GeV

Separate neutral and charged calo deposits has crucial implications 
for pile-up subtraction
       
   

ECAL

HCAL

π +
γ
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Jets / E
T

miss / H
T
  

 

● Delphes uses FastJet libraries for jet clustering 

● Inputs can be formed from:

 -  calorimeter towers

 - “particle-flow” tracks and towers
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Leptons, photons

● Muons/photons/electrons

 -   identified via their PDG id
 -   muons do not deposit energy in calo (independent smearing parameterized in
     p

T
 and η)

 -   electrons and photons smeared according to electromagnetic calorimeter      
     resolution 

●  Isolation:                                       
                                                          → modular structure allows to easily   
                                                               define different isolation 

     If I(P) < Imin, the lepton is isolated  
     
     User can specify parameters I

min
, ΔR, p

T
min

● Not taken into account:
  
  -   fakes, punch-through, brehmstrahlung, conversions
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b and tau jets

● b-jets

   -   if b parton is found in a cone ΔR w.r.t jet direction 
       →  apply efficiency

-   if c parton is found in a cone ΔR w.r.t jet direction 
       →  apply c-mistag rate
   -   if u,d,s,g parton is found in a cone ΔR w.r.t jet direction 
       →  apply light-mistag rate

          b-tag flag is then stored in the jet collection 

● tau-jets

   -   if tau lepton is found in a cone ΔR w.r.t jet direction 
       →  apply efficiency

-   else 
       →  apply tau-mistag rate

                      

pT and η dependent efficiency and mistag rate
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VALIDATION
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Validation: electrons and muons 

    →  excellent agreement



19    →  good agreement

Validation: jets 
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    →  excellent agreement

Validation: ET 
miss 
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Physics example 

● Reproduce part of top mass measurement in semi-leptonic decay 
(arXiv:1209:2319) 

● Signal produced with MG5+Pythia+Delphes3

● Selection criteria: 

→  = 1 lepton p
T
 > 30 GeV, |η| < 2.1

→  ≥ 4 jets     p
T
 > 30 GeV, |η| < 2.4

   →  ≥ 2 b-tagged jets, ≥ 2 light jets

                  eff(Delphes) = 2.8%   vs.    eff(CMS) = 2.3%

       
    →  good agreement
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Physics example 

Look at hardest 2 b-tagged and 2 light jets (à la CMS): 

-  correct        : 4 jets are good, match right b with lights
-  wrong         : 4 jets are good, match wrong b with lights
-  unmatched : at least one of the jets don't match
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Pile-Up
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Pile-up motivations

● Pile-up becomes an issue at high luminosity LHC

– worsened resolution (jets, E
T

miss)

– degraded isolation
– fake tracks, jets

● Efficiencies and resolutions can be tuned by hand to mimic 
pile-up

● Fake objects (jets) need to be simulated. Also, we want to have 
some predictive power:

       → We therefore introduced:   tunable simulation of pile-up  

                                                       pile-up substraction procedure. 



26

Pile-up implementation

● Pile-up is implemented in Delphes since version 3.0.4
– mixes N minimum bias events with hard event sample

– spreads poisson(N) events along z-axis with configurable spread

– rotate event by random angle φ wrt z-axis   

●    Charged Pile-up subtraction (most effective if used with PF jets)

- if z < |Zres| keep all charged and neutrals (→ ch. particles too close to hard 
scattering to be rejected)

- if z > |Zres| keep only neutrals (perfect charged subtraction)

- allows user to tune amount of charged particle subtraction by adjusting Z   
spread/resolution

● Residual pile-up substraction is needed for jets and isolation.
– Use the FastJet Area approach (Cacciari, Salam, Soyez)

● compute ρ = event pile-up density

● jet correction : pT → pT − ρA (JetPileUpSubtractor)

● isolation : ∑ pT → ∑ pT − ρπR² (Isolation module itself)

          -    Subtraction can be |η| dependent
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Pile – Up Validation
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Validation: Pile-Up 
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Validation: Pile-Up 

    →  good agreement
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Validation: Pile-Up 

● H → bb in VBF channel expected to be highly affected by pile-up 

● Irreducible background bb+jets

● Select >4 jets with pT > 80, 60, 40, 40 (at least 2 b-tagged, at least 2 light)

Emergence of pile-up jets in the 
central region:

→ depletion of rapidity gap
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Validation: Pile-Up 

● Require large rapidity gap between light jets, no hadronic activity in 
between 

● 100 < m(bb) < 200 GeV
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Technical features
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Technical features

● modular C++ code, uses ROOT classes

● Input
  
    -   Pythia/Herwig output (HepMC,STDHEP)
    -   LHE (MadGraph/MadEvent)
    -   ProMC

● Output
 
     -   ROOT trees

● Configuration file

  -  define geometry
  -  resolution/reconstruction/selection criteria
  -  output object collections

default CMS and ATLAS configurations are included in any Delphes release    
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Modularity in action
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CPU time

 -   event generation  1ms – 10s
 -   reconstruction      1ms (0 PU) – 1s (150 PU)
 -   ME calculation      1s – 100s 
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When and when not DELPHES?

● When do you need Delphes?

         → more advanced than parton-level studies
         → testing analysis methods (multivariate/Matrix Element)
         → test your model (CheckMATE)
         → scan big parameter space (SUSY-like)
         → preliminary tests of new geometries/resolutions (upgrades, Snowmass)
         → educational purpose (bachelor/master thesis)
         

● When not to use Delphes?

      → high precision studies 
          → very exotic topologies (heavy stable charged particles)
          → study is sensitive to tails   
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Conclusions

● Delphes 3 has been out for one year now, with major improvements:

- modularity
- pile-up implementation
- revamped particle flow algorithm
- new visualization tool based on ROOT EVE
- default cards giving results on par with published performance from LHC 
experiments
- now fully integrated within MadGraph5

● To-do list: 

  -  PileUpJetID (see Seth Senz next talk)
  -  Timing Detector
  -  Neighboring cells energy sharing in calorimeters

● Delphes 2 is no longer supported!!

● Test it, and give us feedback!
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People

Severine Ovyn
Xavier Rouby
Jerome de Favereau
Christophe Delaere
Pavel Demin
Andrea Giammanco
Vincent Lemaitre
Alexandre Mertens
M.S.

the community ...    
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