

Michele Selvaggi, for the Delphes Team

Université Catholique de Louvain (UCL) Center for Particle Physics and Phenomenology (CP3)

2nd Fast Monte Carlo Workshop in HEP 15 January 2014

Detector simulation

• Full simulation (GEANT):

- **simulates** particle-matter interaction (including e.m. showering, nuclear int., brehmstrahlung, photon conversions, etc ...) \rightarrow 10-100 s /ev

- Experiment Fast simulation (ATLAS, CMS ...):
 - simplifies and makes faster simulation and reconstruction
 - mixes G4, parametric, libraries \rightarrow 1 s /ev
- Parametric simulation:

Delphes, PGS:

- **parameterize** detector response, reconstruct complex objects \rightarrow 10 ms /ev

<u>TurboSim</u>

- **no detector**, 4-momentum smearing, look-up table (parton ↔ reco)

DELPHES

Development

- Delphes project started back in 2007 at UCL
- Since 2009, its development is community-based
 - ticketing system for improvement and bug-fixes
 - \rightarrow user proposed patches
 - Quality control and core development is done at the UCL
- In 2013, DELPHES 3 was released:
 - modular software
 - new features
 - included in MG/ME suite
- Widely tested and used by the community (mainly pheno)
- Website and manual: https://cp3.irmp.ucl.ac.be/projects/delphes
- Paper: <u>arXiv:1307.6346</u>

DELPHES in a nutshell

- **Delphes** is a **modular framework** that simulates of the response of a multipurpose detector
- Simulates:
 - pile-up
 - charged particle propagation in magnetic field: tracking
 - electromagnetic and hadronic calorimeters
 - muon system
- Reconstructs:
 - leptons (electrons and muons)
 - photons
 - jets and missing transverse energy (particle-flow)
 - taus and b's

Remark : Hadron collider specific, but easily extendible to e⁺ e⁻

- Charged and neutral particles are propagated in the magnetic field until they reach the calorimeters
- Propagation parameters:
 - magnetic field **B**
 - radius and half-length (R_{max} , z_{max})
- Efficiency/resolution depends on:
 - particle ID
 - transverse momentum
 - pseudorapidity

# efficiency formula for muons		
add EfficiencyFormula {13} {	(pt <= 0.1)	* (0.000) + \
(abs(eta) <= 1.5) * (pt > 0.1	&& pt <= 1.0)	* (0.750) + \
(abs(eta) <= 1.5) * (pt > 1.0)		* (1.000) + \
(abs(eta) > 1.5 && abs(eta) <= 2.5) * (pt > 0.1	&& pt <= 1.0)	* (0.700) + \
(abs(eta) > 1.5 && abs(eta) <= 2.5) * (pt > 1.0)		* (0.975) + \
(abs(eta) > 2.5)		* (0.000)}

- Not real tracking/vertexing !!
 - \rightarrow no fake tracks/ conversions (but can be easily implemented)
 - \rightarrow no dE/dx measurements

Calorimetry

- em/had calorimeters have same segmentation in eta/phi
- Each particle that reaches the calorimeters deposits a fraction of its energy in one ECAL cell (f_{EM}) and HCAL cell (f_{HAD}), depending on its type:

particles	f _{em}	f _{HAD}
$e \gamma \pi^0$	1	0
Long-lived neutral hadrons ($\mathrm{K}^{\mathrm{o}}_{\ s}$, Λ^{o})	0.3	0.7
νμ	0	0
others	0	1

 Particle energy is smeared according to the calorimeter cell it reaches

 $E_{Tower} = \sum_{particles} \ln \mathcal{N} \left(f_{ECAL} \cdot E, \sigma_{ECAL}(E, \eta) \right) + \ln \mathcal{N} \left(f_{HCAL} \cdot E, \sigma_{HCAL}(E, \eta) \right)$

$$\left(\frac{\sigma}{E}\right)^2 = \left(\frac{S(\eta)}{\sqrt{E}}\right)^2 + \left(\frac{N(\eta)}{E}\right)^2 + C(\eta)^2$$
 7

- Idea: optimally combine all sub-detectors information
- In practice, in DELPHES use tracking and calo info to reconstruct high reso. input objects for later use (jets, E_T^{miss}, H_T)

 \rightarrow assume σ (trk) < σ (calo)

- Idea: optimally combine all sub-detectors information
- In practice, in DELPHES use tracking and calo info to reconstruct high reso. input objects for later use (jets, E_T^{miss}, H_T)

 \rightarrow assume σ (trk) < σ (calo)

$$E^{MC}(\pi^{+}) = 10 \text{ GeV} \rightarrow E^{HCAL}(\pi^{+}) = 9 \text{ GeV}$$
$$E^{TRK}(\pi^{+}) = 11 \text{ GeV}$$

Particle-Flow algorithm creates:

 \rightarrow PF-track, with energy E^{PF-trk} = 11 GeV

- Idea: optimally combine all sub-detectors information
- In practice, in DELPHES use tracking and calo info to reconstruct high reso. input objects for later use (jets, E_T^{miss}, H_T)

 \rightarrow assume σ (trk) < σ (calo)

$$E^{MC}(\pi^{+}) = 10 \text{ GeV} \rightarrow E^{HCAL}(\pi^{+}) = 9 \text{ GeV}$$
$$E^{TRK}(\pi^{+}) = 11 \text{ GeV}$$

Particle-Flow algorithm creates:

 \rightarrow PF-track, with energy E^{PF-trk} = 11 GeV

 In practice, in DELPHES use tracking and calo info to reconstruct high reso. input objects for later use (jets, E_T^{miss}, H_T)

```
\rightarrow assume \sigma(trk) < \sigma(calo)
```

$$E^{MC}(\pi^{+}) = 10 \text{ GeV} \rightarrow E^{HCAL}(\pi^{+}) = 15 \text{ GeV}$$
$$E^{TRK}(\pi^{+}) = 11 \text{ GeV}$$

Particle-Flow algorithm creates:

 \rightarrow PF-track, with energy E^{PF-trk} = 11 GeV \rightarrow PF-tower, with energy E^{PF-tower} = 4 GeV

 In practice, in DELPHES use tracking and calo info to reconstruct high reso. input objects for later use (jets, E_T^{miss}, H_T)

 \rightarrow assume σ (trk) < σ (calo)

$$\begin{array}{rcl} \mathsf{E}^{\mathsf{MC}}(\gamma) &=& 20 \; \mathsf{GeV} & \rightarrow \; \mathsf{E}^{\mathsf{ECAL}}(\gamma) &=& 18 \; \mathsf{GeV} \\ \mathsf{E}^{\mathsf{MC}}(\pi^{+}) &=& 10 \; \mathsf{GeV} & \rightarrow \; \mathsf{E}^{\mathsf{HCAL}}(\pi^{+}) &=& 15 \; \mathsf{GeV} \\ & & \mathsf{E}^{\mathsf{TRK}}(\pi^{+}) &=& 11 \; \mathsf{GeV} \end{array}$$

Particle-Flow algorithm creates:

 \rightarrow PF-track, with energy E^{PF-trk} = 11 GeV \rightarrow PF-tower, with energy E^{PF-tower} = 4 + 18 GeV

 In practice, in DELPHES use tracking and calo info to reconstruct high reso. input objects for later use (jets, E_T^{miss}, H_T)

```
\rightarrow assume \sigma(trk) < \sigma(calo)
```

$$\begin{array}{rcl} \mathsf{E}^{\mathsf{MC}}(\gamma) &=& 20 \; \mathsf{GeV} & \rightarrow \; \mathsf{E}^{\mathsf{ECAL}}(\gamma) &=& 18 \; \mathsf{GeV} \\ \mathsf{E}^{\mathsf{MC}}(\pi^{+}) &=& 10 \; \mathsf{GeV} & \rightarrow \; \mathsf{E}^{\mathsf{HCAL}}(\pi^{+}) &=& 15 \; \mathsf{GeV} \\ & & \mathsf{E}^{\mathsf{TRK}}(\pi^{+}) &=& 11 \; \mathsf{GeV} \end{array}$$

Particle-Flow algorithm creates:

 \rightarrow PF-track, with energy E^{PF-trk} = 11 GeV \rightarrow PF-tower, with energy E^{PF-tower} = 4 + 18 GeV

Separate neutral and charged calo deposits has crucial implications ¹³ for pile-up subtraction

- Delphes uses FastJet libraries for jet clustering
- Inputs can be formed from:
 - calorimeter towers
 - "particle-flow" tracks and towers

Leptons, photons

- Muons/photons/electrons
 - identified via their PDG id
 - muons do not deposit energy in calo (independent smearing parameterized in p_{τ} and $\eta)$
 - electrons and photons smeared according to electromagnetic calorimeter resolution
- Isolation:

$$I(P) = \frac{\sum_{i \neq P} p_T(i)}{p_T(P)}$$

 $\Delta R < R, p_T(i) > p_T^{min}$

→ modular structure allows to easily define different isolation

If I(P) < Imin, the lepton is isolated

User can specify parameters I_{min} , ΔR , p_T^{min}

- Not taken into account:
 - fakes, punch-through, brehmstrahlung, conversions

b and tau jets

- <u>b-jets</u>
 - if **b** parton is found in a cone ΔR w.r.t jet direction
 - \rightarrow apply efficiency
 - if **c** parton is found in a cone ΔR w.r.t jet direction
 - \rightarrow apply **c-mistag rate**
 - if **u,d,s,g** parton is found in a cone ΔR w.r.t jet direction
 - → apply light-mistag rate

b-tag flag is then stored in the jet collection

- <u>tau-jets</u>
 - if tau lepton is found in a cone ΔR w.r.t jet direction \rightarrow apply **efficiency**
 - else
 - → apply tau-mistag rate

p_T and η dependent efficiency and mistag rate

VALIDATION

Validation: electrons and muons

\rightarrow excellent agreement

Validation: jets

\rightarrow good agreement

Validation: E_T miss

\rightarrow excellent agreement

Physics example

- Reproduce part of **top mass measurement** in semi-leptonic decay (arXiv:1209:2319)
- Signal produced with MG5+Pythia+Delphes3
- Selection criteria:
 - \rightarrow = 1 lepton p_T > 30 GeV, |η| < 2.1
 - $\rightarrow \geq 4 \text{ jets} \quad p_T > 30 \text{ GeV}, |\eta| < 2.4$
 - \rightarrow 2 b-tagged jets, 2 light jets

eff(Delphes) = 2.8% vs. eff(CMS) = 2.3%

\rightarrow good agreement

-

Physics example

Delphes

Look at **hardest** 2 b-tagged and 2 light jets (à la CMS):

correct

: 4 jets are good, match right b with lights

- : 4 jets are good, match wrong b with lights
- wrong unmatched : at least one of the jets don't match

	Correct permutations	Wrong permutations	Unmatched permutation
GeV	$\frac{1800}{1800}$	$\begin{array}{c} \searrow \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\frac{2000}{1800} \qquad $
ns / 5	1600 t t + jets events	$\frac{10}{\sqrt{2}}$ 500 t t t + jets events	1600 t t + jets events
utatio	• CMS 1200 Delphes	ntation Hation Materia	1200 CMS Delphes
perm		La 300 La	
oer of	600		600
lmun	200	100 IIII IIII IIIII IIIII IIIIIIIIIIIII	200
el. diff.			0.5
Ξ	100 120 140 160 180 200 220 240	100 150 200 250 300 350 400	100 150 200 250 300
	m _{top} [GeV]	m _{top} [GeV]	m _{to}

correct	15.5~%	15.8~%
wrong	17.4~%	16.5~%
unmatched	67.1 %	67.7~%

CMS

Physics example

Look at **hardest** 2 b-tagged and 2 light jets (à la CMS):

- correct : 4 jets are good, match right b with lights
- wrong : 4 jets are good, match wrong b with lights
- unmatched : at least one of the jets don't match

	CMS	Delphes
correct	15.5~%	15.8~%
wrong	17.4~%	16.5~%
unmatched	67.1~%	67.7~%

Pile-up motivations

- Pile-up becomes an issue at high luminosity LHC
 - worsened **resolution** (jets, E_T^{miss})
 - degraded isolation
 - fake tracks, jets
- Efficiencies and resolutions can be tuned by hand to mimic pile-up
- Fake objects (jets) need to be simulated. Also, we want to have some predictive power:
 - \rightarrow We therefore introduced: tunable **simulation** of pile-up

pile-up substraction procedure.

Pile-up implementation

- Pile-up is implemented in Delphes since version 3.0.4
 - mixes N minimum bias events with hard event sample
 - spreads **poisson(N)** events along z-axis with configurable spread
 - rotate event by random angle φ wrt z-axis
- **Charged** Pile-up subtraction (most effective if used with PF jets)

- if z < |Zres| keep all charged and neutrals (\rightarrow ch. particles too close to hard scattering to be rejected)

- if **z > |Zres|** keep only **neutrals** (perfect charged subtraction)

allows user to tune amount of charged particle subtraction by adjusting Z spread/resolution

- **Residual** pile-up substraction is needed for jets and isolation.
 - Use the FastJet Area approach (Cacciari, Salam, Soyez)
 - compute ρ = event pile-up density
 - jet correction : $pT \rightarrow pT pA$ (JetPileUpSubtractor)
 - isolation : $\sum pT \rightarrow \sum pT \rho\pi R^2$ (Isolation module itself)
 - Subtraction can be $|\eta|$ dependent

Pile – Up Validation

Validation: Pile-Up

Figure 3. QCD event with 50 pile-up interactions shown with the DELPHES event display based on the ROOTEVE libraries [12]. Transverse view (top left), longitudinal view (bottom left), 3D view (top right), (η, ϕ) view (bottom right).

Validation: Pile-Up

\rightarrow good agreement

Validation: Pile-Up

- $H \rightarrow$ bb in **VBF channel** expected to be highly affected by pile-up
- Irreducible background bb+jets
- Select >4 jets with pT > 80, 60, 40, 40 (at least 2 b-tagged, at least 2 light)

Emergence of pile-up jets in the central region:

 \rightarrow depletion of rapidity gap

- Require large rapidity gap between light jets, no hadronic activity in between
- 100 < m(bb) < 200 GeV

Technical features

Technical features

- modular C++ code, uses ROOT classes
- Input
 - Pythia/Herwig output (HepMC,STDHEP)
 - LHE (MadGraph/MadEvent)
 - ProMC
- Output
 - ROOT trees
- Configuration file
 - define geometry
 - resolution/reconstruction/selection criteria
 - output object collections

default **CMS** and **ATLAS** configurations are included in any Delphes release ³³

Modularity in action

-

- reconstruction 1ms(0PU) 1s(150PU)
- ME calculation 1s 100s

processing time per event, ms

9 10 11

78

When and when not DELPHES?

- When do you need Delphes?
 - \rightarrow more advanced than parton-level studies
 - → testing analysis methods (multivariate/Matrix Element)
 - \rightarrow test your model (CheckMATE)
 - \rightarrow scan big parameter space (SUSY-like)
 - → preliminary tests of new geometries/resolutions (upgrades, Snowmass)
 - \rightarrow educational purpose (bachelor/master thesis)
- When not to use Delphes?
 - \rightarrow high precision studies
 - \rightarrow very exotic topologies (heavy stable charged particles)
 - \rightarrow study is sensitive to tails

Conclusions

- Delphes 3 has been out for one year now, with major improvements:
 - modularity
 - pile-up implementation
 - revamped particle flow algorithm
 - new visualization tool based on ROOT EVE
 - default cards giving results on par with published performance from LHC experiments
 - now fully integrated within MadGraph5
- To-do list:
 - PileUpJetID (see Seth Senz next talk)
 - Timing Detector
 - Neighboring cells energy sharing in calorimeters
- Delphes 2 is no longer supported!!
- Test it, and give us feedback!

the community ...

B