

Fast Monte Carlo at ATLAS 2nd Fast Monte Carlo Workshop in HEP

Flavia de Almeida Dias 14 - January - 2014

Outline

- ATLAS detector overview
- MC production chain
- Fast simulators on ATLAS
 - Frozen Showers
 - ➡ AF2 / FastCaloSim
 - ➡ AF2F / Fatras
 - Parameterization
- Integrated Simulation Framework
- Fast digitization and fast reconstruction
- Final Product
- Summary and outlook

ATLAS Detector Overview

- Main subdetectors
 - Inner Detector => Silicon and transition radiation technologies, in solenoidal magnetic field
 - Calorimeters => LAr EM calorimeter (in central and forward regions) and hadronic calorimeter (tile in central and LAr in forward region)
 - Muon system => spectrometer in toroidal magnetic field

Monte Carlo Production Chain

From 4-vectors to ROOT

MC Production on the Grid

- Grid CPU usage dominated by MC production
- MC production takes up large fraction of Grid disk usage => limitation
- Precise detector simulation => highly CPU intensive
- Obstacle for physics analyses in need of large MC statistics => sensitivity limitation
- Higher luminosity and pileup => larger MC production needed

Faster chain is necessary for RunII

Simulation Hierarchy Pyramid

- Simulate interactions of particles with sensitive and non sensitive detector material
- Produce sensitive detector hits with position and deposited energy information => input to digitization
- More accurate simulation means slower simulation
 - tradeoff between accuracy and speed

Simulation History and Potential Speed-Ups

 Unfortunately these all have "grown" independently

- different configuration, steering
- different output format

- Fast simulation sets the simulation into the ~ Hz level regime
- Has many more consequences (see later)

FullSim - Geant4

- Stable, fully validated and precise simulation
- High CPU consumption
 - mostly in EM calorimeters
 - ➡ simulation of ~30M volumes
- Also Geant4 can be/should be speedoptimised
 - Runge-Kutta-Nystroem propagator into Geant4
 - significantly faster
 - higher accuracy in long extrapolation tests
- Complete rework of Magnetic field access in ATLAS

G4 simulation time per subdetector

Ideas to Speed Up Simulation

approximate geometry

optimise transport and navigation

approximate models

take shortcuts

use new technologies

don't do anything

on 어 off

work only on demand

use look-up tables

throw away things

ignore the truth

Frozen Showers

- Many high energetic particles in forward direction => high CPU demand
- Specific to forward EM calorimeters
- Idea: replace low-energetic particles in developing particle showers with pre-simulated EM showers
 - libraries of frozen Geant4 showers assigned based on particle characteristics

Default in ATLAS "Full simulation" => Geant4 + frozen showers for forward calorimetry

AF2 - FastCaloSim

- Replacement of calorimeter simulation with parameterised FastCaloSim
- Relative CPU speed improvement w.r.t full Geant4 simulation:

~ 20

- Drawbacks:
 - simplifications in shower shapes
 (less fluctuations)
 - per se no hadronic leakage
 into Muon Spectrometer
 (can be and is parameterised in ATLAS)
- Used in MC12 production for several physics groups, such as SUSY

AF2 Usage in ATLAS Physics Groups - SUSY

- AF2 used in all SUSY signal samples, except:
 - Long lived scenarios
 - Substructure analyses
- Hadronic taus in AF2 shows good agreement with full simulation
- Dedicated jet calibration
- Also used in many Standard Model backgrounds

SUSY Sample	#AF2 Events
Model Specific	\sim 25 Million
Simplified model (no 3rd generation)	\sim 57 Million
Gluino mediated sbottom/ stop	\sim 25 Million
Stop pair production	\sim 50 Million
EWK Production	\sim 50 Million
SM Sample	#AF2 Events
ttbar	\sim I45 Million
Single top	\sim 40 Million
W+jets	\sim 500 Million
Z+jets	\sim 35 Million

Total: ~930 Million events And this is low estimate of total #

FastCaloSim

- Full Simulation
 - Full detector geometry
 - All physics processes for all primary and secondary particles
- Tracking of shower
 development
 through the
 calorimeter in fine
 steps

- **FastCaloSim**
 - Simple geometry with only ~185000 cells
 - Energy and shape parameterization only for photons, electrons and charged pions
 - Derived from FullSim

 Deposit of the particle energy in each calorimeter layer in one step

FastCaloSim (II)

- Approximations/shortcuts cause loss of accuracy
 - usually lead to worse data/MC compatibility
- Parameterizations tuned to data for the EM shower shapes for latest production campaign (MC12)
- Dedicated jet calibrations to use in physics analysis
- Use of pile-up corrections which improves agreement of the jets and MET

Shower Fluctuations in FastCaloSim

15

- Overall shower shape is compatible with full simulation
- Sub-cluster structure is not well described by FastCaloSim
 - Not enough secondary clusters
 - Introduction of random fluctuations in the cell energy deposits

Shower Fluctuations - Proof of Concept

 First attempt shows great improvement in several variables

Ongoing:

- Tuning of fluctuation parameters layer by layer
- To be tested with new FastCaloSim parameterization

AF2F

17

- Replacement of calorimeter simulation with parameterised FastCaloSim
- Replacement of Track simulation with Fast Track Simulation (Fatras)
- Relative CPU speed improvement w.r.t full Geant4 simulation: > 100
- Drawbacks:
 - simplifications of material integration
 (less tail effects in resolutions)
 - usually slightly higher simulation thresholds (affects hand-over to FastCaloSim)

Fatras

- Treats inner detector, muon
 spectrometer, and the muons
 interaction in the calorimeters
- Simplified detector geometry and interaction processes
 - Keeps the exact description of sensitive elements
 - Navigation using layers and volume boundaries, modules found by intersection with layer
 - Material is mapped onto layers using Geant4 description and geantinos

Fatras Performance

- FATRAS in comparison to data
 - ID reconstruction, tracks with p_T > 500 MeV
 - using exact same sensitive detector elements:
 - conditions data being fully integrated

Fatras Simplified Material Effects

Currently testing a Geant4 based hadronic interaction processor

G4 Hadronic Interactions into Fatras

- Hadronic interactions reasonably quick in full simulation
 - ➡ Better accuracy with G4
 - ~ 50% slower than Fatras parametric but ~ 20 times faster than G4 for 10 GeV pions
- Fatras simplified material description introduces complications in the implementation
 - Tests been made now to overcome all issues

Single μ and e processed with Fatras, but multiple scattering and energy loss simulated by Geant4.

Secondary track multiplicity

Secondary particle momenta

Parameterized Simulation

- Parametric smearing functions
- Detector resolution, reconstruction and trigger efficiencies
 - extrapolations from existing data sample, and full Monte Carlo simulations with high pile-up scenarios
- Currently used in High Luminosity studies
 - ► ES and ECFA functions
 - See upgrade physics studies public page

https://twiki.cern.ch/twiki/bin/view/ AtlasPublic/UpgradePhysicsStudies

Current Simulation Performance

Number of events simulated in ATLAS for the MC12 campaign:

- 3.9 G => full simulation (Geant4 + frozen showers)
- 3.0 G => fast simulation (Geant4 + FastCaloSim)

ISF - Integrated Simulation Framework

Combines different
 simulation approaches in
 ATLAS into one
 framework

- Output format is always the same independent of simulation chosen
- Configuration is done at one central place and standardized
- Fast and full simulation setup can be mixed and used alongside
- Compatible with multithreading and multiprocessing

Fast MC Chain vs Pile-Up

Fast MC Chain vs Pile-Up

ATLAS is also working on fast digitization and fast reconstruction

Fast Digitization

- Detector Simulation main bottleneck for current MC production
- Speedup of simulation up to ~3k times
 - next bottleneck are Digitization and Reconstruction
- Digitization time dominated by Inner Detector (~50%)
- **Fast Pileup** Use in time pileup to model out of time pileup contributions using detector specific weights

Fast digitization method for silicon detectors: the particle path length is projected on the readout surfaces, corrected for Lorentz angle drifts and smeared.

TRT

Fast digitization method used for the TRT: the closest approach radius is computed together with the uncertainty on its measurement from the simulated HITS, giving an estimate for the drift radius r_D used at reconstruction level.

Fast Reconstruction

- **ID**: most time consuming because of combinatorics in pattern recognition
- Fast tracking:
 - Seed track from MC truth
 - Skip most time consuming steps:
 - pattern recognition
 - track seeding
 - ambiguity treatment
 - reconstructed track fit to hits from truth
 - high efficiency at high pileup

Final Product

- Evgen to ROOT in one go
 - ➡ I/O writing next bottleneck after Fast Sim/Digi/Reco
 - No intermediate output (minimisation of I/O overhead and storage disk space)
 - Fast Simulation + Fast Digitization + Fast Reconstruction
- Estimated time per event: a few seconds
 - Possibility for large scale MC production with substantially lower resources

Summary and Outlook

- ATLAS is developing and maintaining both full and fast simulation
- A lot of work ongoing on the Integrated Simulation Framework
 - dynamic use of different Simulation technologies based on event characteristics
- Fast digitization for silicon and transition radiation tracking technologies
- Fast reconstruction => tracking based on seeding from MC truth
- Fast MC production chain:
 - combination of Fast Simulation, Digitization and Reconstruction
 - → 4-vectors \rightarrow ROOT in one step
 - only a few seconds necessary to process an event

Backup Slides