
Fast detector simulation at the ILC:
Simulation á Grande Vitesse - SGV

Mikael Berggren1

1DESY, Hamburg

FastSim workshop, DESY-Zeuthen, Jan 2014

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 1 / 33

Outline

1 ILC

2 Fast simulation
The need for fast simulation at ILC
Ex1: γγ cross-sections
Ex2: SUSY scans
Fast simulation types

3 SGV
Working priciples
Technicalities
Usage
Use-cases, Comparisions

SGV for detector design
SGV and FullSim

4 Outlook and Summary

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 2 / 33

ILC

The ILC

A linear e+e− collider.
ECMS tunable between 200 and 500 GeV, upgradable to 1 TeV.
Total length 31 km∫
L ∼ 500 fb−1 in 4 years

Polarisation e−: 80% (e+: ≥ 30%)
2 experiments, but (possibly) only one interaction region.
Concurrent running with the LHC

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 3 / 33

ILC

The ILC is not LHC

Lepton-collider: Initial state is known.
Production is EW⇒

Small theoretical uncertainties.
No “underlaying event”.
Low cross-sections wrt. LHC, also for background.
Trigger-less operation.
High precision (sub-%) measurements needed, to extend our
knowledge beyond LEP, Tevatron, LHC.
Interesting physics at low angles: t-channel di-boson production ...

Extremely small beam-spot: 5 nm × 100 nm × 150 µm.
High luminosity: 2 × 1034 cm−2 s−1. Single pass operation⇒ this
is the lumi for every bunch-crossing.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 4 / 33

ILC

The ILC is not LHC

Lepton-collider: Initial state is known.
Production is EW⇒

Small theoretical uncertainties.
No “underlaying event”.
Low cross-sections wrt. LHC, also for background.
Trigger-less operation.
High precision (sub-%) measurements needed, to extend our
knowledge beyond LEP, Tevatron, LHC.
Interesting physics at low angles: t-channel di-boson production ...

Extremely small beam-spot: 5 nm × 100 nm × 150 µm.
High luminosity: 2 × 1034 cm−2 s−1. Single pass operation⇒ this
is the lumi for every bunch-crossing.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 4 / 33

ILC

The ILC is not LHC

Lepton-collider: Initial state is known.
Production is EW⇒

Small theoretical uncertainties.
No “underlaying event”.
Low cross-sections wrt. LHC, also for background.
Trigger-less operation.
High precision (sub-%) measurements needed, to extend our
knowledge beyond LEP, Tevatron, LHC.
Interesting physics at low angles: t-channel di-boson production ...

Extremely small beam-spot: 5 nm × 100 nm × 150 µm.
High luminosity: 2 × 1034 cm−2 s−1. Single pass operation⇒ this
is the lumi for every bunch-crossing.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 4 / 33

ILC

The ILC is not LHC

Lepton-collider: Initial state is known.
Production is EW⇒

Small theoretical uncertainties.
No “underlaying event”.
Low cross-sections wrt. LHC, also for background.
Trigger-less operation.
High precision (sub-%) measurements needed, to extend our
knowledge beyond LEP, Tevatron, LHC.
Interesting physics at low angles: t-channel di-boson production ...

Extremely small beam-spot: 5 nm × 100 nm × 150 µm.
High luminosity: 2 × 1034 cm−2 s−1. Single pass operation⇒ this
is the lumi for every bunch-crossing.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 4 / 33

ILC

The ILC is not LHC

Lepton-collider: Initial state is known.
Production is EW⇒

Small theoretical uncertainties.
No “underlaying event”.
Low cross-sections wrt. LHC, also for background.
Trigger-less operation.
High precision (sub-%) measurements needed, to extend our
knowledge beyond LEP, Tevatron, LHC.
Interesting physics at low angles: t-channel di-boson production ...

Extremely small beam-spot: 5 nm × 100 nm × 150 µm.
High luminosity: 2 × 1034 cm−2 s−1. Single pass operation⇒ this
is the lumi for every bunch-crossing.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 4 / 33

ILC

The ILC is not LEP, either

Small beam-spot⇒ Beam-beam interactions⇒
Large amounts of synchrotron photons ...
... that get Compton back-scattered ...
They might create e+e− pairs when interacting with the field: The
pairs-background.
Or interact with each other: mini-jets

Single pass operation, ondulator positron-source, beam-beam
effects: Beam-spectrum is not a δ-function.
Luminosity/bunch-crossing three orders of magnitude higher:
pile-up of γγ events (a few/BX, yielding a few particles, so we’re
not talking LHC conditions here !)

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 5 / 33

ILC

The ILC is not LEP, either

Small beam-spot⇒ Beam-beam interactions⇒
Large amounts of synchrotron photons ...
... that get Compton back-scattered ...
They might create e+e− pairs when interacting with the field: The
pairs-background.
Or interact with each other: mini-jets

Single pass operation, ondulator positron-source, beam-beam
effects: Beam-spectrum is not a δ-function.
Luminosity/bunch-crossing three orders of magnitude higher:
pile-up of γγ events (a few/BX, yielding a few particles, so we’re
not talking LHC conditions here !)

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 5 / 33

ILC

The ILC is not LEP, either

Small beam-spot⇒ Beam-beam interactions⇒
Large amounts of synchrotron photons ...
... that get Compton back-scattered ...
They might create e+e− pairs when interacting with the field: The
pairs-background.
Or interact with each other: mini-jets

Single pass operation, ondulator positron-source, beam-beam
effects: Beam-spectrum is not a δ-function.
Luminosity/bunch-crossing three orders of magnitude higher:
pile-up of γγ events (a few/BX, yielding a few particles, so we’re
not talking LHC conditions here !)

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 5 / 33

ILC

The ILC is not LEP, either

Small beam-spot⇒ Beam-beam interactions⇒
Large amounts of synchrotron photons ...
... that get Compton back-scattered ...
They might create e+e− pairs when interacting with the field: The
pairs-background.
Or interact with each other: mini-jets

Single pass operation, ondulator positron-source, beam-beam
effects: Beam-spectrum is not a δ-function.
Luminosity/bunch-crossing three orders of magnitude higher:
pile-up of γγ events (a few/BX, yielding a few particles, so we’re
not talking LHC conditions here !)

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 5 / 33

ILC

The ILC is not LEP, either

Small beam-spot⇒ Beam-beam interactions⇒
Large amounts of synchrotron photons ...
... that get Compton back-scattered ...
They might create e+e− pairs when interacting with the field: The
pairs-background.
Or interact with each other: mini-jets

Single pass operation, ondulator positron-source, beam-beam
effects: Beam-spectrum is not a δ-function.
Luminosity/bunch-crossing three orders of magnitude higher:
pile-up of γγ events (a few/BX, yielding a few particles, so we’re
not talking LHC conditions here !)

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 5 / 33

ILC

The ILC is not LEP, either

Small beam-spot⇒ Beam-beam interactions⇒
Large amounts of synchrotron photons ...
... that get Compton back-scattered ...
They might create e+e− pairs when interacting with the field: The
pairs-background.
Or interact with each other: mini-jets

Single pass operation, ondulator positron-source, beam-beam
effects: Beam-spectrum is not a δ-function.
Luminosity/bunch-crossing three orders of magnitude higher:
pile-up of γγ events (a few/BX, yielding a few particles, so we’re
not talking LHC conditions here !)

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 5 / 33

ILC

The ILC is not LEP, either

Small beam-spot⇒ Beam-beam interactions⇒
Large amounts of synchrotron photons ...
... that get Compton back-scattered ...
They might create e+e− pairs when interacting with the field: The
pairs-background.
Or interact with each other: mini-jets

Single pass operation, ondulator positron-source, beam-beam
effects: Beam-spectrum is not a δ-function.
Luminosity/bunch-crossing three orders of magnitude higher:
pile-up of γγ events (a few/BX, yielding a few particles, so we’re
not talking LHC conditions here !)

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 5 / 33

ILC

The ILC : Detectors

Low background⇒ detectors can be:
Thin : few % X0 in front of calorimeters
Very close to IP: first layer of VXD at 1.5 cm.
Close to 4π: holes for beam-pipe only few cm = 0.2 msr un-covered
= Area of Suisse Romande (or Schleswig-Holstein) relative to earth.

High precision measurements:
Extremely high demands on tracking.
Tracking to low angles
Identify and measure every particle in the event = Particle-flow:

Measure charged particles with tracker, neutrals with calorimeters.
Need to separate neutral clusters from charged in calorimeters.
Separate showers in calorimeters⇒ high granularity.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 6 / 33

ILC

The ILC : Detectors

Low background⇒ detectors can be:
Thin : few % X0 in front of calorimeters
Very close to IP: first layer of VXD at 1.5 cm.
Close to 4π: holes for beam-pipe only few cm = 0.2 msr un-covered
= Area of Suisse Romande (or Schleswig-Holstein) relative to earth.

High precision measurements:
Extremely high demands on tracking.
Tracking to low angles
Identify and measure every particle in the event = Particle-flow:

Measure charged particles with tracker, neutrals with calorimeters.
Need to separate neutral clusters from charged in calorimeters.
Separate showers in calorimeters⇒ high granularity.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 6 / 33

ILC

The ILC : Detectors

Low background⇒ detectors can be:
Thin : few % X0 in front of calorimeters
Very close to IP: first layer of VXD at 1.5 cm.
Close to 4π: holes for beam-pipe only few cm = 0.2 msr un-covered
= Area of Suisse Romande (or Schleswig-Holstein) relative to earth.

High precision measurements:
Extremely high demands on tracking.
Tracking to low angles
Identify and measure every particle in the event = Particle-flow:

Measure charged particles with tracker, neutrals with calorimeters.
Need to separate neutral clusters from charged in calorimeters.
Separate showers in calorimeters⇒ high granularity.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 6 / 33

ILC

The ILC : Detectors

Low background⇒ detectors can be:
Thin : few % X0 in front of calorimeters
Very close to IP: first layer of VXD at 1.5 cm.
Close to 4π: holes for beam-pipe only few cm = 0.2 msr un-covered
= Area of Suisse Romande (or Schleswig-Holstein) relative to earth.

High precision measurements:
Extremely high demands on tracking.
Tracking to low angles
Identify and measure every particle in the event = Particle-flow:

Measure charged particles with tracker, neutrals with calorimeters.
Need to separate neutral clusters from charged in calorimeters.
Separate showers in calorimeters⇒ high granularity.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 6 / 33

ILC

The ILC : Detectors

Low background⇒ detectors can be:
Thin : few % X0 in front of calorimeters
Very close to IP: first layer of VXD at 1.5 cm.
Close to 4π: holes for beam-pipe only few cm = 0.2 msr un-covered
= Area of Suisse Romande (or Schleswig-Holstein) relative to earth.

High precision measurements:
Extremely high demands on tracking.
Tracking to low angles
Identify and measure every particle in the event = Particle-flow:

Measure charged particles with tracker, neutrals with calorimeters.
Need to separate neutral clusters from charged in calorimeters.
Separate showers in calorimeters⇒ high granularity.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 6 / 33

ILC

The ILD Detector

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 7 / 33

ILC

Example: Zh→ µµqq̄ at 250 GeV

Topic: Model independent Higgs mass
Recoil mass measurement:

Only reconstruct the Z → µµ

Using E & p conservation the Higgs mass can be measured from
the recoil independent of the decay mode

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 8 / 33

ILC

Example: Zh→ µµqq̄ at 250 GeV

Topic: Model independent Higgs mass
Recoil mass measurement:

Only reconstruct the Z → µµ

Using E & p conservation the Higgs mass can be measured from
the recoil independent of the decay mode

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 8 / 33

ILC

Example: Zh→ µµqq̄ at 250 GeV

Topic: Model independent Higgs mass
Recoil mass measurement:

Only reconstruct the Z → µµ

Using E & p conservation the Higgs mass can be measured from
the recoil independent of the decay mode

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 8 / 33

ILC

Example: tth→ 8 jets at 1 TeV

Topic: Higgs-top coupling
Find all 8 jets.
Find the jets from each top-decay and from the Higgs decay⇒

Flavour-tagging and jet-energy resolution.

Find cross-section.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 9 / 33

ILC

Example: tth→ 8 jets at 1 TeV

Topic: Higgs-top coupling
Find all 8 jets.
Find the jets from each top-decay and from the Higgs decay⇒

Flavour-tagging and jet-energy resolution.

Find cross-section.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 9 / 33

ILC

Example: tth→ 8 jets at 1 TeV

Topic: Higgs-top coupling
Find all 8 jets.
Find the jets from each top-decay and from the Higgs decay⇒

Flavour-tagging and jet-energy resolution.

Find cross-section.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 9 / 33

Fast simulation The need for fast simulation at ILC

The need for fast simulation at ILC

We have very good full simulation now.
So why bother about fast simulation ?
Answer:

R. Heuer at LCWS 2011: We need to update the physics case
continuously.
Light-weight: run anywhere, no need to read tons of manuals and
doxygen pages.
Anyhow, the Letter Of Intent exercise in 2009 showed that for
physics, the fastSim studies were good enough.

But most of all:

Fast simulation is Fast !

So...
Why do we need speed at the ILC ?

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 10 / 33

Fast simulation The need for fast simulation at ILC

The need for fast simulation at ILC

We have very good full simulation now.
So why bother about fast simulation ?
Answer:

R. Heuer at LCWS 2011: We need to update the physics case
continuously.
Light-weight: run anywhere, no need to read tons of manuals and
doxygen pages.
Anyhow, the Letter Of Intent exercise in 2009 showed that for
physics, the fastSim studies were good enough.

But most of all:

Fast simulation is Fast !

So...
Why do we need speed at the ILC ?

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 10 / 33

Fast simulation The need for fast simulation at ILC

The need for fast simulation at ILC

We have very good full simulation now.
So why bother about fast simulation ?
Answer:

R. Heuer at LCWS 2011: We need to update the physics case
continuously.
Light-weight: run anywhere, no need to read tons of manuals and
doxygen pages.
Anyhow, the Letter Of Intent exercise in 2009 showed that for
physics, the fastSim studies were good enough.

But most of all:

Fast simulation is Fast !

So...
Why do we need speed at the ILC ?

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 10 / 33

Fast simulation The need for fast simulation at ILC

The need for fast simulation at ILC

We have very good full simulation now.
So why bother about fast simulation ?
Answer:

R. Heuer at LCWS 2011: We need to update the physics case
continuously.
Light-weight: run anywhere, no need to read tons of manuals and
doxygen pages.
Anyhow, the Letter Of Intent exercise in 2009 showed that for
physics, the fastSim studies were good enough.

But most of all:

Fast simulation is Fast !

So...
Why do we need speed at the ILC ?

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 10 / 33

Fast simulation The need for fast simulation at ILC

The need for fast simulation at ILC

We have very good full simulation now.
So why bother about fast simulation ?
Answer:

R. Heuer at LCWS 2011: We need to update the physics case
continuously.
Light-weight: run anywhere, no need to read tons of manuals and
doxygen pages.
Anyhow, the Letter Of Intent exercise in 2009 showed that for
physics, the fastSim studies were good enough.

But most of all:

Fast simulation is Fast !

So...
Why do we need speed at the ILC ?

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 10 / 33

Fast simulation Ex1: γγ cross-sections

Ex1: γγ background

Total cross-section for e+e− → γγe+e− → qq̄e+e−: 35 nb (PYTHIA)∫
Ldt = 500 fb−1 → 18 ?109 events are expected.

10 ms to generate one event.
10 ms to fastsim (SGV) one event.

108 s of CPU time is needed, ie more than 3 years. But:This goes to
3000 years with full simulation.

And that’s only to keep up with the real data ...
For MC-statistics not to be the dominating systematic error one
would like to to have at least 5-10 times the data.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 11 / 33

Fast simulation Ex1: γγ cross-sections

Ex1: γγ background

Total cross-section for e+e− → γγe+e− → qq̄e+e−: 35 nb (PYTHIA)∫
Ldt = 500 fb−1 → 18 ?109 events are expected.

10 ms to generate one event.
10 ms to fastsim (SGV) one event.

108 s of CPU time is needed, ie more than 3 years. But:This goes to
3000 years with full simulation.

And that’s only to keep up with the real data ...
For MC-statistics not to be the dominating systematic error one
would like to to have at least 5-10 times the data.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 11 / 33

Fast simulation Ex1: γγ cross-sections

Ex1: γγ background

Total cross-section for e+e− → γγe+e− → qq̄e+e−: 35 nb (PYTHIA)∫
Ldt = 500 fb−1 → 18 ?109 events are expected.

10 ms to generate one event.
10 ms to fastsim (SGV) one event.

108 s of CPU time is needed, ie more than 3 years. But:This goes to
3000 years with full simulation.

And that’s only to keep up with the real data ...
For MC-statistics not to be the dominating systematic error one
would like to to have at least 5-10 times the data.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 11 / 33

Fast simulation Ex1: γγ cross-sections

Ex1: γγ background

Total cross-section for e+e− → γγe+e− → qq̄e+e−: 35 nb (PYTHIA)∫
Ldt = 500 fb−1 → 18 ?109 events are expected.

10 ms to generate one event.
10 ms to fastsim (SGV) one event.

108 s of CPU time is needed, ie more than 3 years. But:This goes to
3000 years with full simulation.

And that’s only to keep up with the real data ...
For MC-statistics not to be the dominating systematic error one
would like to to have at least 5-10 times the data.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 11 / 33

Fast simulation Ex2: SUSY scans

SUSY parameter scans

Simple example:
Modest pMSSM scan with 10 parameters.
Scan each in eg. 10 steps
Eg. 1000 events per point (also a modest requirement: in eg.
sps1a’ almost 1 million SUSY events are expected for 500 fb−1 !)
= 1010 × 1000 = 100× 109 events to generate...

Slower to generate and simulate than γγ events

Also here: CPU millenniums with full simulation

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 12 / 33

Fast simulation Ex2: SUSY scans

SUSY parameter scans

Simple example:
Modest pMSSM scan with 10 parameters.
Scan each in eg. 10 steps
Eg. 1000 events per point (also a modest requirement: in eg.
sps1a’ almost 1 million SUSY events are expected for 500 fb−1 !)
= 1010 × 1000 = 100× 109 events to generate...

Slower to generate and simulate than γγ events

Also here: CPU millenniums with full simulation

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 12 / 33

Fast simulation Fast simulation types

Fast simulation types

Different types, with increasing level of sophistication:
4-vector smearing. ILC Ex. SimpleFastMCProcessor.
Parametric. ILC ex.: SIMDET
Covariance matrix machines. ILC ex.: LiCToy, SGV

Common for all:
Detector simulation time ≈ time to generate event by an efficient
generator like PYTHIA 6

I will talk about

“la Simulation à Grande Vitesse”, SGV.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 13 / 33

Fast simulation Fast simulation types

Fast simulation types

Different types, with increasing level of sophistication:
4-vector smearing. ILC Ex. SimpleFastMCProcessor.
Parametric. ILC ex.: SIMDET
Covariance matrix machines. ILC ex.: LiCToy, SGV

Common for all:
Detector simulation time ≈ time to generate event by an efficient
generator like PYTHIA 6

I will talk about

“la Simulation à Grande Vitesse”, SGV.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 13 / 33

SGV Working priciples

SGV: How tracking works
SGV is a machine to calculate covariance matrices

Tracking: Follow track-helix through
the detector.

Calculate cov. mat. at perigee,
including material,
measurement errors and
extrapolation. NB: this is
exactly what Your track fit
does!
Smear perigee parameters
(Choleski decomposition:
takes all correlations into
account)
Helix parameters exactly
calculated, errors with one
approximation: helix moved to
(0,0,0) for this.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 14 / 33

SGV Working priciples

SGV: How tracking works
SGV is a machine to calculate covariance matrices

Tracking: Follow track-helix through
the detector.

Calculate cov. mat. at perigee,
including material,
measurement errors and
extrapolation. NB: this is
exactly what Your track fit
does!
Smear perigee parameters
(Choleski decomposition:
takes all correlations into
account)
Helix parameters exactly
calculated, errors with one
approximation: helix moved to
(0,0,0) for this.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 14 / 33

SGV Working priciples

SGV: How tracking works
SGV is a machine to calculate covariance matrices

Tracking: Follow track-helix through
the detector.

Calculate cov. mat. at perigee,
including material,
measurement errors and
extrapolation. NB: this is
exactly what Your track fit
does!
Smear perigee parameters
(Choleski decomposition:
takes all correlations into
account)
Helix parameters exactly
calculated, errors with one
approximation: helix moved to
(0,0,0) for this.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 14 / 33

SGV Working priciples

SGV: How tracking works
SGV is a machine to calculate covariance matrices

Tracking: Follow track-helix through
the detector.

Calculate cov. mat. at perigee,
including material,
measurement errors and
extrapolation. NB: this is
exactly what Your track fit
does!
Smear perigee parameters
(Choleski decomposition:
takes all correlations into
account)
Helix parameters exactly
calculated, errors with one
approximation: helix moved to
(0,0,0) for this.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 14 / 33

SGV Working priciples

SGV: How the rest works

Calorimeters:
Follow particle to intersection with calorimeters. Simulate:

Response type: MIP, EM-shower, hadronic shower, below
threshold, etc.
Simulate single particle response from parameters.
Easy to plug in other (more sophisticated) shower-simulation. See
Madalina Chera’s talk tomorrow.

Other stuff:
EM-interactions in detector material simulated
Plug-ins for particle identification, track-finding efficiencies,...
Information on hits accessible to analysis.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 15 / 33

SGV Working priciples

SGV: How the rest works

Calorimeters:
Follow particle to intersection with calorimeters. Simulate:

Response type: MIP, EM-shower, hadronic shower, below
threshold, etc.
Simulate single particle response from parameters.
Easy to plug in other (more sophisticated) shower-simulation. See
Madalina Chera’s talk tomorrow.

Other stuff:
EM-interactions in detector material simulated
Plug-ins for particle identification, track-finding efficiencies,...
Information on hits accessible to analysis.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 15 / 33

SGV Technicalities

Technicalities

Written in Fortran 95, a re-write of the Fortran77-based SGV2
series, battle-tested at LEP.
Some CERNLIB dependence. Much reduced wrt. old F77 version,
mostly by using Fortran 95’s built-in matrix algebra. Just one core
dependence (Choleski decomposition), so in a future version, the
dependence will be optional.
Managed in SVN.Install script included.
Typical generation+simulation+reconstruction time O(10) ms.
Timing verified to be faster (by 15%) than the f77 version.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 16 / 33

SGV Technicalities

Technicalities

Written in Fortran 95, a re-write of the Fortran77-based SGV2
series, battle-tested at LEP.
Some CERNLIB dependence. Much reduced wrt. old F77 version,
mostly by using Fortran 95’s built-in matrix algebra. Just one core
dependence (Choleski decomposition), so in a future version, the
dependence will be optional.
Managed in SVN.Install script included.
Typical generation+simulation+reconstruction time O(10) ms.
Timing verified to be faster (by 15%) than the f77 version.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 16 / 33

SGV Technicalities

Technicalities

Written in Fortran 95, a re-write of the Fortran77-based SGV2
series, battle-tested at LEP.
Some CERNLIB dependence. Much reduced wrt. old F77 version,
mostly by using Fortran 95’s built-in matrix algebra. Just one core
dependence (Choleski decomposition), so in a future version, the
dependence will be optional.
Managed in SVN.Install script included.
Typical generation+simulation+reconstruction time O(10) ms.
Timing verified to be faster (by 15%) than the f77 version.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 16 / 33

SGV Technicalities

Technicalities

Written in Fortran 95, a re-write of the Fortran77-based SGV2
series, battle-tested at LEP.
Some CERNLIB dependence. Much reduced wrt. old F77 version,
mostly by using Fortran 95’s built-in matrix algebra. Just one core
dependence (Choleski decomposition), so in a future version, the
dependence will be optional.
Managed in SVN.Install script included.
Typical generation+simulation+reconstruction time O(10) ms.
Timing verified to be faster (by 15%) than the f77 version.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 16 / 33

SGV Technicalities

Features

Physics events from callable PYTHIA, Whizard, with
beam-spectrum.
.. or input from PYJETS or stdhep.
Output of generated event to PYJETS or stdhep.
samples subdirectory with steering and code for eg. scan single

Scan single particles (“particle gun”).
Create hbook ntuple with “all” information (can be converted to
ROOT w/ h2root). (Is there a C-binding to root, at least for tree
definition, filling and I/O ?)
Code for more elaborate calorimeters

Particle-Flow with confusion (Madalina’s talk).
More complicated acceptance, eg. small angle calorimters with
beam-background and crossing-angle.

Output LCIO DST, the common ILC data-model, with content
identical to that for FullSim⇒ SGV for rapid prototyping of
analyses.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 17 / 33

SGV Technicalities

Features

Physics events from callable PYTHIA, Whizard, with
beam-spectrum.
.. or input from PYJETS or stdhep.
Output of generated event to PYJETS or stdhep.
samples subdirectory with steering and code for eg. scan single

Scan single particles (“particle gun”).
Create hbook ntuple with “all” information (can be converted to
ROOT w/ h2root). (Is there a C-binding to root, at least for tree
definition, filling and I/O ?)
Code for more elaborate calorimeters

Particle-Flow with confusion (Madalina’s talk).
More complicated acceptance, eg. small angle calorimters with
beam-background and crossing-angle.

Output LCIO DST, the common ILC data-model, with content
identical to that for FullSim⇒ SGV for rapid prototyping of
analyses.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 17 / 33

SGV Technicalities

Features

Physics events from callable PYTHIA, Whizard, with
beam-spectrum.
.. or input from PYJETS or stdhep.
Output of generated event to PYJETS or stdhep.
samples subdirectory with steering and code for eg. scan single

Scan single particles (“particle gun”).
Create hbook ntuple with “all” information (can be converted to
ROOT w/ h2root). (Is there a C-binding to root, at least for tree
definition, filling and I/O ?)
Code for more elaborate calorimeters

Particle-Flow with confusion (Madalina’s talk).
More complicated acceptance, eg. small angle calorimters with
beam-background and crossing-angle.

Output LCIO DST, the common ILC data-model, with content
identical to that for FullSim⇒ SGV for rapid prototyping of
analyses.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 17 / 33

SGV Technicalities

Features

Physics events from callable PYTHIA, Whizard, with
beam-spectrum.
.. or input from PYJETS or stdhep.
Output of generated event to PYJETS or stdhep.
samples subdirectory with steering and code for eg. scan single

Scan single particles (“particle gun”).
Create hbook ntuple with “all” information (can be converted to
ROOT w/ h2root). (Is there a C-binding to root, at least for tree
definition, filling and I/O ?)
Code for more elaborate calorimeters

Particle-Flow with confusion (Madalina’s talk).
More complicated acceptance, eg. small angle calorimters with
beam-background and crossing-angle.

Output LCIO DST, the common ILC data-model, with content
identical to that for FullSim⇒ SGV for rapid prototyping of
analyses.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 17 / 33

SGV Technicalities

Stucture

SGV is made of six loosely connected parts:
The Steering, which takes care of initialisation and ending, and
runs the event loop.
In the event loop,

The Event Generator, which either calls the external generator, or
reads in pre-generated events.
The Detector Simulation
The Event Dispatcher

is called.
The Detector Simulation calls

The Covariance Matrix Machine
The Calorimeter response simulation.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 18 / 33

SGV Technicalities

Stucture

The Event Dispatcher trasferes the data directly to the Event
Analysis, and/or writes to an file / FIFO / shared memmory
(RZ/FZ).
Communication between parts - steering and data - is by
arguments only (except for Event Generator → Detector Simulation → Event Dispatcher.)

Therefore, the Event analysis can be called by any process that
can attribute values to the elements the Event-dispatcher sends to
the Analyser.

Use-case: ROOT delegates analysis to SGV.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 19 / 33

SGV Technicalities

Stucture

The Event Dispatcher trasferes the data directly to the Event
Analysis, and/or writes to an file / FIFO / shared memmory
(RZ/FZ).
Communication between parts - steering and data - is by
arguments only (except for Event Generator → Detector Simulation → Event Dispatcher.)

Therefore, the Event analysis can be called by any process that
can attribute values to the elements the Event-dispatcher sends to
the Analyser.

Use-case: ROOT delegates analysis to SGV.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 19 / 33

SGV Technicalities

Stucture

The Event Dispatcher trasferes the data directly to the Event
Analysis, and/or writes to an file / FIFO / shared memmory
(RZ/FZ).
Communication between parts - steering and data - is by
arguments only (except for Event Generator → Detector Simulation → Event Dispatcher.)

Therefore, the Event analysis can be called by any process that
can attribute values to the elements the Event-dispatcher sends to
the Analyser.

Use-case: ROOT delegates analysis to SGV.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 19 / 33

SGV Usage

Usage

Steering:
A single steering file for all the steps - general, event generation,
detector simulation, analysis.

User code:
One routine (and it’s CONTAINS:s or USE:es).
Default version compiled in.
Many more complicated examples in the “samples” sub-directory.

User data, delivered in Module-global arrays:
Extended 4-vectors .
Track helix parameters with correlations.
Calorimetric clusters.
When relevant: true values.
Auxiliary information on particle history, detector-elements used etc.
Event-global variables.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 20 / 33

SGV Usage

Usage

Steering:
A single steering file for all the steps - general, event generation,
detector simulation, analysis.

User code:
One routine (and it’s CONTAINS:s or USE:es).
Default version compiled in.
Many more complicated examples in the “samples” sub-directory.

User data, delivered in Module-global arrays:
Extended 4-vectors .
Track helix parameters with correlations.
Calorimetric clusters.
When relevant: true values.
Auxiliary information on particle history, detector-elements used etc.
Event-global variables.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 20 / 33

SGV Usage

Usage

Steering:
A single steering file for all the steps - general, event generation,
detector simulation, analysis.

User code:
One routine (and it’s CONTAINS:s or USE:es).
Default version compiled in.
Many more complicated examples in the “samples” sub-directory.

User data, delivered in Module-global arrays:
Extended 4-vectors .
Track helix parameters with correlations.
Calorimetric clusters.
When relevant: true values.
Auxiliary information on particle history, detector-elements used etc.
Event-global variables.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 20 / 33

SGV Usage

Usage

User Analysis tasks :
Jet-finding.
Event-shapes.
Primary and secondary vertex fitting.
Impact parameters.

Can be calculated by routines, included in SGV. Access routines
give an easy interface to the detector geometry.
Assemble source, Compile & link of desired version:

Done by cresgvexe (cresgvso) script.
Comand-line parameters for detailed selections : -D:s , extra
libraries, non-defaultscompiler/linker options, etc.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 21 / 33

SGV Usage

Usage

User Analysis tasks :
Jet-finding.
Event-shapes.
Primary and secondary vertex fitting.
Impact parameters.

Can be calculated by routines, included in SGV. Access routines
give an easy interface to the detector geometry.
Assemble source, Compile & link of desired version:

Done by cresgvexe (cresgvso) script.
Comand-line parameters for detailed selections : -D:s , extra
libraries, non-defaultscompiler/linker options, etc.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 21 / 33

SGV Usage

Usage

Generators:
Interfaces to PYTHIA and Whizard built-in.
Easy to interface to others (but depends on how well structured the
generator is...).
Alternatively: Read events from external file (but beware of I/O !)

Detector geometry:
Planes and cylinders.
Attributes attached (measurement, material, names,...).
Read from a human-readable ASCII-file (ex).
Simple visualisation of the detector included.
Up to three detectors can be loaded simultaneously, and will be
looped over event by event.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 22 / 33

SGV Usage

Usage

Generators:
Interfaces to PYTHIA and Whizard built-in.
Easy to interface to others (but depends on how well structured the
generator is...).
Alternatively: Read events from external file (but beware of I/O !)

Detector geometry:
Planes and cylinders.
Attributes attached (measurement, material, names,...).
Read from a human-readable ASCII-file (ex).
Simple visualisation of the detector included.
Up to three detectors can be loaded simultaneously, and will be
looped over event by event.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 22 / 33

SGV Usage

Installing SGV

Do
svn co https://svnsrv.desy.de/public/sgv/trunk/ sgv/

Then
cd sgv ; . ./install

This will take you about 30 seconds ...

Study README do get the first test job done (another 30 seconds)
Look README in the samples sub-directory, to enhance the
capabilities, eg.:

Get STDHEP installed.
Get CERNLIB installed in native 64bit.
Get Whizard (basic or ILC-tuned) installed.
Get the LCIO-DST writer set up

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 23 / 33

SGV Usage

Installing SGV

Do
svn co https://svnsrv.desy.de/public/sgv/trunk/ sgv/

Then
cd sgv ; . ./install

This will take you about 30 seconds ...

Study README do get the first test job done (another 30 seconds)
Look README in the samples sub-directory, to enhance the
capabilities, eg.:

Get STDHEP installed.
Get CERNLIB installed in native 64bit.
Get Whizard (basic or ILC-tuned) installed.
Get the LCIO-DST writer set up

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 23 / 33

SGV Usage

Installing SGV

Do
svn co https://svnsrv.desy.de/public/sgv/trunk/ sgv/

Then
cd sgv ; . ./install

This will take you about 30 seconds ...

Study README do get the first test job done (another 30 seconds)
Look README in the samples sub-directory, to enhance the
capabilities, eg.:

Get STDHEP installed.
Get CERNLIB installed in native 64bit.
Get Whizard (basic or ILC-tuned) installed.
Get the LCIO-DST writer set up

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 23 / 33

SGV Use-cases, Comparisions

Ex: ILD tracker-system design (Vienna 2005).

I: The divergence in the
TDR: Once the last disk is
hit, the 1/

√
tan θ is back !

II: The step: End of The
Vertex Detector
Remedy I:Add disks all the
way to the end of the TPC
(5 more strip-disks)
Remedy II: Add a pixel disk
with σpoint = 4µ just
outside the VD. 10

-5

10
-4

10
-3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
tan(Θ)

∆(
1/

p)
 [G

eV
/c

]-1

The TDR

New FTD

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 24 / 33

SGV Use-cases, Comparisions

Ex: ILD tracker-system design (Vienna 2005).

I: The divergence in the
TDR: Once the last disk is
hit, the 1/

√
tan θ is back !

II: The step: End of The
Vertex Detector
Remedy I:Add disks all the
way to the end of the TPC
(5 more strip-disks)
Remedy II: Add a pixel disk
with σpoint = 4µ just
outside the VD. 10

-5

10
-4

10
-3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
tan(Θ)

∆(
1/

p)
 [G

eV
/c

]-1

The TDR

New FTD

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 24 / 33

SGV Use-cases, Comparisions

Ex: ILD tracker-system design (Vienna 2005).

I: The divergence in the
TDR: Once the last disk is
hit, the 1/

√
tan θ is back !

II: The step: End of The
Vertex Detector
Remedy I:Add disks all the
way to the end of the TPC
(5 more strip-disks)
Remedy II: Add a pixel disk
with σpoint = 4µ just
outside the VD. 10

-5

10
-4

10
-3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
tan(Θ)

∆(
1/

p)
 [G

eV
/c

]-1

The TDR

New FTD

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 24 / 33

SGV Use-cases, Comparisions

Ex: ILD tracker-system design (Vienna 2005).

I: The divergence in the
TDR: Once the last disk is
hit, the 1/

√
tan θ is back !

II: The step: End of The
Vertex Detector
Remedy I:Add disks all the
way to the end of the TPC
(5 more strip-disks)
Remedy II: Add a pixel disk
with σpoint = 4µ just
outside the VD. 10

-5

10
-4

10
-3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
tan(Θ)

∆(
1/

p)
 [G

eV
/c

]-1

The TDR

New FTD

New FTD + VD disk

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 24 / 33

SGV Use-cases, Comparisions

The ILD Detector

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 25 / 33

SGV Use-cases, Comparisions

SGV and FullSim ILD: momentum resolution

Lines: SGV, dots: Mokka+Marlin

 [GeV/c]Tp1 10 210

−1
 [G

eV
/c

]
T

1/
p

σ

−510

−410

−310

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 26 / 33

SGV Use-cases, Comparisions

SGV and FullSim ILD: ip resolution vs P

Lines: SGV, dots: Mokka+Marlin

p [GeV/c]

σ ip
 [c

m
]

SGV
FullSim

10
-4

10
-3

10
-2

10
-1

1 10 10
2

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 27 / 33

SGV Use-cases, Comparisions

SGV and FullSim ILD: ip resolution vs P

Lines: SGV, dots: Mokka+Marlin

p [GeV/c]

σ ip
 [c

m
]

SGV
FullSim
FullSim, fixed

10
-4

10
-3

10
-2

10
-1

1 10 10
2

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 27 / 33

SGV Use-cases, Comparisions

SGV and FullSim ILD: ip resolution vs angle

Lines: SGV, dots: Mokka+Marlin

Θ [radians]

σ ip
 [c

m
]

SGV
FullSim
FullSim, fixed

10
-4

10
-3

10
-2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 28 / 33

SGV Use-cases, Comparisions

SGV and FullSim ILD: Full system

Feed exactly the same physics events through FullSim or SGV.

Overall:
Total seen energy

e+e− →ZZ → four jets:
Make "True Jets":
Reconstructed MZ at
different stages in FullSim.
Seen Reconstructed MZ ,
FullSim and SGV.
Jet-Energy resolution

Zhh at 1 TeV:
Visible E
Higgs Mass
b-tag
Error on Higgs-selfcoupling:
SGV 17% , FullSim 18 % !

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 29 / 33

SGV Use-cases, Comparisions

SGV and FullSim ILD: Full system

Feed exactly the same physics events through FullSim or SGV.

Overall:
Total seen energy

e+e− →ZZ → four jets:
Make "True Jets":
Reconstructed MZ at
different stages in FullSim.
Seen Reconstructed MZ ,
FullSim and SGV.
Jet-Energy resolution

Zhh at 1 TeV:
Visible E
Higgs Mass
b-tag
Error on Higgs-selfcoupling:
SGV 17% , FullSim 18 % ! E

seen
 (GeV)

FullSim

SGV

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 29 / 33

SGV Use-cases, Comparisions

SGV and FullSim ILD: Full system

Feed exactly the same physics events through FullSim or SGV.

Overall:
Total seen energy

e+e− →ZZ → four jets:
Make "True Jets":
Reconstructed MZ at
different stages in FullSim.
Seen Reconstructed MZ ,
FullSim and SGV.
Jet-Energy resolution

Zhh at 1 TeV:
Visible E
Higgs Mass
b-tag
Error on Higgs-selfcoupling:
SGV 17% , FullSim 18 % ! E

seen
 (GeV)

FullSim

SGV

1

10

10
2

10
3

0 100 200 300 400 500 600

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 29 / 33

SGV Use-cases, Comparisions

SGV and FullSim ILD: Full system

Feed exactly the same physics events through FullSim or SGV.

Overall:
Total seen energy

e+e− →ZZ → four jets:
Make "True Jets":
Reconstructed MZ at
different stages in FullSim.
Seen Reconstructed MZ ,
FullSim and SGV.
Jet-Energy resolution

Zhh at 1 TeV:
Visible E
Higgs Mass
b-tag
Error on Higgs-selfcoupling:
SGV 17% , FullSim 18 % !

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 29 / 33

SGV Use-cases, Comparisions

SGV and FullSim ILD: Full system

Feed exactly the same physics events through FullSim or SGV.

Overall:
Total seen energy

e+e− →ZZ → four jets:
Make "True Jets":
Reconstructed MZ at
different stages in FullSim.
Seen Reconstructed MZ ,
FullSim and SGV.
Jet-Energy resolution

Zhh at 1 TeV:
Visible E
Higgs Mass
b-tag
Error on Higgs-selfcoupling:
SGV 17% , FullSim 18 % !

"True jets"
Find initial hadrons from each colour-singlet (string).
Find the quarks at each end of the string.
Group hadrons to jets by which quark they are closest to.
Follow the decay-chains and assign all particles in the event to the
jet of their respective ancestor hadron.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 29 / 33

SGV Use-cases, Comparisions

SGV and FullSim ILD: Full system

Feed exactly the same physics events through FullSim or SGV.

Overall:
Total seen energy

e+e− →ZZ → four jets:
Make "True Jets":
Reconstructed MZ at
different stages in FullSim.
Seen Reconstructed MZ ,
FullSim and SGV.
Jet-Energy resolution

Zhh at 1 TeV:
Visible E
Higgs Mass
b-tag
Error on Higgs-selfcoupling:
SGV 17% , FullSim 18 % !

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 29 / 33

SGV Use-cases, Comparisions

SGV and FullSim ILD: Full system

Feed exactly the same physics events through FullSim or SGV.

Overall:
Total seen energy

e+e− →ZZ → four jets:
Make "True Jets":
Reconstructed MZ at
different stages in FullSim.
Seen Reconstructed MZ ,
FullSim and SGV.
Jet-Energy resolution

Zhh at 1 TeV:
Visible E
Higgs Mass
b-tag
Error on Higgs-selfcoupling:
SGV 17% , FullSim 18 % ! M

Z
 (GeV)

True

True of all seen

Seen of all seen

Seen

0

200

400

600

800

1000

1200

80 85 90 95 100 105

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 29 / 33

SGV Use-cases, Comparisions

SGV and FullSim ILD: Full system

Feed exactly the same physics events through FullSim or SGV.

Overall:
Total seen energy

e+e− →ZZ → four jets:
Make "True Jets":
Reconstructed MZ at
different stages in FullSim.
Seen Reconstructed MZ ,
FullSim and SGV.
Jet-Energy resolution

Zhh at 1 TeV:
Visible E
Higgs Mass
b-tag
Error on Higgs-selfcoupling:
SGV 17% , FullSim 18 % !

0

100

200

300

400

500

600

700

800

900

50 60 70 80 90 100 110 120 130

M
Z
 (GeV)

FullSim

SGV

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 29 / 33

SGV Use-cases, Comparisions

SGV and FullSim ILD: Full system

Feed exactly the same physics events through FullSim or SGV.

Overall:
Total seen energy

e+e− →ZZ → four jets:
Make "True Jets":
Reconstructed MZ at
different stages in FullSim.
Seen Reconstructed MZ ,
FullSim and SGV.
Jet-Energy resolution

Zhh at 1 TeV:
Visible E
Higgs Mass
b-tag
Error on Higgs-selfcoupling:
SGV 17% , FullSim 18 % !

FullSim

SGV

E
jet

 (GeV)

∆
(E

)/
E

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 25 50 75 100 125 150 175 200 225 250

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 29 / 33

SGV Use-cases, Comparisions

SGV and FullSim ILD: Full system

Feed exactly the same physics events through FullSim or SGV.

Overall:
Total seen energy

e+e− →ZZ → four jets:
Make "True Jets":
Reconstructed MZ at
different stages in FullSim.
Seen Reconstructed MZ ,
FullSim and SGV.
Jet-Energy resolution

Zhh at 1 TeV:
Visible E
Higgs Mass
b-tag
Error on Higgs-selfcoupling:
SGV 17% , FullSim 18 % !

Visible Energy / GeV

100 200 300 400 500 600 700 800 900 1000 1100

N
o
rm

a
liz

e
d

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

SGV Simulation

DBD Simulation

1st largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.1

0.2

0.3

0.4

0.5

0.6

SGV Simulation

DBD Simulation

2nd largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.05

0.1

0.15

0.2

0.25

3rd largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0.01

0.02

0.03

0.04

0.05

0.06

0.07

4th largest b­likeness

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.02

0.04

0.06

0.08

0.1

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 29 / 33

SGV Use-cases, Comparisions

SGV and FullSim ILD: Full system

Feed exactly the same physics events through FullSim or SGV.

Overall:
Total seen energy

e+e− →ZZ → four jets:
Make "True Jets":
Reconstructed MZ at
different stages in FullSim.
Seen Reconstructed MZ ,
FullSim and SGV.
Jet-Energy resolution

Zhh at 1 TeV:
Visible E
Higgs Mass
b-tag
Error on Higgs-selfcoupling:
SGV 17% , FullSim 18 % !

M(H) / GeV

40 60 80 100 120 140 160 180 200

N
o
rm

a
liz

e
d

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

SGV Simulation

DBD Simulation

1st largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.1

0.2

0.3

0.4

0.5

0.6

SGV Simulation

DBD Simulation

2nd largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.05

0.1

0.15

0.2

0.25

3rd largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0.01

0.02

0.03

0.04

0.05

0.06

0.07

4th largest b­likeness

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.02

0.04

0.06

0.08

0.1

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 29 / 33

SGV Use-cases, Comparisions

SGV and FullSim ILD: Full system

Feed exactly the same physics events through FullSim or SGV.

Overall:
Total seen energy

e+e− →ZZ → four jets:
Make "True Jets":
Reconstructed MZ at
different stages in FullSim.
Seen Reconstructed MZ ,
FullSim and SGV.
Jet-Energy resolution

Zhh at 1 TeV:
Visible E
Higgs Mass
b-tag
Error on Higgs-selfcoupling:
SGV 17% , FullSim 18 % !

1st largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.1

0.2

0.3

0.4

0.5

0.6

SGV Simulation

DBD Simulation

2nd largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.05

0.1

0.15

0.2

0.25

3rd largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0.01

0.02

0.03

0.04

0.05

0.06

0.07

4th largest b­likeness

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.02

0.04

0.06

0.08

0.1

1st largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.1

0.2

0.3

0.4

0.5

0.6

SGV Simulation

DBD Simulation

2nd largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.05

0.1

0.15

0.2

0.25

3rd largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0.01

0.02

0.03

0.04

0.05

0.06

0.07

4th largest b­likeness

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.02

0.04

0.06

0.08

0.1

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 29 / 33

SGV Use-cases, Comparisions

SGV and FullSim ILD: Full system

Feed exactly the same physics events through FullSim or SGV.

Overall:
Total seen energy

e+e− →ZZ → four jets:
Make "True Jets":
Reconstructed MZ at
different stages in FullSim.
Seen Reconstructed MZ ,
FullSim and SGV.
Jet-Energy resolution

Zhh at 1 TeV:
Visible E
Higgs Mass
b-tag
Error on Higgs-selfcoupling:
SGV 17% , FullSim 18 % !

1st largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.1

0.2

0.3

0.4

0.5

0.6

SGV Simulation

DBD Simulation

2nd largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.05

0.1

0.15

0.2

0.25

3rd largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0.01

0.02

0.03

0.04

0.05

0.06

0.07

4th largest b­likeness

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.02

0.04

0.06

0.08

0.1

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 29 / 33

SGV Use-cases, Comparisions

SGV and FullSim ILD: Full system

Feed exactly the same physics events through FullSim or SGV.

Overall:
Total seen energy

e+e− →ZZ → four jets:
Make "True Jets":
Reconstructed MZ at
different stages in FullSim.
Seen Reconstructed MZ ,
FullSim and SGV.
Jet-Energy resolution

Zhh at 1 TeV:
Visible E
Higgs Mass
b-tag
Error on Higgs-selfcoupling:
SGV 17% , FullSim 18 % !

1st largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.1

0.2

0.3

0.4

0.5

0.6

SGV Simulation

DBD Simulation

2nd largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.05

0.1

0.15

0.2

0.25

3rd largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0.01

0.02

0.03

0.04

0.05

0.06

0.07

4th largest b­likeness

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.02

0.04

0.06

0.08

0.1

1st largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.1

0.2

0.3

0.4

0.5

0.6

SGV Simulation

DBD Simulation

2nd largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.05

0.1

0.15

0.2

0.25

3rd largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0.01

0.02

0.03

0.04

0.05

0.06

0.07

4th largest b­likeness

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.02

0.04

0.06

0.08

0.1

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 29 / 33

SGV Use-cases, Comparisions

SGV and FullSim ILD: Full system

Feed exactly the same physics events through FullSim or SGV.

Overall:
Total seen energy

e+e− →ZZ → four jets:
Make "True Jets":
Reconstructed MZ at
different stages in FullSim.
Seen Reconstructed MZ ,
FullSim and SGV.
Jet-Energy resolution

Zhh at 1 TeV:
Visible E
Higgs Mass
b-tag
Error on Higgs-selfcoupling:
SGV 17% , FullSim 18 % !

1st largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.1

0.2

0.3

0.4

0.5

0.6

SGV Simulation

DBD Simulation

2nd largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.05

0.1

0.15

0.2

0.25

3rd largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0.01

0.02

0.03

0.04

0.05

0.06

0.07

4th largest b­likeness

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.02

0.04

0.06

0.08

0.1

1st largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.1

0.2

0.3

0.4

0.5

0.6

SGV Simulation

DBD Simulation

2nd largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.05

0.1

0.15

0.2

0.25

3rd largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0.01

0.02

0.03

0.04

0.05

0.06

0.07

4th largest b­likeness

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.02

0.04

0.06

0.08

0.1

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 29 / 33

Outlook and Summary

Near Future developments

Finish up particle flow parametrisation:
Jet mass.
MIP signals.
Clusters from same true particle in both EM and hadronic
calorimeters.
Cluster C.O.G (not just start point)

Handling very large input and/or output files: File splitting etc.
Handling very large numbers input files.
Include a filter-mode:

Generate event inside SGV.
Run SGV detector simulation and analysis.
Decide what to do: Fill some histos, fill ntuple, output LCIO, or
better do full sim
In the last case: output STDHEP of event

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 30 / 33

Outlook and Summary

Near Future developments

Finish up particle flow parametrisation:
Jet mass.
MIP signals.
Clusters from same true particle in both EM and hadronic
calorimeters.
Cluster C.O.G (not just start point)

Handling very large input and/or output files: File splitting etc.
Handling very large numbers input files.
Include a filter-mode:

Generate event inside SGV.
Run SGV detector simulation and analysis.
Decide what to do: Fill some histos, fill ntuple, output LCIO, or
better do full sim
In the last case: output STDHEP of event

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 30 / 33

Outlook and Summary

Near Future developments

Finish up particle flow parametrisation:
Jet mass.
MIP signals.
Clusters from same true particle in both EM and hadronic
calorimeters.
Cluster C.O.G (not just start point)

Handling very large input and/or output files: File splitting etc.
Handling very large numbers input files.
Include a filter-mode:

Generate event inside SGV.
Run SGV detector simulation and analysis.
Decide what to do: Fill some histos, fill ntuple, output LCIO, or
better do full sim
In the last case: output STDHEP of event

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 30 / 33

Outlook and Summary

Near Future developments

Finish up particle flow parametrisation:
Jet mass.
MIP signals.
Clusters from same true particle in both EM and hadronic
calorimeters.
Cluster C.O.G (not just start point)

Handling very large input and/or output files: File splitting etc.
Handling very large numbers input files.
Include a filter-mode:

Generate event inside SGV.
Run SGV detector simulation and analysis.
Decide what to do: Fill some histos, fill ntuple, output LCIO, or
better do full sim
In the last case: output STDHEP of event

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 30 / 33

Outlook and Summary

Not-So-Far Future developments

Update documentation and in-line comments, to reflect new
structure.
Consolidate use of Fortran 95/203/2008 features:

Use of user-defined types.
Use of PURE and ELEMENTAL routines,
Optimal choice between pointer, allocatable and automatic and/or
assumed-size, assumed-shape, and explicit arrays.

I/O over FIFO:s to avoid storage and I/O rate limitations.
The Grid.
Investigate running on GPU:s.
Possibly - when gcc/gfortran 4.4 (ie. Fortran 2003) is
common-place - Object Orientation, if there is no performance
penalty.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 31 / 33

Outlook and Summary

Summary

The need for FastSim was reviewed:
Large cross-sections (γγ), or large parameter-spaces (SUSY)
makes such programs obligatory, also at the ILC.
The SGV program was presented, and (I hope) was shown to be
up to the job, both in physics and computing performance.
The method to emulate the performance of FullReco particle-flow
(PandoraPFO) will be explained by Madalina tomorrow, with more
case-studies.
Comparisons to Mokka/Marlin was shown to be quite good.
SGV mass production works - do ∼ 0.7 TEvents in O(1) hour on
NAF. (Details in backup slides)
Many SGV-based analyses done in ILC/ILD, sometimes SGV
only, sometimes mixed SGV-FullSim, sometimes developed with
SGV, then done with FullSim when resources became available.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 32 / 33

Outlook and Summary

Summary

The need for FastSim was reviewed:
Large cross-sections (γγ), or large parameter-spaces (SUSY)
makes such programs obligatory, also at the ILC.
The SGV program was presented, and (I hope) was shown to be
up to the job, both in physics and computing performance.
The method to emulate the performance of FullReco particle-flow
(PandoraPFO) will be explained by Madalina tomorrow, with more
case-studies.
Comparisons to Mokka/Marlin was shown to be quite good.
SGV mass production works - do ∼ 0.7 TEvents in O(1) hour on
NAF. (Details in backup slides)
Many SGV-based analyses done in ILC/ILD, sometimes SGV
only, sometimes mixed SGV-FullSim, sometimes developed with
SGV, then done with FullSim when resources became available.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 32 / 33

Outlook and Summary

Summary

The need for FastSim was reviewed:
Large cross-sections (γγ), or large parameter-spaces (SUSY)
makes such programs obligatory, also at the ILC.
The SGV program was presented, and (I hope) was shown to be
up to the job, both in physics and computing performance.
The method to emulate the performance of FullReco particle-flow
(PandoraPFO) will be explained by Madalina tomorrow, with more
case-studies.
Comparisons to Mokka/Marlin was shown to be quite good.
SGV mass production works - do ∼ 0.7 TEvents in O(1) hour on
NAF. (Details in backup slides)
Many SGV-based analyses done in ILC/ILD, sometimes SGV
only, sometimes mixed SGV-FullSim, sometimes developed with
SGV, then done with FullSim when resources became available.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 32 / 33

Outlook and Summary

Summary

The need for FastSim was reviewed:
Large cross-sections (γγ), or large parameter-spaces (SUSY)
makes such programs obligatory, also at the ILC.
The SGV program was presented, and (I hope) was shown to be
up to the job, both in physics and computing performance.
The method to emulate the performance of FullReco particle-flow
(PandoraPFO) will be explained by Madalina tomorrow, with more
case-studies.
Comparisons to Mokka/Marlin was shown to be quite good.
SGV mass production works - do ∼ 0.7 TEvents in O(1) hour on
NAF. (Details in backup slides)
Many SGV-based analyses done in ILC/ILD, sometimes SGV
only, sometimes mixed SGV-FullSim, sometimes developed with
SGV, then done with FullSim when resources became available.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 32 / 33

Outlook and Summary

Summary

The need for FastSim was reviewed:
Large cross-sections (γγ), or large parameter-spaces (SUSY)
makes such programs obligatory, also at the ILC.
The SGV program was presented, and (I hope) was shown to be
up to the job, both in physics and computing performance.
The method to emulate the performance of FullReco particle-flow
(PandoraPFO) will be explained by Madalina tomorrow, with more
case-studies.
Comparisons to Mokka/Marlin was shown to be quite good.
SGV mass production works - do ∼ 0.7 TEvents in O(1) hour on
NAF. (Details in backup slides)
Many SGV-based analyses done in ILC/ILD, sometimes SGV
only, sometimes mixed SGV-FullSim, sometimes developed with
SGV, then done with FullSim when resources became available.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 32 / 33

Outlook and Summary

Summary

The need for FastSim was reviewed:
Large cross-sections (γγ), or large parameter-spaces (SUSY)
makes such programs obligatory, also at the ILC.
The SGV program was presented, and (I hope) was shown to be
up to the job, both in physics and computing performance.
The method to emulate the performance of FullReco particle-flow
(PandoraPFO) will be explained by Madalina tomorrow, with more
case-studies.
Comparisons to Mokka/Marlin was shown to be quite good.
SGV mass production works - do ∼ 0.7 TEvents in O(1) hour on
NAF. (Details in backup slides)
Many SGV-based analyses done in ILC/ILD, sometimes SGV
only, sometimes mixed SGV-FullSim, sometimes developed with
SGV, then done with FullSim when resources became available.

Installing SGV
svn co https://svnsrv.desy.de/public/sgv/trunk/ sgv/
Then
cd sgv ; . ./install

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 32 / 33

Outlook and Summary

Thank You !

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 33 / 33

Backup

BACKUP

BACKUP SLIDES

Some internals

Tracking:
Module zt_tracking:

Higher-level functions: “Particle with momentum p̄ starts at v̄ in
detector i. Return helix-paramters and covariance at point r̄ ”
Initialises constants-of-motion for the track once.
Decides which helix-parametrisation is best at a given point, and
transforms when needed.
Checks max and min layer that could be hit by particle, to avoid
un-nessesary computations.

Module zt_covaiance: The covariance machine:
Geometry worked out analytically.
Matrix algebra (inversions, multiplications, ...) solved in
component-form.

Module zt_access: “getters” of detector information.
Routine zt_ini: Initialisation

Some internals

Tracking:
Module zt_tracking:

Higher-level functions: “Particle with momentum p̄ starts at v̄ in
detector i. Return helix-paramters and covariance at point r̄ ”
Initialises constants-of-motion for the track once.
Decides which helix-parametrisation is best at a given point, and
transforms when needed.
Checks max and min layer that could be hit by particle, to avoid
un-nessesary computations.

Module zt_covaiance: The covariance machine:
Geometry worked out analytically.
Matrix algebra (inversions, multiplications, ...) solved in
component-form.

Module zt_access: “getters” of detector information.
Routine zt_ini: Initialisation

Some internals

Tracking:
Module zt_tracking:

Higher-level functions: “Particle with momentum p̄ starts at v̄ in
detector i. Return helix-paramters and covariance at point r̄ ”
Initialises constants-of-motion for the track once.
Decides which helix-parametrisation is best at a given point, and
transforms when needed.
Checks max and min layer that could be hit by particle, to avoid
un-nessesary computations.

Module zt_covaiance: The covariance machine:
Geometry worked out analytically.
Matrix algebra (inversions, multiplications, ...) solved in
component-form.

Module zt_access: “getters” of detector information.
Routine zt_ini: Initialisation

Some internals

Detector simulation:
Generated event should be loaded in Pythia:s /PYJETS/.
Decide if particle is:

“Seeable”, ie. if it possibly could reach any detector element.
“Storable”, ie. if the user asked to keep it even is it is not “Seeable”.
By default: All stable particles + all particles with fly > 1 cm .

This reduces the size of loops later.
Apply B-field: move decay verticies, tilt p̄ of decay products.
Loop “seeable” twice:

First: simulate brems and pair-creation; remove daugthers of
particles that hit a calorimeter before decaying.
Second: actually simulate the responce.

Tracking: Call tracking to get unsmeared helix and cov. mat , then
zdsmtp, which smears it using Choleski decomposition method.
Calorimeter: Call zdcalo, which calls ztcalo to get path-ordered list of
trajectory intersection points with calo:s. Response is then simulated
paramtrically.

Performance considerations
Important issues in red.
During f77→ Fortran95 transistion:

Avoid feature rot: Adding a cool feature that only add 10 % to the
CPU time is OK, right ?

Well, yes, but ...
... if you do that every two weeks ...
... yor code runs 10 times slower after 1 year...
... 100 times slower after 2 years ...
... and 1000 slower times after 3 years !

Some internals

Detector simulation:
Generated event should be loaded in Pythia:s /PYJETS/.
Decide if particle is:

“Seeable”, ie. if it possibly could reach any detector element.
“Storable”, ie. if the user asked to keep it even is it is not “Seeable”.
By default: All stable particles + all particles with fly > 1 cm .

This reduces the size of loops later.
Apply B-field: move decay verticies, tilt p̄ of decay products.
Loop “seeable” twice:

First: simulate brems and pair-creation; remove daugthers of
particles that hit a calorimeter before decaying.
Second: actually simulate the responce.

Tracking: Call tracking to get unsmeared helix and cov. mat , then
zdsmtp, which smears it using Choleski decomposition method.
Calorimeter: Call zdcalo, which calls ztcalo to get path-ordered list of
trajectory intersection points with calo:s. Response is then simulated
paramtrically.

Performance considerations
Important issues in red.
During f77→ Fortran95 transistion:

Avoid feature rot: Adding a cool feature that only add 10 % to the
CPU time is OK, right ?

Well, yes, but ...
... if you do that every two weeks ...
... yor code runs 10 times slower after 1 year...
... 100 times slower after 2 years ...
... and 1000 slower times after 3 years !

Some internals

Detector simulation:
Generated event should be loaded in Pythia:s /PYJETS/.
Decide if particle is:

“Seeable”, ie. if it possibly could reach any detector element.
“Storable”, ie. if the user asked to keep it even is it is not “Seeable”.
By default: All stable particles + all particles with fly > 1 cm .

This reduces the size of loops later.
Apply B-field: move decay verticies, tilt p̄ of decay products.
Loop “seeable” twice:

First: simulate brems and pair-creation; remove daugthers of
particles that hit a calorimeter before decaying.
Second: actually simulate the responce.

Tracking: Call tracking to get unsmeared helix and cov. mat , then
zdsmtp, which smears it using Choleski decomposition method.
Calorimeter: Call zdcalo, which calls ztcalo to get path-ordered list of
trajectory intersection points with calo:s. Response is then simulated
paramtrically.

Performance considerations
Important issues in red.
During f77→ Fortran95 transistion:

Avoid feature rot: Adding a cool feature that only add 10 % to the
CPU time is OK, right ?

Well, yes, but ...
... if you do that every two weeks ...
... yor code runs 10 times slower after 1 year...
... 100 times slower after 2 years ...
... and 1000 slower times after 3 years !

Some internals

Detector simulation:
Generated event should be loaded in Pythia:s /PYJETS/.
Decide if particle is:

“Seeable”, ie. if it possibly could reach any detector element.
“Storable”, ie. if the user asked to keep it even is it is not “Seeable”.
By default: All stable particles + all particles with fly > 1 cm .

This reduces the size of loops later.
Apply B-field: move decay verticies, tilt p̄ of decay products.
Loop “seeable” twice:

First: simulate brems and pair-creation; remove daugthers of
particles that hit a calorimeter before decaying.
Second: actually simulate the responce.

Tracking: Call tracking to get unsmeared helix and cov. mat , then
zdsmtp, which smears it using Choleski decomposition method.
Calorimeter: Call zdcalo, which calls ztcalo to get path-ordered list of
trajectory intersection points with calo:s. Response is then simulated
paramtrically.

Performance considerations
Important issues in red.
During f77→ Fortran95 transistion:

Avoid feature rot: Adding a cool feature that only add 10 % to the
CPU time is OK, right ?

Well, yes, but ...
... if you do that every two weeks ...
... yor code runs 10 times slower after 1 year...
... 100 times slower after 2 years ...
... and 1000 slower times after 3 years !

Some internals

Detector simulation:
Generated event should be loaded in Pythia:s /PYJETS/.
Decide if particle is:

“Seeable”, ie. if it possibly could reach any detector element.
“Storable”, ie. if the user asked to keep it even is it is not “Seeable”.
By default: All stable particles + all particles with fly > 1 cm .

This reduces the size of loops later.
Apply B-field: move decay verticies, tilt p̄ of decay products.
Loop “seeable” twice:

First: simulate brems and pair-creation; remove daugthers of
particles that hit a calorimeter before decaying.
Second: actually simulate the responce.

Tracking: Call tracking to get unsmeared helix and cov. mat , then
zdsmtp, which smears it using Choleski decomposition method.
Calorimeter: Call zdcalo, which calls ztcalo to get path-ordered list of
trajectory intersection points with calo:s. Response is then simulated
paramtrically.

Performance considerations
Important issues in red.
During f77→ Fortran95 transistion:

Avoid feature rot: Adding a cool feature that only add 10 % to the
CPU time is OK, right ?

Well, yes, but ...
... if you do that every two weeks ...
... yor code runs 10 times slower after 1 year...
... 100 times slower after 2 years ...
... and 1000 slower times after 3 years !

Some internals

Detector simulation:
Generated event should be loaded in Pythia:s /PYJETS/.
Decide if particle is:

“Seeable”, ie. if it possibly could reach any detector element.
“Storable”, ie. if the user asked to keep it even is it is not “Seeable”.
By default: All stable particles + all particles with fly > 1 cm .

This reduces the size of loops later.
Apply B-field: move decay verticies, tilt p̄ of decay products.
Loop “seeable” twice:

First: simulate brems and pair-creation; remove daugthers of
particles that hit a calorimeter before decaying.
Second: actually simulate the responce.

Tracking: Call tracking to get unsmeared helix and cov. mat , then
zdsmtp, which smears it using Choleski decomposition method.
Calorimeter: Call zdcalo, which calls ztcalo to get path-ordered list of
trajectory intersection points with calo:s. Response is then simulated
paramtrically.

Performance considerations
Important issues in red.
During f77→ Fortran95 transistion:

Avoid feature rot: Adding a cool feature that only add 10 % to the
CPU time is OK, right ?

Well, yes, but ...
... if you do that every two weeks ...
... yor code runs 10 times slower after 1 year...
... 100 times slower after 2 years ...
... and 1000 slower times after 3 years !

Some internals

Detector simulation:
Generated event should be loaded in Pythia:s /PYJETS/.
Decide if particle is:

“Seeable”, ie. if it possibly could reach any detector element.
“Storable”, ie. if the user asked to keep it even is it is not “Seeable”.
By default: All stable particles + all particles with fly > 1 cm .

This reduces the size of loops later.
Apply B-field: move decay verticies, tilt p̄ of decay products.
Loop “seeable” twice:

First: simulate brems and pair-creation; remove daugthers of
particles that hit a calorimeter before decaying.
Second: actually simulate the responce.

Tracking: Call tracking to get unsmeared helix and cov. mat , then
zdsmtp, which smears it using Choleski decomposition method.
Calorimeter: Call zdcalo, which calls ztcalo to get path-ordered list of
trajectory intersection points with calo:s. Response is then simulated
paramtrically.

Performance considerations
Important issues in red.
During f77→ Fortran95 transistion:

Avoid feature rot: Adding a cool feature that only add 10 % to the
CPU time is OK, right ?

Well, yes, but ...
... if you do that every two weeks ...
... yor code runs 10 times slower after 1 year...
... 100 times slower after 2 years ...
... and 1000 slower times after 3 years !

Some internals

Detector simulation:
Generated event should be loaded in Pythia:s /PYJETS/.
Decide if particle is:

“Seeable”, ie. if it possibly could reach any detector element.
“Storable”, ie. if the user asked to keep it even is it is not “Seeable”.
By default: All stable particles + all particles with fly > 1 cm .

This reduces the size of loops later.
Apply B-field: move decay verticies, tilt p̄ of decay products.
Loop “seeable” twice:

First: simulate brems and pair-creation; remove daugthers of
particles that hit a calorimeter before decaying.
Second: actually simulate the responce.

Tracking: Call tracking to get unsmeared helix and cov. mat , then
zdsmtp, which smears it using Choleski decomposition method.
Calorimeter: Call zdcalo, which calls ztcalo to get path-ordered list of
trajectory intersection points with calo:s. Response is then simulated
paramtrically.

Performance considerations
Important issues in red.
During f77→ Fortran95 transistion:

Avoid feature rot: Adding a cool feature that only add 10 % to the
CPU time is OK, right ?

Well, yes, but ...
... if you do that every two weeks ...
... yor code runs 10 times slower after 1 year...
... 100 times slower after 2 years ...
... and 1000 slower times after 3 years !

Some internals

Detector simulation:
Generated event should be loaded in Pythia:s /PYJETS/.
Decide if particle is:

“Seeable”, ie. if it possibly could reach any detector element.
“Storable”, ie. if the user asked to keep it even is it is not “Seeable”.
By default: All stable particles + all particles with fly > 1 cm .

This reduces the size of loops later.
Apply B-field: move decay verticies, tilt p̄ of decay products.
Loop “seeable” twice:

First: simulate brems and pair-creation; remove daugthers of
particles that hit a calorimeter before decaying.
Second: actually simulate the responce.

Tracking: Call tracking to get unsmeared helix and cov. mat , then
zdsmtp, which smears it using Choleski decomposition method.
Calorimeter: Call zdcalo, which calls ztcalo to get path-ordered list of
trajectory intersection points with calo:s. Response is then simulated
paramtrically.

Performance considerations
Important issues in red.
During f77→ Fortran95 transistion:

Avoid feature rot: Adding a cool feature that only add 10 % to the
CPU time is OK, right ?

Well, yes, but ...
... if you do that every two weeks ...
... yor code runs 10 times slower after 1 year...
... 100 times slower after 2 years ...
... and 1000 slower times after 3 years !

Use-cases at the ILC

Used for fastsim physics studies, eg. arXiv:hep-ph/0510088,
arXiv:hep-ph/0508247, arXiv:hep-ph/0406010,
arXiv:hep-ph/9911345 and arXiv:hep-ph/9911344.
Used for flavour-tagging training.
Used for overall detector optimisation, see Eg. Vienna ECFA WS
(2007), See Ilcagenda > Conference and Workshops > 2005 >
ECFA Vienna Tracking
GLD/LDC merging and LOI, see eg. Ilcagenda > Detector Design
& Physics Studies > Detector Design Concepts > ILD > ILD
Workshop > ILD Meeting, Cambridge > Agenda >Sub-detector
Optimisation I

The latter two: Use the Covariance machine to get analytical
expressions for performance (ie. not simulation)

SGV physics performance

SGV and real data from DELPHI: Global variables

echrg+eneu

Histogram: SGV, Points: DELPHI data

eneu

e30cone pmist

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 100 200 300 400
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

50 100 150 200

10
-3

10
-2

10
-1

1

0 50 100 150 200

10
-3

10
-2

10
-1

0 50 100 150 200

SGV physics performance: DELPHI

SGV and real data from DELPHI: Particle variables

ptr

Histogram: SGV, Points: DELPHI data

pneu

thtr thneu

10
-3

10
-2

10
-1

1

0 20 40 60 80 100

10
-3

10
-2

10
-1

1

0 20 40 60 80 100

0

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 2 3

SGV physics performance: DELPHI

SGV and full simulation from DELPHI: Neutralino search in hadronic
channel.

NRCHA

DELSIM vs SGV, qq, M(χ1,2)=40,100

0

20

40

60

0 20 40
MULT-NRCHA

0

25

50

75

100

0 10 20
ECHRG

0

10

20

30

0 50

ENEU
0

10

20

30

40

0 50
VISMASS

0

10

20

30

40

0 50
PMIST

0

10

20

30

0 50

ACOL2JET
0

5

10

15

20

25

0 100
ACOP2JET

0

5

10

15

20

25

0 100
ACOPSCAL

0

10

20

30

0 100

PINVM2JE
0

10

20

30

0 50 100
ABS(PC(1))

0

10

20

30

40

0 20 40
PISOLEP(1)

0

5

10

15

0 10

NRCHA

Delsim vs SGV, ee, M(χ1,2)=45,55

0

200

400

600

2 3 4 5
MULT-NRCHA

0

100

200

300

0 2 4
ECHRG

0

10

20

30

0 20 40

ENEU
0

100

200

300

400

0 50
VISMASS

0

25

50

75

100

0 20 40 60
PMIST

0

10

20

30

0 20 40

ACOLL
0

10

20

30

0 100
EMN(1)

0

20

40

60

80

0 20 40
ABS(PC(1))

0

10

20

30

40

0 10 20 30

THN(1)-THTR(1)
0

20

40

60

-100 0 100
THN(1)-THTR(2)

0

20

40

60

80

-200 0
PHN(1)-PHTR(2)

0

20

40

60

80

-400 -133.33 133.33 400

Checking the parametrisation

Some overall distributions:
Total seen energy
Total neutral energy
Lost and double counted
energy.

Jet properties in the SUSY
benchmark point 5 (χ̃±

1):
Jet Energy
Jet Mass

Zhh at 1 TeV:
Vissible E
Higgs Mass
b-tag

Checking the parametrisation

Some overall distributions:
Total seen energy
Total neutral energy
Lost and double counted
energy.

Jet properties in the SUSY
benchmark point 5 (χ̃±

1):
Jet Energy
Jet Mass

Zhh at 1 TeV:
Vissible E
Higgs Mass
b-tag

Mokka

Parametric

No confusion

E
Total

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600

Checking the parametrisation

Some overall distributions:
Total seen energy
Total neutral energy
Lost and double counted
energy.

Jet properties in the SUSY
benchmark point 5 (χ̃±

1):
Jet Energy
Jet Mass

Zhh at 1 TeV:
Vissible E
Higgs Mass
b-tag

Mokka

Parametric

E
Neutral

0

50

100

150

200

250

0 50 100 150 200 250 300 350 400 450 500

Checking the parametrisation

Some overall distributions:
Total seen energy
Total neutral energy
Lost and double counted
energy.

Jet properties in the SUSY
benchmark point 5 (χ̃±

1):
Jet Energy
Jet Mass

Zhh at 1 TeV:
Vissible E
Higgs Mass
b-tag

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 100

Mokka

Parametric

E
Double-counted

Checking the parametrisation

Some overall distributions:
Total seen energy
Total neutral energy
Lost and double counted
energy.

Jet properties in the SUSY
benchmark point 5 (χ̃±

1):
Jet Energy
Jet Mass

Zhh at 1 TeV:
Vissible E
Higgs Mass
b-tag

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90 100

Mokka

Parametric

E
Lost

Checking the parametrisation

Some overall distributions:
Total seen energy
Total neutral energy
Lost and double counted
energy.

Jet properties in the SUSY
benchmark point 5 (χ̃±

1):
Jet Energy
Jet Mass

Zhh at 1 TeV:
Vissible E
Higgs Mass
b-tag

jet energy [GeV]
0 50 100 150

n
b

e
r.

 e
n
tr

ie
s

0

1000

2000

3000

4000

 sample1
±

Χjet energy comparison for

sgv

fullsim

Checking the parametrisation

Some overall distributions:
Total seen energy
Total neutral energy
Lost and double counted
energy.

Jet properties in the SUSY
benchmark point 5 (χ̃±

1):
Jet Energy
Jet Mass

Zhh at 1 TeV:
Vissible E
Higgs Mass
b-tag

jet mass[GeV]
0 10 20 30 40 50 60

n
b

e
r.

 e
n
tr

ie
s

0

2000

4000

6000

8000

 sample1
±

Χjet mass comparison for

sgv

fullsim

Checking the parametrisation

Some overall distributions:
Total seen energy
Total neutral energy
Lost and double counted
energy.

Jet properties in the SUSY
benchmark point 5 (χ̃±

1):
Jet Energy
Jet Mass

Zhh at 1 TeV:
Vissible E
Higgs Mass
b-tag

Visible Energy / GeV

100 200 300 400 500 600 700 800 900 1000 1100
N

o
rm

a
liz

e
d

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

SGV Simulation

DBD Simulation

Checking the parametrisation

Some overall distributions:
Total seen energy
Total neutral energy
Lost and double counted
energy.

Jet properties in the SUSY
benchmark point 5 (χ̃±

1):
Jet Energy
Jet Mass

Zhh at 1 TeV:
Vissible E
Higgs Mass
b-tag

M(H) / GeV

40 60 80 100 120 140 160 180 200
N

o
rm

a
liz

e
d

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

SGV Simulation

DBD Simulation

Checking the parametrisation

Some overall distributions:
Total seen energy
Total neutral energy
Lost and double counted
energy.

Jet properties in the SUSY
benchmark point 5 (χ̃±

1):
Jet Energy
Jet Mass

Zhh at 1 TeV:
Vissible E
Higgs Mass
b-tag

1st largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.1

0.2

0.3

0.4

0.5

0.6

SGV Simulation

DBD Simulation

2nd largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.05

0.1

0.15

0.2

0.25

3rd largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0.01

0.02

0.03

0.04

0.05

0.06

0.07

4th largest b­likeness

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.02

0.04

0.06

0.08

0.1

1st largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.1

0.2

0.3

0.4

0.5

0.6

SGV Simulation

DBD Simulation

2nd largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.05

0.1

0.15

0.2

0.25

3rd largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0.01

0.02

0.03

0.04

0.05

0.06

0.07

4th largest b­likeness

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.02

0.04

0.06

0.08

0.1

Checking the parametrisation

Some overall distributions:
Total seen energy
Total neutral energy
Lost and double counted
energy.

Jet properties in the SUSY
benchmark point 5 (χ̃±

1):
Jet Energy
Jet Mass

Zhh at 1 TeV:
Vissible E
Higgs Mass
b-tag

1st largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.1

0.2

0.3

0.4

0.5

0.6

SGV Simulation

DBD Simulation

2nd largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.05

0.1

0.15

0.2

0.25

3rd largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0.01

0.02

0.03

0.04

0.05

0.06

0.07

4th largest b­likeness

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.02

0.04

0.06

0.08

0.1

Checking the parametrisation

Some overall distributions:
Total seen energy
Total neutral energy
Lost and double counted
energy.

Jet properties in the SUSY
benchmark point 5 (χ̃±

1):
Jet Energy
Jet Mass

Zhh at 1 TeV:
Vissible E
Higgs Mass
b-tag

1st largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.1

0.2

0.3

0.4

0.5

0.6

SGV Simulation

DBD Simulation

2nd largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.05

0.1

0.15

0.2

0.25

3rd largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0.01

0.02

0.03

0.04

0.05

0.06

0.07

4th largest b­likeness

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.02

0.04

0.06

0.08

0.1

1st largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.1

0.2

0.3

0.4

0.5

0.6

SGV Simulation

DBD Simulation

2nd largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.05

0.1

0.15

0.2

0.25

3rd largest b­likeness

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0.01

0.02

0.03

0.04

0.05

0.06

0.07

4th largest b­likeness

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

0

0.02

0.04

0.06

0.08

0.1

LCIO DST mass-production

LCIO DST mass-production

SGV has been used to produce ILD DST:s for the full DBD
benchmarks.

usesgvlcio.F95 in the samples/lcio directory extracts SGV data
and fills all LCIO collections on the ILD DST:s

Clusters:
Are done with the Pandora confusion parametrisation on.
Expect ∼ correct dispersion of jet energy, but a few % to high central
value of jet masses.

Navigators
All the navigators that the TruthLinker processor makes when all flags
are switched on are created.

Secondary vertices:
Use true information to find all secondary vertices.
For all vertices with ≥ 2 seen charged tracks: do vertex fit.
Expect ∼ correct vertex fit-parameters, but too good vertex finding.

LCIO DST mass-production

Mass production

Done almost the full DBD samples - several times.
34 Mevents.
∼ 1 hour of wall-clock time (first submit to last completed) on the
German NAF.

γγ still missing: Logistics to figure out (Many thousands of input
files !)

LCIO DST mass-production

Collections

Added sensible values to all collections that will (probably) be
there on the DST from the FullSim production.

BuildUpVertex

BuildUpVertex_RP

MarlinTrkTracks

PandoraClusters

PandoraPFOs

PrimaryVertex

RecoMCTruthLink

MCParticlesSkimmed
V0Vertices
V0RecoParticles
BCALParticles
BCALClusters
BCALMCTruthLink
PrimaryVertex_RP

Also added more relation links:

MCTruthRecoLink

ClusterMCTruthLink

MCTruthClusterLink

MCTruthTrackLink
TrackMCTruthLink
MCTruthBcalLink

LCIO DST mass-production

Comments

Secondary vertices (as before):
Use true information to find all secondary vertices.
For all vertices with ≥ 2 seen charged tracks: do vertex fit.
Consequence:

Vertex finding is too good.
Vertex quality should be comparable to FullSim.

In addition: Decide from parent pdg-code if it goes into BuildUpVertex
or V0Vertices !
MCParticle :

There might be some issues with history codes in the earlier part
of the event (initial beam-particles, 94-objects, ...)

LCIO DST mass-production

Comments

Clusters:
Are done with the Pandora confusion parametrisation on.
Expect ∼ correct dispersion of jet energy, but a few % to high
central value.
See my talk three weeks ago.
Warning: Clusters are always only in one detector , so don’t use
Ehad/EEM for e/π: It will be ≡ 100 % efficient !

Navigators
All the navigators that the TruthLinker processor makes when all
flags are switched on are created:

Both Seen to True and True to Seen (weights are different !)
Seen is both PFOs, tracks and clusters.
The standard RecoMCTruthLink collection is as it would be from
FullSim ie. weights between 0 and 1.

LCIO DST mass-production

Outlook

Include a filter-mode:
Generate event inside SGV.
Run SGV detector simulation and analysis.
Decide what to do: Fill some histos, fill ntuple, output LCIO, or
better do full sim
In the last case: output STDHEP of event

Update documentation and in-line comments, to reflect new
structure.
Consolidate use of Fortran 95/203/2008 features. Possibly - when
gcc/gfortran 4.4 (ie. Fortran 2003) is common-place - Object
Orientation, if there is no performance penalty.

Use of user-defined types.
Use of PURE and ELEMENTAL routines,
Optimal choice between pointer, allocatable and automatic and/or
assumed-size, assumed-shape, and explicit arrays.

I/O over FIFO:s to avoid storage and I/O rate limitations.
The Grid.
Investigate running on GPU:s.
Further reduce CERNLIB dependence - at a the cost of backward
compatibility on steering files ? HBOOK dependence will remain
in the forseable future - but only for user convenience : SGV itself
doesn’t need it.

LCIO DST mass-production

Outlook

Include a filter-mode:
Generate event inside SGV.
Run SGV detector simulation and analysis.
Decide what to do: Fill some histos, fill ntuple, output LCIO, or
better do full sim
In the last case: output STDHEP of event

Update documentation and in-line comments, to reflect new
structure.
Consolidate use of Fortran 95/203/2008 features. Possibly - when
gcc/gfortran 4.4 (ie. Fortran 2003) is common-place - Object
Orientation, if there is no performance penalty.

Use of user-defined types.
Use of PURE and ELEMENTAL routines,
Optimal choice between pointer, allocatable and automatic and/or
assumed-size, assumed-shape, and explicit arrays.

I/O over FIFO:s to avoid storage and I/O rate limitations.
The Grid.
Investigate running on GPU:s.
Further reduce CERNLIB dependence - at a the cost of backward
compatibility on steering files ? HBOOK dependence will remain
in the forseable future - but only for user convenience : SGV itself
doesn’t need it.

LCIO DST mass-production

Outlook

Include a filter-mode:
Generate event inside SGV.
Run SGV detector simulation and analysis.
Decide what to do: Fill some histos, fill ntuple, output LCIO, or
better do full sim
In the last case: output STDHEP of event

Update documentation and in-line comments, to reflect new
structure.
Consolidate use of Fortran 95/203/2008 features. Possibly - when
gcc/gfortran 4.4 (ie. Fortran 2003) is common-place - Object
Orientation, if there is no performance penalty.

Use of user-defined types.
Use of PURE and ELEMENTAL routines,
Optimal choice between pointer, allocatable and automatic and/or
assumed-size, assumed-shape, and explicit arrays.

I/O over FIFO:s to avoid storage and I/O rate limitations.
The Grid.
Investigate running on GPU:s.
Further reduce CERNLIB dependence - at a the cost of backward
compatibility on steering files ? HBOOK dependence will remain
in the forseable future - but only for user convenience : SGV itself
doesn’t need it.

LCIO DST mass-production

Outlook

Include a filter-mode:
Generate event inside SGV.
Run SGV detector simulation and analysis.
Decide what to do: Fill some histos, fill ntuple, output LCIO, or
better do full sim
In the last case: output STDHEP of event

Update documentation and in-line comments, to reflect new
structure.
Consolidate use of Fortran 95/203/2008 features. Possibly - when
gcc/gfortran 4.4 (ie. Fortran 2003) is common-place - Object
Orientation, if there is no performance penalty.

Use of user-defined types.
Use of PURE and ELEMENTAL routines,
Optimal choice between pointer, allocatable and automatic and/or
assumed-size, assumed-shape, and explicit arrays.

I/O over FIFO:s to avoid storage and I/O rate limitations.
The Grid.
Investigate running on GPU:s.
Further reduce CERNLIB dependence - at a the cost of backward
compatibility on steering files ? HBOOK dependence will remain
in the forseable future - but only for user convenience : SGV itself
doesn’t need it.

LCIO DST mass-production

Outlook

Include a filter-mode:
Generate event inside SGV.
Run SGV detector simulation and analysis.
Decide what to do: Fill some histos, fill ntuple, output LCIO, or
better do full sim
In the last case: output STDHEP of event

Update documentation and in-line comments, to reflect new
structure.
Consolidate use of Fortran 95/203/2008 features. Possibly - when
gcc/gfortran 4.4 (ie. Fortran 2003) is common-place - Object
Orientation, if there is no performance penalty.

Use of user-defined types.
Use of PURE and ELEMENTAL routines,
Optimal choice between pointer, allocatable and automatic and/or
assumed-size, assumed-shape, and explicit arrays.

I/O over FIFO:s to avoid storage and I/O rate limitations.
The Grid.
Investigate running on GPU:s.
Further reduce CERNLIB dependence - at a the cost of backward
compatibility on steering files ? HBOOK dependence will remain
in the forseable future - but only for user convenience : SGV itself
doesn’t need it.

LCIO DST mass-production

Outlook

Include a filter-mode:
Generate event inside SGV.
Run SGV detector simulation and analysis.
Decide what to do: Fill some histos, fill ntuple, output LCIO, or
better do full sim
In the last case: output STDHEP of event

Update documentation and in-line comments, to reflect new
structure.
Consolidate use of Fortran 95/203/2008 features. Possibly - when
gcc/gfortran 4.4 (ie. Fortran 2003) is common-place - Object
Orientation, if there is no performance penalty.

Use of user-defined types.
Use of PURE and ELEMENTAL routines,
Optimal choice between pointer, allocatable and automatic and/or
assumed-size, assumed-shape, and explicit arrays.

I/O over FIFO:s to avoid storage and I/O rate limitations.
The Grid.
Investigate running on GPU:s.
Further reduce CERNLIB dependence - at a the cost of backward
compatibility on steering files ? HBOOK dependence will remain
in the forseable future - but only for user convenience : SGV itself
doesn’t need it.

LCIO DST mass-production

Outlook

Include a filter-mode:
Generate event inside SGV.
Run SGV detector simulation and analysis.
Decide what to do: Fill some histos, fill ntuple, output LCIO, or
better do full sim
In the last case: output STDHEP of event

Update documentation and in-line comments, to reflect new
structure.
Consolidate use of Fortran 95/203/2008 features. Possibly - when
gcc/gfortran 4.4 (ie. Fortran 2003) is common-place - Object
Orientation, if there is no performance penalty.

Use of user-defined types.
Use of PURE and ELEMENTAL routines,
Optimal choice between pointer, allocatable and automatic and/or
assumed-size, assumed-shape, and explicit arrays.

I/O over FIFO:s to avoid storage and I/O rate limitations.
The Grid.
Investigate running on GPU:s.
Further reduce CERNLIB dependence - at a the cost of backward
compatibility on steering files ? HBOOK dependence will remain
in the forseable future - but only for user convenience : SGV itself
doesn’t need it.

	ILC
	Fast simulation
	The need for fast simulation at ILC
	Ex1: cross-sections
	Ex2: SUSY scans
	Fast simulation types

	SGV
	Working priciples
	Technicalities
	Usage
	Use-cases, Comparisions

	 Outlook and Summary
	Appendix
	LCIO DST mass-production

