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The ILC

@ Alinear ete™ collider.

@ Eys tunable between 200 and 500 GeV, upgradable to 1 TeV.
@ Total length 31 km

@ [L£~500fb~"in4 years

@ Polarisation e~: 80% (e*: > 30%)

@ 2 experiments, but (possibly) only one interaction region.

@ Concurrent running with the LHC
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The ILC is not LHC

@ Lepton-collider: Initial state is known.
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The ILC is not LHC

@ Lepton-collider: Initial state is known.
@ Production is EW =

e Small theoretical uncertainties.

No “underlaying event”.

Low cross-sections wrt. LHC, also for background.

Trigger-less operation.

High precision (sub-%) measurements needed, to extend our
knowledge beyond LEP, Tevatron, LHC.

o Interesting physics at low angles: t-channel di-boson production ...
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The ILC is not LHC

@ Lepton-collider: Initial state is known.
@ Production is EW =

e Small theoretical uncertainties.

No “underlaying event”.

Low cross-sections wrt. LHC, also for background.

Trigger-less operation.

High precision (sub-%) measurements needed, to extend our
knowledge beyond LEP, Tevatron, LHC.

o Interesting physics at low angles: t-channel di-boson production ...

@ Extremely small beam-spot: 5 nm x 100 nm x 150 pm.
@ High luminosity: 2 x 103 cm~2 s~'. Single pass operation = this
is the lumi for every bunch-crossing.
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ILC

The ILC is not LEP, either

@ Small beam-spot = Beam-beam interactions =
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The ILC is not LEP, either

@ Small beam-spot = Beam-beam interactions =

e Large amounts of synchrotron photons ...
o ... that get Compton back-scattered ...
e They might create et e~ pairs when interacting with the field: The

pairs-background.
o Or interact with each other: mini-jets
@ Single pass operation, ondulator positron-source, beam-beam
effects: Beam-spectrum is not a é-function.
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ILC

The ILC is not LEP, either

@ Small beam-spot = Beam-beam interactions =

e Large amounts of synchrotron photons ...
o ... that get Compton back-scattered ...
e They might create et e~ pairs when interacting with the field: The
pairs-background.
o Or interact with each other: mini-jets
@ Single pass operation, ondulator positron-source, beam-beam
effects: Beam-spectrum is not a é-function.
@ Luminosity/bunch-crossing three orders of magnitude higher:
pile-up of v+ events (a few/BX, yielding a few particles, so we're
not talking LHC conditions here !)
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The ILC : Detectors

@ Low background = detectors can be:
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The ILC : Detectors

@ Low background = detectors can be:
@ Thin : few % Xg in front of calorimeters
e Very close to IP: first layer of VXD at 1.5 cm.
o Close to 47: holes for beam-pipe only few cm = 0.2 msr un-covered
= Area of Suisse Romande (or Schleswig-Holstein) relative to earth.
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The ILC : Detectors

@ Low background = detectors can be:

@ Thin : few % Xg in front of calorimeters

e Very close to IP: first layer of VXD at 1.5 cm.

o Close to 47: holes for beam-pipe only few cm = 0.2 msr un-covered
= Area of Suisse Romande (or Schleswig-Holstein) relative to earth.

@ High precision measurements:

e Extremely high demands on tracking.

e Tracking to low angles

o |dentify and measure every particle in the event = Particle-flow:
@ Measure charged particles with tracker, neutrals with calorimeters.
@ Need to separate neutral clusters from charged in calorimeters.
@ Separate showers in calorimeters = high granularity.
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The ILD Detector
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ILC

Example: Zh — upuqq at 250 GeV
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ILC

Example: Zh — upuqq at 250 GeV

Top|c Model mdependent H|ggs mass
Recoil mass measurement:
@ Only reconstruct the Z — upu

@ Using E & p conservation the Higgs mass can be measured from
the recoil independent of the decay mode
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ILC

Example: Zh — upuqq at 250 GeV

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 8/33



ILC

Example: fth — 8 jets at 1 TeV
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ILC

Example: fth — 8 jets at 1 TeV

|ggs-top coupling

@ Find all 8 jets.
@ Find the jets from each top-decay and from the Higgs decay =
e Flavour-tagging and jet-energy resolution.

@ Find cross-section.

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 9/33



ILC

Example: fth — 8 jets at 1 TeV
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Fast simulation The need for fast simulation at ILC

The need for fast simulation at ILC

@ We have very good full simulation now.

@ So why bother about fast simulation ?
@ Answer:
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The need for fast simulation at ILC

@ We have very good full simulation now.
@ So why bother about fast simulation ?
@ Answer:
o R. Heuer at LCWS 2011: We need to update the physics case

continuously.

o Light-weight: run anywhere, no need to read tons of manuals and
doxygen pages.

o Anyhow, the Letter Of Intent exercise in 2009 showed that for
physics, the fastSim studies were good enough.
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Fast simulation The need for fast simulation at ILC

The need for fast simulation at ILC

@ We have very good full simulation now.
@ So why bother about fast simulation ?
@ Answer:
o R. Heuer at LCWS 2011: We need to update the physics case

continuously.
o Light-weight: run anywhere, no need to read tons of manuals and

doxygen pages.
o Anyhow, the Letter Of Intent exercise in 2009 showed that for

physics, the fastSim studies were good enough.

But most of all:

Fast simulation is Fast ! )

So...
Why do we need speed at the ILC ?
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Ex1: v+ background

Total cross-section for eTe™ — yyeTe™ — qget e : 35 nb (PYTHIA)
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Total cross-section for eTe™ — yyeTe™ — qget e : 35 nb (PYTHIA)

@ [ Ldt=500fb"! — 18 x10° events are expected.
@ 10 ms to generate one event.
@ 10 ms to fastsim (SGV) one event.
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Ex1: v+ background

Total cross-section for eTe™ — yyeTe™ — qget e : 35 nb (PYTHIA)

@ [ Ldt=500fb"! — 18 x10° events are expected.

@ 10 ms to generate one event.

@ 10 ms to fastsim (SGV) one event.
108 s of CPU time is needed, ie more than 3 years. But:This goes to
3000 years with full simulation.

@ And that’s only to keep up with the real data ...

@ For MC-statistics not to be the dominating systematic error one
would like to to have at least 5-10 times the data.
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Fast simulation Ex2: SUSY scans

SUSY parameter scans

Simple example:
@ Modest pMSSM scan with 10 parameters.
@ Scan each in eg. 10 steps

@ Eg. 1000 events per point (also a modest requirement: in eg.
spsia’ almost 1 million SUSY events are expected for 500 fo—' 1)

@ =10"0 x 1000 = 100 x 10° events to generate...
Slower to generate and simulate than ~~ events
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Fast simulation Ex2: SUSY scans

SUSY parameter scans

Simple example:
@ Modest pMSSM scan with 10 parameters.
@ Scan each in eg. 10 steps

@ Eg. 1000 events per point (also a modest requirement: in eg.
spsia’ almost 1 million SUSY events are expected for 500 fo—' 1)

@ =10"0 x 1000 = 100 x 10° events to generate...
Slower to generate and simulate than ~~ events

Also here: CPU millenniums with full simulation J
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Fast simulation Fast simulation types

Fast simulation types

Different types, with increasing level of sophistication:
@ 4-vector smearing. ILC Ex. SimpleFastMCProcessor.
@ Parametric. ILC ex.: SIMDET
@ Covariance matrix machines. ILC ex.: LiCToy, SGV

Common for all:

Detector simulation time ~ time to generate event by an efficient
generator like PYTHIA 6
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Fast simulation Fast simulation types

Fast simulation types

Different types, with increasing level of sophistication:
@ 4-vector smearing. ILC Ex. SimpleFastMCProcessor.
@ Parametric. ILC ex.: SIMDET
@ Covariance matrix machines. ILC ex.: LiCToy, SGV

Common for all:

Detector simulation time ~ time to generate event by an efficient
generator like PYTHIA 6

| will talk about

“la Simulation & Grande Vitesse”, SGV. )
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SGV Working priciples

SGV: How tracking works

SGV is a machine to calculate covariance matrices

Tracking: Follow track-helix through
the detector.
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SGV Working priciples

SGV: How tracking works

SGV is a machine to calculate covariance matrices

Tracking: Follow track-helix through

the detector. @ Calculate cov. mat. at perigee,

including material,
measurement errors and
extrapolation. NB: this is
exactly what Your track fit
does!

@ Smear perigee parameters
(Choleski decomposition:
takes all correlations into
account)

@ Helix parameters exactly
calculated, errors with one
approximation: helix moved to
(0,0,0) for this.
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SGV Working priciples

SGV: How the rest works

Calorimeters:

@ Follow particle to intersection with calorimeters. Simulate:
o Response type: MIP, EM-shower, hadronic shower, below
threshold, etc.
e Simulate single particle response from parameters.
e Easy to plug in other (more sophisticated) shower-simulation. See
Madalina Chera’s talk tomorrow.
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SGV Working priciples

SGV: How the rest works

Calorimeters:
@ Follow particle to intersection with calorimeters. Simulate:

o Response type: MIP, EM-shower, hadronic shower, below
threshold, etc.

e Simulate single particle response from parameters.

e Easy to plug in other (more sophisticated) shower-simulation. See
Madalina Chera’s talk tomorrow.

Other stuff:
@ EM-interactions in detector material simulated
@ Plug-ins for particle identification, track-finding efficiencies,...
@ Information on hits accessible to analysis.
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SGV Technicalities
Technicalities

@ Written in Fortran 95, a re-write of the Fortran77-based SGV2
series, battle-tested at LEP.
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@ Some CERNLIB dependence. Much reduced wrt. old F77 version,
mostly by using Fortran 95’s built-in matrix algebra. Just one core
dependence (Choleski decomposition), so in a future version, the
dependence will be optional.
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SGV Technicalities
Technicalities

@ Written in Fortran 95, a re-write of the Fortran77-based SGV2
series, battle-tested at LEP.

@ Some CERNLIB dependence. Much reduced wrt. old F77 version,
mostly by using Fortran 95’s built-in matrix algebra. Just one core
dependence (Choleski decomposition), so in a future version, the
dependence will be optional.

@ Managed in SVN.Install script included.
@ Typical generation+simulation+reconstruction time O(10) ms.
@ Timing verified to be faster (by 15%) than the 77 version.
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SGV Technicalities

Features
@ Physics events from callable PYTHIA, Whizard, with

beam-spectrum.
@ .. orinput from PYJETS or stdhep.
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SGV Technicalities

Features

@ Physics events from callable PYTHIA, Whizard, with
beam-spectrum.

@ .. orinput from PYJETS or stdhep.

@ Output of generated event to PYJETS or stdhep.
@ samples subdirectory with steering and code for eg. scan single

@ Scan single particles (“particle gun”).

o Create hbook ntuple with “all” information (can be converted to
ROOT w/ h2root). (/s there a C-binding to root, at least for tree
definition, filling and I/O ?)

e Code for more elaborate calorimeters

@ Particle-Flow with confusion (Madalina’s talk).
@ More complicated acceptance, eg. small angle calorimters with
beam-background and crossing-angle.
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SGV Technicalities

Features

@ Physics events from callable PYTHIA, Whizard, with
beam-spectrum.

@ .. orinput from PYJETS or stdhep.

@ Output of generated event to PYJETS or stdhep.
@ samples subdirectory with steering and code for eg. scan single

@ Scan single particles (“particle gun”).

o Create hbook ntuple with “all” information (can be converted to
ROOT w/ h2root). (/s there a C-binding to root, at least for tree
definition, filling and I/O ?)

o Code for more elaborate calorimeters

@ Particle-Flow with confusion (Madalina’s talk).
@ More complicated acceptance, eg. small angle calorimters with
beam-background and crossing-angle.

@ Output LCIO DST, the common ILC data-model, with content
identical to that for FullSim = SGV for rapid prototyping of
analyses.
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SGV Technicalities

Stucture

SGV is made of six loosely connected parts:
@ The Steering, which takes care of initialisation and ending, and
runs the event loop.
@ In the event loop,
e The Event Generator, which either calls the external generator, or
reads in pre-generated events.
o The Detector Simulation
e The Event Dispatcher
is called.
@ The Detector Simulation calls

e The Covariance Matrix Machine
e The Calorimeter response simulation.
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SGV Technicalities

Stucture

@ The Event Dispatcher trasferes the data directly to the Event
Analysis, and/or writes to an file / FIFO / shared memmory
(RZ/FZ).
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SGV Technicalities

Stucture

@ The Event Dispatcher trasferes the data directly to the Event
Analysis, and/or writes to an file / FIFO / shared memmory
(RZ/FZ).

@ Communication between parts - steering and data - is by
arguments Only (except for Event Generator — Detector Simulation — Event Dispatcher.)

@ Therefore, the Event analysis can be called by any process that
can attribute values to the elements the Event-dispatcher sends to
the Analyser.

o Use-case: ROOT delegates analysis to SGV.
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SGV Usage
Usage
@ Steering:

@ A single steering file for all the steps - general, event generation,
detector simulation, analysis.
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SGV Usage
Usage

@ Steering:
@ A single steering file for all the steps - general, event generation,
detector simulation, analysis.
@ User code:

o One routine (and it's CONTAINS:s or USE:es).
o Default version compiled in.
e Many more complicated examples in the “samples” sub-directory.
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SGV Usage
Usage

@ Steering:
@ A single steering file for all the steps - general, event generation,
detector simulation, analysis.
@ User code:
o One routine (and it's CONTAINS:s or USE:es).

o Default version compiled in.
e Many more complicated examples in the “samples” sub-directory.
@ User data, delivered in Module-global arrays:
Extended 4-vectors .
Track helix parameters with correlations.
Calorimetric clusters.
When relevant: true values.
Auxiliary information on particle history, detector-elements used etc.
Event-global variables.
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SGV Usage
Usage

@ User Analysis tasks :
e Jet-finding.
e Event-shapes.
e Primary and secondary vertex fitting.
o Impact parameters.
Can be calculated by routines, included in SGV. Access routines
give an easy interface to the detector geometry.
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SGV Usage
Usage

@ User Analysis tasks :

Jet-finding.

Event-shapes.

Primary and secondary vertex fitting.

Impact parameters.
Can be calculated by routines, included in SGV. Access routines
give an easy interface to the detector geometry.

@ Assemble source, Compile & link of desired version:

e Done by cresgvexe (cresgvso) script.
e Comand-line parameters for detailed selections : -D:s , extra
libraries, non-defaultscompiler/linker options, etc.
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SGV Usage
Usage

@ Generators:
o Interfaces to PYTHIA and Whizard built-in.
e Easy to interface to others (but depends on how well structured the
generator is...).
o Alternatively: Read events from external file (but beware of 1/0 1)
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SGV Usage

Usage

@ Generators:

o Interfaces to PYTHIA and Whizard built-in.

e Easy to interface to others (but depends on how well structured the
generator is...).

o Alternatively: Read events from external file (but beware of 1/0 1)

@ Detector geometry:

Planes and cylinders.

Attributes attached (measurement, material, names,...).

Read from a human-readable ASClI-file (ex).

Simple visualisation of the detector included.

Up to three detectors can be loaded simultaneously, and will be
looped over event by event.
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SGV Usage

Installing SGV

Do
svn co https://svnsrv.desy.de/public/sgv/trunk/ sgv/

Then
cd sgv ;. ./install

This will take you about 30 seconds ...

Mikael Berggren (DESY-HH) SGV

FastSim WS, Jan 2014
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@ Study README do get the first test job done (another 30 seconds)
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SGV Usage

Installing SGV

Do
svn co https://svnsrv.desy.de/public/sgv/trunk/ sgv/

Then
cd sgv ;. ./install

This will take you about 30 seconds ...

@ Study README do get the first test job done (another 30 seconds)
@ Look README in the samples sub-directory, to enhance the
capabilities, eg.:

o Get STDHEP installed.

o Get CERNLIB installed in native 64bit.

o Get Whizard (basic or ILC-tuned) installed.
o Get the LCIO-DST writer set up
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SGV

Use-cases, Comparisions

Ex: ILD tracker-system design (Vienna 2005).

@ |: The divergence in the
TDR: Once the last disk is
hit, the 1/+/tan @ is back !

Mikael Berggren (DESY-HH)
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SGV Use-cases, Comparisions

Ex: ILD tracker-system design (Vienna 2005).

@ |: The divergence in the

TDR: Once the last diskis 2 |
hit, the 1/vtand isback | 8107 e
@ II: The step: End of The g e vo s
<

Vertex Detector —
@ Remedy I:Add disks all the 4
way to the end of the TPC 10+
(5 more strip-disks) i
@ Remedy Il: Add a pixel disk
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SGV Use-cases, Comparisions

The ILD Detector
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SGV Use-cases, Comparisions

SGV and FullSim ILD: momentum resolution

Lines: SGV, dots: Mokka+Marlin
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SGV Use-cases, Comparisions

SGV and FullSim ILD: ip resolution vs P

Lines: SGV, dots: Mokka+Marlin
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SGV Use-cases, Comparisions

SGV and FullSim ILD: ip resolution vs angle

Lines: SGV, dots: Mokka+Marlin
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SGV Use-cases, Comparisions

SGV and FullSim ILD: Full system

Feed exactly the same physics events through FullSim or SGV.
@ Overall:

@ ete™ —ZZ — four jets:

@ Zhhat1 TeV:
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SGV Use-cases, Comparisions

SGV and FullSim ILD: Full system

Feed exactly the same physics events through FullSim or SGV.

@ Overall:
o Total seen energy
@ ete™ —ZZ — four jets:
o Make "True Jets":
"True jets"
@ Find initial hadrons from each colour-singlet (string).
@ Find the quarks at each end of the string.
@ Group hadrons to jets by which quark they are closest to.

@ Follow the decay-chains and assign all particles in the event to the

jet of their respective ancestor hadron.
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Use-cases, Comparisions

SGV and FullSim ILD: Full system

Feed exactly the same physics events through FullSim or SGV.

@ Overall:
o Total seen energy
@ ete™ —ZZ — four jets:

e Make "True Jets":
@ Reconstructed M, at

different stages in FullSim.

@ Zhhat1 TeV:
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SGV Use-cases, Comparisions

SGV and FullSim ILD: Full system

Feed exactly the same physics events through FullSim or SGV.

@ Overall:
o Total seen energy
@ ete™ —ZZ — four jets:
o Make "True Jets": i
o Reconstructed M7 at 012 [
different stages in FullSim.
@ Seen Reconstructed Mz, ,
FullSim and SGV. 0.08 [
e Jet-Energy resolution [

@ Zhhat1 TeV:

— FullSim
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Feed exactly the same physics events through FullSim or SGV.
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@ ete™ —ZZ — four jets:
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SGV Use-cases, Comparisions

SGV and FullSim ILD: Full system

Feed exactly the same physics events through FullSim or SGV.

@ Overall:
o Total seen energy
@ ete™ —ZZ — four jets:
o Make "True Jets":
e Reconstructed M at
different stages in FullSim.
@ Seen Reconstructed Mz,
FullSim and SGV.
o Jet-Energy resolution e
@ Zhhat1 TeV: -
Visible E
e Higgs Mass ks
e b-tag
e Error on Higgs-selfcoupling:
SGV 17% , FullSim 18 % !
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Near Future developments

@ Finish up particle flow parametrisation:
o Jet mass.
o MIP signals.

@ Clusters from same true particle in both EM and hadronic
calorimeters.

o Cluster C.0.G (not just start point)
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Outlook and Summary

Near Future developments

@ Finish up particle flow parametrisation:
o Jet mass.
o MIP signals.
@ Clusters from same true particle in both EM and hadronic
calorimeters.
@ Cluster C.0.G (not just start point)

@ Handling very large input and/or output files: File splitting etc.
@ Handling very large numbers input files.

@ Include a filter-mode:

o Generate event inside SGV.

o Run SGV detector simulation and analysis.

o Decide what to do: Fill some histos, fill ntuple, output LCIO, or
better do full sim

In the last case: output STDHEP of event
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Outlook and Summary

Not-So-Far Future developments

@ Update documentation and in-line comments, to reflect new
structure.
@ Consolidate use of Fortran 95/203/2008 features:

o Use of user-defined types.

o Use of PURE and ELEMENTAL routines,

e Optimal choice between pointer, allocatable and automatic and/or
assumed-size, assumed-shape, and explicit arrays.

@ I/O over FIFO:s to avoid storage and I/O rate limitations.
@ The Grid.
@ Investigate running on GPU:s.

@ Possibly - when gcc/gfortran 4.4 (ie. Fortran 2003) is
common-place - Object Orientation, if there is no performance
penalty.
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Outlook and Summary

Summary
@ The need for FastSim was reviewed:

@ Large cross-sections (y7), or large parameter-spaces (SUSY)
makes such programs obligatory, also at the ILC.
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Outlook and Summary

Summary

@ The need for FastSim was reviewed:

@ Large cross-sections (y7), or large parameter-spaces (SUSY)
makes such programs obligatory, also at the ILC.

@ The SGV program was presented, and (I hope) was shown to be
up to the job, both in physics and computing performance.

Installing SGV
svn co https://svnsrv.desy.de/public/sgv/trunk/ sgv/
Then

cd sgv ;. ./install
@ OV INdsSSs proauclort WOrks - o ~ U./7 1 EVeIlLs 1 U 1) nour ori

NAF. (Details in backup slides)
@ Many SGV-based analyses done in ILC/ILD, sometimes SGV
only, sometimes mixed SGV-FullSim, sometimes developed with

SGV, then done with FullSim when resources became available.
SGV FastSim WS, Jan 2014 32/33
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Outlook and Summary

Thank You !

Mikael Berggren (DESY-HH) SGV FastSim WS, Jan 2014 33/33



Backup



—
BACKUP

BACKUP SLIDES



Some internals

Tracking:
@ Module zt_tracking:

e Higher-level functions: “Particle with momentum p starts at v in
detector i. Return helix-paramters and covariance at point r”

o Initialises constants-of-motion for the track once.

e Decides which helix-parametrisation is best at a given point, and
transforms when needed.

@ Checks max and min layer that could be hit by particle, to avoid
un-nessesary computations.
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Some internals

Tracking:
@ Module zt_tracking:

e Higher-level functions: “Particle with momentum p starts at v in
detector i. Return helix-paramters and covariance at point r”

o Initialises constants-of-motion for the track once.

e Decides which helix-parametrisation is best at a given point, and
transforms when needed.

@ Checks max and min layer that could be hit by particle, to avoid
un-nessesary computations.

@ Module zt_covaiance: The covariance machine:

o Geometry worked out analytically.
e Matrix algebra (inversions, multiplications, ...) solved in
component-form.

@ Module zt_access: “getters” of detector information.
@ Routine zt_ini: Initialisation
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Some internals

Detector simulation:

@ Generated event should be loaded in Pythia:s /PYJETS/.
@ Decide if particle is:
e “Seeable”, ie. if it possibly could reach any detector element.

e “Storable”, ie. if the user asked to keep it even is it is not “Seeable”.
By default: All stable particles + all particles with fly > 1 cm .

This reduces the size of loops later.

@ Apply B-field: move decay verticies, tilt p of decay products.
@ Loop “seeable” twice:

o First: simulate brems and pair-creation; remove daugthers of
particles that hit a calorimeter before decaying.
e Second: actually simulate the responce.
@ Tracking: Call tracking to get unsmeared helix and cov. mat , then
zdsmtp, which smears it using Choleski decomposition method.
@ Calorimeter: Call zdcalo, which calls ztcalo to get path-ordered list of
trajectory intersection points with calo:s. Response is then-simulated
paramtrically.
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Some internals

Detector simulation:
@ Generated event should be loaded in Pythia:s /PYJETS/.
@ Decide if particle is:
" Performance considerations
@ Important issues in red.

@ During f77 — Fortran95 transistion:

o Avoid feature rot: Adding a cool feature that only add 10 % to the
CPU time is OK, right ?
e Well, yes, but ...
... if you do that every two weeks ...
@ ... yor code runs 10 times slower after 1 year...
@ ... 100 times slower after 2 years ...
@ ... and 1000 slower times after 3 years !

zdsmtp, which smears it using Choleski decomposition method.

@ Calorimeter: Call zdcalo, which calls ztcalo to get path-ordered list of
trajectory intersection points with calo:s. Response is then-simulated
paramtrically.



Use-cases at the ILC

@ Used for fastsim physics studies, eg. arXiv:hep-ph/0510088,
arXiv:hep-ph/0508247, arXiv:hep-ph/0406010,
arXiv:hep-ph/9911345 and arXiv:hep-ph/9911344.

@ Used for flavour-tagging training.

@ Used for overall detector optimisation, see Eg. Vienna ECFA WS
(2007), See licagenda > Conference and Workshops > 2005 >
ECFA Vienna Tracking

@ GLD/LDC merging and LOI, see eg. llcagenda > Detector Design
& Physics Studies > Detector Design Concepts > ILD > ILD
Workshop > ILD Meeting, Cambridge > Agenda >Sub-detector
Optimisation |

The latter two: Use the Covariance machine to get analytical
expressions for performance (ie. not simulation)



SGV physics performance

SGV and real data from DELPHI: Global variables
Histogram: SGV, Points: DELPHI data
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SGV physics performance: DELPHI

SGV and real data from DELPHI: Particle variables
Histogram: SGV, Points: DELPHI data




SGV physics performance: DELPHI

SGV and full simulation from DELPHI: Neutralino search in hadronic
channel,
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Checking the parametrisation

@ Some overall distributions:
o Total seen energy
o Total neutral energy
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Checking the parametrisation

@ Some overall distributions:
o Total seen energy
o Total neutral energy
e Lost and double counted
energy.
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Checking the parametrisation

@ Some overall distributions:
o Total seen energy
e Total neutral energy A ‘

o Lost and double counted px yod
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LCIO DST mass-production

SGV has been used to produce ILD DST:s for the full DBD
benchmarks.
@ usesgvicio.F95 in the samples/Icio directory extracts SGV data
and fills all LCIO collections on the ILD DST:s
o Clusters:
@ Are done with the Pandora confusion parametrisation on.
@ Expect ~ correct dispersion of jet energy, but a few % to high central
value of jet masses.
o Navigators
@ All the navigators that the TruthLinker processor makes when all flags
are switched on are created.
e Secondary vertices:
@ Use true information to find all secondary vertices.
@ For all vertices with > 2 seen charged tracks: do vertex fit.
@ Expect ~ correct vertex fit-parameters, but too good vertex finding.



Mass production

@ Done almost the full DBD samples - several times.
@ 34 Mevents.
e ~ 1 hour of wall-clock time (first submit to last completed) on the
German NAF.
@ ~~ still missing: Logistics to figure out (Many thousands of input
files )



Collections

@ Added sensible values to all collections that will (probably) be
there on the DST from the FullSim production.

o BuildUpVertex o MCParticlesSkimmed
@ BuildUpVertex_RP o VOVertices

@ MarlinTrkTracks o VORecoParticles

@ PandoraClusters o BCALParticles

@ PandoraPFOs o BCALClusters

@ PrimaryVertex o BCALMCTruthLink

@ RecoMCTruthLink o PrimaryVertex RP

@ Also added more relation links:

@ MCTruthRecoLink MCTruthTrackLink
@ ClusterMCTruthLink o TrackMCTruthLink
@ MCTruthClusterLink e MCTruthBcalLink



Comments

Secondary vertices (as before):
@ Use true information to find all secondary vertices.
@ For all vertices with > 2 seen charged tracks: do vertex fit.
@ Consequence:
e Vertex finding is too good.
e Vertex quality should be comparable to FullSim.

In addition: Decide from parent pdg-code if it goes into BuildUpVertex
or VOVertices !
MCParticle :

@ There might be some issues with history codes in the earlier part
of the event (initial beam-particles, 94-objects, ...)



Comments

Clusters:
@ Are done with the Pandora confusion parametrisation on.

@ Expect ~ correct dispersion of jet energy, but a few % to high
central value.
@ See my talk three weeks ago.

@ Warning: Clusters are always only in one detector , so don’t use
Ehag/Eem for e/m: It will be = 100 % efficient !

Navigators
@ All the navigators that the TruthLinker processor makes when all
flags are switched on are created:
o Both Seen to True and True to Seen (weights are different 1)

@ Seen is both PFOs, tracks and clusters.
e The standard RecoMCTruthLink collection is as it would be from

FullSim ie. weights between 0 and 1.
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@ The Grid.
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