
Intro to “fast event generation”
(and a bit on HepMC tools and LHAPDF 6!)

Andy Buckley
University of Glasgow

Fast Monte Carlo in HEP #2, DESY Zeuthen, 14 Jan 2014

1/11

Introduction to the evgen session

“Traditionally” event generation has been forgotten in attempts to
optimise simulation CPU usage.

“1 event per second” throughput target assumes that the evgen step is
already well-within that limit. But far from true these days!

Majority of LHC process simulation (at least for SM and Higgs
processes) is well beyond Born+LL level: NLO or multileg hard
process calculations (or both at once).

Complex processes and huge integration phase spaces mean that
evgen can approach 1 event/hour in bad cases! (Also easily possible
with very aggressive filtering such as used to create b-physics samples
from ∼min bias MC.)

Generator / theory trend has been towards higher accuracy, usually meaning
slower code: what are the best “operating points” for experimental needs?

2/11

Introduction to the evgen session (2)
Several efforts underway in experiments to (re)organise evgen
production for LHC Run 2: mainly based on factorisation of hard
process and “dressing” steps (via LHEF data exchange), and use of
dedicated HPC resources for evgen.

For very high-stats processes is there a better option than “fall back to
Born”? Balance of processing time between pre-integration /
grid-building and event sampling? Parallelisability of each step?

Focus of session: updates from generator authors on code
developments and prospects for speed increases in various generator
components (hard process, showers, . . .) and with various
technologies.

Also experimental talks on HPC and GPU work so far (applications to
evgen, detector sim and analysis).

But first a brief diversion on some relevant evgen/MC analysis tool
developments. . .

3/11

HepMC and speed issues
I was asked to speak about HepMC developments and how they
might impact on speed.

4/11

HepMC and speed issues
I was asked to speak about HepMC developments and how they
might impact on speed. Lowest order answer:

THEY DON’T!

4/11

HepMC and speed issues
I was asked to speak about HepMC developments and how they
might impact on speed. Lowest order answer:

THEY DON’T!
HepMC itself not usually a speed bottleneck, but several developments:

I Reading from ASCII format (and writing?) can be much faster by
using C functions (no widechar support, etc.)

I Event records full of debug info. Strip down to what’s needed.
I Experiment analysis formats already do MC stripping, but break

graph structure: MCUtils (https://bitbucket.org/andybuckley/mcutils)
provides functions for more intelligent filtering.

I Built-in multi-weight / systematics treatments starting to gain
momentum. One approach to fast evgen is to generate less,
reweight more. if done correctly. Impact on production & analysis codes.

I HepMC development restart planned⇒ version 3. Interface fixes
and improvements: speed-up possible in refactoring/removing
current iterators? (Unknown due to code hell!)

I Tool development (MCUtils, HepMC, . . .) will continue: please
use and contribute to shared tool packages. 4/11

https://bitbucket.org/andybuckley/mcutils

LHAPDF speed (and other) improvements

And now something less speculative: real speed (and other)
improvements in the C++ rewrite of LHAPDF.

The main problems with LHAPDF 5:

I Fortran code with static, unshared memory⇒ huge memory
requirements O(2− 10 GB)
⇒ Grid/batch issues

I Multiset, low-memory, etc. modes are hacks on original code.
Speed, VMEM, flexibility, and correct operation all suffer
depending on build-time configuration.

NMXSET determined at build-time and too restrictive for e.g. error
set reweighting
Re-init very slow. Esp. later PDF members at end of file.
Some functions don’t (can’t) respect multi-set indexing: alphaS,
xMin, etc.

I Unmaintainable!

5/11

LHAPDF 6

I Ground-up rewrite (in C++, with Python wrapper) attempting
to learn from and solve all these problems

AB, Martin Ruefenacht, Karl Nordstrom, James Ferrando, Steve Lloyd, others

I Key feature: dynamic allocation: allocate only what you use —
and no concurrency limitation

I Uniform data format with arbitrary flavours and powerful
metadata

I Speed:
Single-flavour, single member loading and interpolation are always
faster than LHAPDF 5: less data to read, only interpolate the
required flavour. Can be a factor of ∼ 3.
All-flavour interpolation can be slower: depends on set. Possibility
of caching, vectorization,
Very significant speed-ups for event generation if code is migrated
to support single-flavour mode: Sherpa has already done so
Very significant speed-up for reweighting, since only one flavour
needed per incoming parton.

6/11

Examples: usage from C++

Single member:

#include "LHAPDF/LHAPDF.h"

...
LHAPDF::PDF* pdf = LHAPDF::mkPDF("CT10nlo", 0);
size_t num_mems = pdf->numMembers();
// One value:
double xf_g = pdf->xfxQ(21, 1e-3, 126.0);
// Quark and gluon values:
vector<double> xfs;
pdf->xfxQ(1e-3, 126.0, xfs);
// All values (partons, photon, gluino, ...):
map<int, double> xfs = pdf->xfxQ(1e-3, 126.0);
delete pdf;

PDF set:

vector<unique_ptr<LHAPDF::PDF>> pdfs;
LHAPDF::mkPDFs("CT10nlo", pdfs);
for (const auto& p : pdfs)
double xf_g = p->xfxQ(21, 1e-3, 126.0);

7/11

Examples: usage from Python

Single member:

>>> import lhapdf
>>> pdf0 = lhapdf.mkPDF("CT10nlo", 0)
>>> pdf0.xfxQ(21, 1e-3, 126)
31.199466144272378

PDF set:

>>> pdfs = lhapdf.mkPDFs("CT10nlo")
>>> len(pdfs)
52
>>> [pdf.xfxQ(21, 1e-3, 126) for pdf in pdfs]
[31.199466144272378, 31.10261967456719, ...
...

8/11

Memory
Numbers from 6.0.0beta1 but still relevant

LHAPDF 5

$ size -B -d ~/heplocal/lib/libLHAPDF.so

text data bss dec
1509082 142048 2039405376 2041056506

⇒ 1.5 MB functions, 140 kB data, 2 GB uninitialised data!

⇓

LHAPDF 6

$ size -B -d ~/heplocal/lib/libLHAPDF.so

text data bss dec
265310 8504 1552 275366

⇒ 2.6 kB functions, 8 kB data, 280 kB uninitialised data!

WIN!
9/11

Set migration and validation
I We set a nominal LHA5→ 6 reproduction accuracy target of

per-mille (1/1000)
I Regularised deviation measure ∆ = |f6 − f5|/(|f5|+ ε)
I Get sets from http://www.hepforge.org/archive/lhapdf/pdfsets/6.0/

xf vs. x

10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

x

10-5

10-4

10-3

|f
6
−
f 5
|/

(|f
5
|+
ε)

xfacc, flav = g, q=10

xfacc, flav = g, q=50

xfacc, flav = g, q=1×102

xfacc, flav = g, q=2×102

xfacc, flav = g, q=5×102

xfacc, flav = g, q=1×103

xfacc, flav = g, q=2×103

xfacc, flav = g, q=5×103

Most set migrations now final – CTEQ, HERA, ATLAS, ABM sign-off
awaited. NNPDF & MRST/MSTW sets approved.

10/11

http://www.hepforge.org/archive/lhapdf/pdfsets/6.0/

Set migration and validation
I We set a nominal LHA5→ 6 reproduction accuracy target of

per-mille (1/1000)
I Regularised deviation measure ∆ = |f6 − f5|/(|f5|+ ε)
I Get sets from http://www.hepforge.org/archive/lhapdf/pdfsets/6.0/

xf vs. Q

100 101 102 103 104

Q

10-5

10-4

10-3

10-2

10-1

100

|f
6
−
f 5
|/

(|f
5
|+
ε)

xfacc, flav = g, x=1×10−8

xfacc, flav = g, x=1×10−6

xfacc, flav = g, x=0.0001

xfacc, flav = g, x=0.01

xfacc, flav = g, x=0.1

xfacc, flav = g, x=0.2

xfacc, flav = g, x=0.5

xfacc, flav = g, x=0.8

Most set migrations now final – CTEQ, HERA, ATLAS, ABM sign-off
awaited. NNPDF & MRST/MSTW sets approved.

10/11

http://www.hepforge.org/archive/lhapdf/pdfsets/6.0/

Set migration and validation
I We set a nominal LHA5→ 6 reproduction accuracy target of

per-mille (1/1000)
I Regularised deviation measure ∆ = |f6 − f5|/(|f5|+ ε)
I Get sets from http://www.hepforge.org/archive/lhapdf/pdfsets/6.0/

αs vs. Q

100 101 102 103 104

Q

10-5

10-4

10-3

10-2

10-1

|α
6
−
α

5
|/

(|α
5
|+
ε)

asacc

Most set migrations now final – CTEQ, HERA, ATLAS, ABM sign-off
awaited. NNPDF & MRST/MSTW sets approved.

10/11

http://www.hepforge.org/archive/lhapdf/pdfsets/6.0/

Summary of everything
Event generation is no longer a trivial consumer of HEP experiment
CPU resources. Will get worse as need for precision MC increases:
higher orders, higher stats and more systematics variations.

Fast detector simulation needs to be combined with
emphappropriate organisation of event generation.

We also hope that there are prospects for “built-in” speedups
(algorithmic and technical) from the generator authors’ side: let’s see
from the talks!

Common event generation infrastructure like HepMC and LHEF
aren’t usually a performance bottleneck. But the way they are used can
be key to efficient generation strategy.

Developments are starting up again in these areas, to make the toolkits
more user-friendly and powerful: please participate so that we all
benefit and spend less time swearing at our monitors.

LHAPDF 6 is ready to use “for real”: latest version is easy to install
and faster than ever. Speed gains w.r.t. LHAPDF 5 should be helpful
for evgen, and very important for reweighting. 11/11

