Particle Flow in SGV: Implementation and Comparisons

Mikael Berggren, Jenny List, Madalina Chera Fast Monte Carlo in HEP Workshop DESY Zeuthen, 15.01.13

Outline

- 1. Current ILC detector simulations
- 2. Particle Flow Parametrisations
- 3. Analysis based comparisons
 - 1. Light Higgsinos Analysis
 - 2. Higgs Self Coupling
 - 3. Chargino and Neutralino Pair Production
- 4. Conclusions & Outlook

Current Detector Simulations

Current Detector Simulations

High Precision at the ILC

- jet energy = sum of the energies of all individual particles in the jet
- measure charged particles in tracker
- measure γ 's in ECAL ($\frac{\sigma_E}{E} < \frac{20\%}{\sqrt{E}}$)
- measure neutrals ONLY in HCAL
- ONLY 10% of jet energy from HCAL

The International Large Detector

(ILD)

- design optimised for particle flow:
 → use full simulation
- for physics studies: need fast simulation!

Simulation à Grande Vitesse

 The tracker + basic calorimeter simulation work(s) very well! However...

- Calorimeter:
- The goal is to:
 - simulate a particle flow calorimeter
 - emulate the particle flow reconstruction
 - PFlow in a fast simulation is a new approach!

Calorimeter Implementation in SGV

- Default features random error on:
 - detected energy
 - shower position
 - shower shape
- > Association errors:
 - calorimeter cluster merging
 - cluster splitting
 - cluster track mis-association

Neutral cluster merging and mis-association

Consequences:

- Associations errors have an impact on the total reconstructed energy.
- If a neutral cluster is (partially) associated to a track \rightarrow energy is lost

Calorimeter Implementation in SGV

- Default features random error on:
 - detected energy
 - shower position
 - shower shape
- > Association errors:
 - calorimeter cluster merging
 - cluster splitting
 - cluster track mis-association

Charged cluster splitting

Consequences:

- Associations errors have an impact on the total reconstructed energy.
- If a neutral cluster is (partially) associated to a track \rightarrow energy is lost
- If a charged cluster is partially split → energy is double counted
- Other errors (e.g. split neutral clusters, charged clusters mis-associations) do not give rise to significant errors in the total reconstructed energy or momentum

- Soal: study and parametrise the association errors from data samples processed with FullSim
- > Used: 8000 e⁺e⁻ → udsc events simulated with the LOI version of Mokka and reconstructed with PandoraPFA
- Compare the True particles info with the Reconstructed particles (tracks, calorimeter hits, clusters and PFOs):
 - Make use of the MCTruth ↔ Reco information
 - Create true clusters: find all the calorimeter hits produced by one true particle and group them into one (or more) cluster(s) associated to the MC particle
 - Each of the true clusters **contributes to only one** reconstructed cluster.
- Study how PandoraPFA has associated the tracks and clusters:
 - Verify the link MC Particle ↔ Track
 - Verify true cluster ↔ reconstructed cluster

- > The study focuses on:
 - True charged particles (partially) splitting their shower (double counting energy)
 - True neutral particles (partially) being merged with charged showers (energy loss)
- The study ignores the less important aspects (neutral neutral or charged – charged merging, multiple splitting/merging)
- The most relevant observables:
 - The cluster energy
 - The distance between the cluster and the nearest particle of the "opposite" type (Isolation)
 - Whether we are dealing with an electro-magnetic or hadronic shower
 - Which region of the detector the particle reaches (barrel or end-caps)

Parametrising the Association Errors: Splitting Probability

Probability

0.4

0.2

0

> The probability that a cluster would split:

Charged hadrons: double counting

- The splitting probability depends strongly on isolation for the EM case
- The dependency on the detector region was 5%

> The probability to split/merge an entire cluster: Photons: energy loss

• Depends almost entirely on the cluster's energy

The probability to split/merge an entire cluster:

Charged hadrons: double counting

Photons: energy loss

Depends almost entirely on the cluster's energy •

0.8

0.6

0.4

0.2

Fraction

 $\begin{array}{c} \begin{array}{c} & & \\ 0 & 5 & 10 \\ & 15 & 20 \\ 25 & 30 \\ 35 & 40 \\ 45 \\ 50 \end{array} \end{array}$

10

10

 10^{-1}

 $10^{\frac{2}{3}}$

10

1

> The average of correctly assigned fraction of the cluster energy:

Photons: energy loss

> Fitting the splitting fraction (for an example average fraction):

Photons: energy loss

Madalina Chera | FLC Group Meeting | 09.09.13 | Page 15

- > The probability that only a fraction of the cluster would split:
 - As a function of distance:

Charged hadrons: double counting

Photons: energy loss

- > The probability that only a fraction of the cluster would split:
 - As a function of energy:

Charged hadrons: double counting

Photons: energy loss

- The partial splitting probability depends on both energy as well as distance
- The dependence can be expressed in terms of the average fraction

Parametrising the Association Errors: Technicalities

- > The PFL user routine ZAUPFL is called in ZAUSER
- On first call: Reads and stores parameters
- Clusters are made from simulated showers of each particle in ZAUMKC
- Loop (once) over all particles:
 - Determine shortest distance to neighbour of right type and charge in the same calorimeter
 - Simulate: (ZACCON)
 - No split or complete split or partial split
 - If partial: fraction split off
 - Compare E and p: If too different, try again a few times
 - Remove and push out any empty showers or clusters; adjust pointers

Parametrisations:

- The distributions have been fitted with combinations of exponentials and linear functions
- In total, 28 parameters x 4 cases (EM/hadronic x double-counting/ lost energy) are needed
- These parameters are fed to SGV as input data files to the user routine that takes care of the particle flow emulation

Key feature: output data in the same standard format as FullSim (LCIO)

- Enables direct comparison between SGV FullSim
- Allowed the development and fine tuning of the benchmark analyses for the ILC TDR
- = All TDR analyses use mixed FullSim and SGV backgrounds SGV for high cross section backgrounds , e.g. low $P_t \gamma \gamma$

Now, compare the fast simulation output to Mokka & PandoraPFA...

SGV – FullSim Comparisons

> Light Higgsinos Scenario

> Three light higgsinos:

- $\widetilde{\chi}_1^{\pm}$ and $\widetilde{\chi}_2^0$ are almost mass degenerate
- Mass difference to LSP $(\widetilde{\chi}_1^0)$ is smaller than 1 GeV
- All sleptons are much heavier:
 \$\mathcal{O}\$ (10³GeV)

- > 2 escaping LSPs → large amount of missing energy
- Small mass difference to LSP
- > Few visible decay products
- Very low P_T

SGV – FullSim Comparisons (Light Higgsinos)

 Comparison performed using: 2000 events

 $e^{+}e^{-} \rightarrow \widetilde{\chi}_{1}^{+} \widetilde{\chi}_{1}^{-} \gamma$ $\widetilde{\chi}_{1}^{+} \widetilde{\chi}_{1}^{-} \rightarrow 2 \widetilde{\chi}_{1}^{0} W^{+*} W^{-*}$

- Polarization:(e-,e+)=(-0.8,+0.3)
- Ecm = 500 GeV,
- L = 500 fb⁻¹
- All reconstructed particles within a |cos(θ)| < 0.9397 have been considerered
- SGV and FullSim are in very good agreement
- The differences between FullSim and SGV are much smaller than the effect of the low Pt γγ background overlay ("pile-up")

(Hale Sert)

SGV – FullSim Comparisons

- SGV performs very well even in complex anlyses like the Higgs self-coupling
- SGV FullSim comparison:
- Polarization:(e-,e+)=(-0.8,+0.2)
- Ecm = 1 TeV,
- M_H = 120 GeV
- L = 2 ab⁻¹
- > Δλ/λ : 17% SGV; 18 % FullSim

(Junping Tian)

SGV – FullSim Comparisons: $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ Pair Production

"Point 5" benchmark : gaugino pair production at ILC

http://arxiv.org/pdf/1006.3396.pdf (ILD LoI) http://arxiv.org/pdf/0911.0006v1.pdf (SiD LoI)

• The signal channels have been chosen as a challenge to the Particle Flow.

• The analysis is extremely sensitive to jet energy measurements.

SGV – FullSim Comparisons: $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ Pair Production

- > Use dijet mass to separate $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^0$ events \rightarrow measure cross section
- Dijet [Boson] Mass Comparison LOI to SGV performed using:

~ 20000
$$e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \Rightarrow \tilde{\chi}_1^\pm \rightarrow \tilde{\chi}_1^0 W^\pm$$
 events

- ~ 4000 $e^+e^- \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_2^0 \Rightarrow \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 Z^0$ events
- Polarization:(e-,e+)=(-0.8,+0.3)
- Ecm = 500 GeV,
- L = 500 fb⁻¹
- Force event into 4 jets (Durham)
- The SGV distribution is wider and shifted with ~3 GeV towards higher energies.

Madalina Chera | FLC

SGV – FullSim Comparisons: $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ Pair Production

- Use dijet energy spectrum "end points" in order to calculate masses
- Compare dijet energy SGV FullSim
- Force events into 4 jets
- Perform pre-selection and kinematic fit
- Use only best permutation of the kinematic fit
- The SGV distribution is sharper and slightly shifted towards higher energies

- The ILC community has a fast simulation tool that performs very well: SGV
- > The Particle Flow implementation in SGV has been presented:
 - The most relevant parametrisations are the total / partial cluster splitting probabilities as a function of energy and distance to closest particle
- One key feature: output in the same data format as Full Sim which enables direct comparisons as well as using mixed backgrounds.
- SGV has been used successfully in complex analyses, e.g. the light Higgsinos scenario and the Higgs self coupling study
- Nevertheless, measurements that are extremely sensitive to the jet energy (e.g. the χ₁[±] and χ₂⁰ Pair Production) show the need to further improve the particle flow parametrisation

Back up slides

Madalina Chera | FLC Group Meeting | 09.09.13 | Page 28

$\tilde{\chi}_1^{\,\pm}\,and\,\tilde{\chi}_2^{\,0}\,Cross\,Section\,Measurement$

- Separating W and Z pairs candidates:
- SM background fitted with polynomial
- Signal distributions fitted with Voigt profile
 - Width (Γ) set to boson's natural width (2.11 GeV for W and 2.5 GeV for Z
 - Voigt σ ≃ 3.5 GeV detector resolution, deduced from a SM sample. The σ from the signal only sample is in the same ballpark!
- Determine relative W/Z fractions from fit

$\tilde{\chi}_1^{\,\pm}\,and\,\tilde{\chi}_2^{\,0}\,Cross\,Section\,Measurement$

Cross section calculation: determine the amount of W and Z pairs candidates.

$\widetilde{\chi}_1{}^{\pm} \, and \, \widetilde{\chi}_2{}^0$ Mass Measurement

- > Mass difference to LSP $(\widetilde{\chi}_1^0)$ is larger than M_Z
- Observe the decays of real gauge bosons
- > 2 body decay → the edges of the energy spectrum are kinematically determined
- > Use dijet energy spectrum "end points" in order to calculate masses

$$\gamma = \frac{E_{beam}}{M_{\chi}}$$
$$E_{\pm} = \gamma \cdot EV^* \pm \gamma \cdot \beta \cdot \sqrt{E_V^{*2} - M_V^2}$$

Real edge values [GeV]:

W _{low}	\mathbf{W}_{high}	Z _{low}	Z_{high}
80.17	131.53	93.24	129.06

Dijet [Boson] Energy Comparison

> Use dijet energy to measure $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ mass

The DBD distribution appears slightly narrower and shifted towards lower energies. Nevertheless, the two distributions agree very well.

$\tilde{\chi}_1^{\,\pm}\,and\,\tilde{\chi}_2^{\,0}$ Signal Sample Further Separation

 Calculate χ² with respect to nominal W / Z mass

$$\chi^{2}(m_{j1}, m_{j2}) = \frac{(m_{j1} - m_{V})^{2} + (m_{j2} - m_{V})^{2}}{\sigma^{2}}$$

min $\chi^2 \! \rightarrow \! \widetilde{\chi}_1{}^{\pm} \, and \, \widetilde{\chi}_2{}^0 \, separation$

- > Downside: lose statistics
 - Cut away 43% of $\tilde{\chi}_1^{\pm}$ surviving events
 - Cut away 68% of $\tilde{\chi}_2^0$ surviving events
- However, after the χ² cut, the separation is quite clear:

Obs.	DBD		LOI	
	$\widetilde{\chi}_1^{\pm}$	$\tilde{\chi}_2^0$	$\tilde{\chi}_1{}^{\pm}$	${\widetilde \chi_2}^0$
Efficiency	57%	32%	56%	34%
Purity (total)	63%	35%	62%	35%
Purity (SUSY)	94%	68%	95%	66%

chargino cut (W like events)

Endpoint Extraction using an FIR Filter

- > Finite Impulse Response (FIR) filters are digital filters used in signal processing.
- > FIR filters can operate both on discrete as well as continuous values.
- The concept of "finite impulse response" ↔ the filter output is computed as a finite, weighted sum of a finite number of values from the filter input.

$$y[n] = \sum_{k=-M_1}^{M_2} b_k x[n-k] \leftarrow \text{the input signal}$$

the filter coefficients (weights)

- > y is obtained by convolving the input signal with the (finite) weights
- > FIR filters are used to detect edges in image processing techniques:

D. Demigny, T. Kamlé

Testing the FDOG Filter

There are two important filter characteristics that must be optimised: the bin size and the filter size.

Filter response after applying the FDOG Filter to the $\tilde{\chi}_1^{\pm}$ energy distribution:

FIR Edge Extraction Comparison – LOI to DBD

In the **LOI** case: the fitted and filter values are extremely close to the real model value. In the **DBD** case: the filter value is much closer to the model one than the fitted edge.

Toy MC for the Filter Edge Extraction

- > To estimate the statistical precision of the edge extraction \rightarrow toy MC
- > 10000 $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ energy spectra have been produced
- The FDOG filter was then applied 10000 times
- > Example: for the $\tilde{\chi}_1^{\pm}$ case:

400

Edge Extraction Comparison

True	80.17	131.53	93.24	129.06
Sim.	Edge W _{low} [GeV]	Edge W _{high} [GeV]	Edge Z _{low} [GeV]	Edge Z _{high} [GeV]
LOI	79.7±0.3	131.9±0.9	91.0±0.7	133.6±0.5
DBD	79.5±1.7	128.3±1.2	91.9±0.8	127.9±0.7
LOI	80.3±0.6	131.7±0.7	91.6±0.7	129.0±0.6
DBD	80.1±0.2	130.2±0.7	91.9±0.2	127.2±0.7

The filter extraction method is preferable:

• it is more stable

filter

• provides smaller uncertainties in determining the edge position.

Applying an FIR Filter

- > Goal: find edge positions in spectrum
- Strategy: use weighted sums of bin content values to find patterns in distribution

Applying an FIR Filter

- > Goal: find edge positions in spectrum
- Strategy: use weighted sums of bin content values to find patterns in distribution
- Consider the histogram as an array of bin content values

Applying an FIR Filter

- Goal: find edge positions in spectrum
- Strategy: use weighted sums of bin content values to find patterns in distribution
- Consider the histogram as an array of bin content values
- Consider an array of chosen weights (smaller than the histogram!)
- Create new array of the same size:
 - Each entry in the new array is the weighted sum of the bin content values from the bins surrounding the corresponding bin in the original array.
 - The array is filled using the same (finite) weights each time.
- The value of the output depends on the pattern in the neighbourhood of the considered bin and NOT on the position of the bin
- The pattern of weights = kernel
- The filter application = convolution

Testing the FDOG Filter

Studied the effect of the filter size on a smeared step edge monte carlo data.

The FDOG filter does indeed perform best.

The filter size should be comparable to the size of the edge feature. We chose $\sigma = 5$ bins.

Choosing the Appropriate Filter

- The first derivative as kernel works
- > It is however a high pass filter \rightarrow may be rather noisy
- In order to choose an apropriate filter one can apply the following criteria:

- Good detection: probability of obtaining a peak in the response must be high
- Localisation: standard deviation of the peak position must be small
- Multiple response minimisation: probability of false postive detection must be small
- Canny has suggested that an optimal filter is very similar to the first derivative

Canny's criteria: [J. F. Canny. A computational approach to edge detection. *IEEE Trans. Pattern Analysis and Machine Intelligence*, pages 679-698, 1986]

Testing the FDOG Filter

> There are two important filter characteristics that must be optimised:

A toy MC study is needed to optimise the filter and bin size!

$\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ Mass Measurement – "Endpoint" Method

Fit dijet energy spectrum and obtain edge positions:

$$f(x; t_{0_{1}}, b_{0_{2}}, \sigma_{1_{2}}, \gamma) = fSM + \int_{t_{0}}^{t_{1}} (b_{2}t^{2} + b_{1}t + b_{0})V(x - t, \sigma(t), \gamma)dt$$

Where:

- The polynomial accounts for the slope of the initial spectrum
- The Voigt function accounts for the detector resolution and gauge boson width

Endpoint Extraction Comparison – LOI to DBD

$$E_{low} \simeq 79.7 \pm 0.3 \text{ GeV}$$

 $E_{high} \simeq 131.9 \pm 0.9 \text{ GeV}$

$$\begin{array}{l} \mathsf{E}_{\mathsf{low}} \simeq \textbf{79.5} {\pm} \textbf{1.7} \; \mathsf{GeV} \\ \mathsf{E}_{\mathsf{high}} \simeq \; \textbf{128.3} {\pm} \textbf{1.2} \; \mathsf{GeV} \end{array}$$

The DBD distribution appears slightly shifted towards lower energies. Nevertheless, the two distributions agree very well.

Issues of the "Endpoint Method"

LOI 79.7±0.3 131.9±0.9 91.0±0.7 133.6±0.5		19.0±1.1	120.3±1.2	91.9±0.0	121.310.1
	LOI	79.7±0.3	131.9±0.9	91.0±0.7	133.6±0.5

The fitting method appears to be highly dependent on small changes in the fitted distribution \rightarrow it is clearly NOT appropriate for a comparing the simulation and reconstruction performance.

We need to apply a different edge extraction method!

- > The changes of a function can be described by the derivative → interpret the histogram as a 1D function
- ➤ The points that lie on the edge of the distribution → detected by local maxima and minima of the first derivative

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \approx f(x+1) - f(x) \quad (h = 1)$$

The first derivative is approximated by using the kernel [-1, 0, 1]

- The changes of a function can be described by the derivative → interpret the histogram a a 1D function
- The points that lie on the edge of the distribution → detected by local maxima and minima of the first derivative

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \approx f(x+1) - f(x) \quad (h = 1)$$

- The first derivative is approximated by using the kernel [-1, 0, 1]
- > The kernel is convoluted with the histogram:

$$response_i = -1 \times bin_{i-1} + 0 \times bin_i + 1 \times bin_{i+1}$$

$\tilde{\chi}_1{}^{\pm}$ and $\tilde{\chi}_2{}^0$ Separation as Study case for Particle Flow

- Signal topolgy:
 4 jets and missing energy
- Event preselection (kinematics, etc.)
- Perform kinematic fit: equal mass constraint (determine best jet pairing)

3.2. $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ Cross Section Measurement 3.2.2. 2D dijet mass fit

