Replica Manager
(work in progress)

Albert L. Rossi

Fermi National Accelerator
Laboratory

dCache User Workshop Hamburg 15/05/2014

Resilience

> dCache Book, Chapter Il. 6.

— http://www.dcache.org/manuals/Book-2.7/config/cf-
repman-fhs.shtml

@ replica service (Replica Manager) controls number of replicas of a file
on the pools.

@ for higher security and/or availability in absence of tertiary file system:

e Uses p2p to guarantee number of copies of a file is at least 2.

* |If four or more replicas exist, some of them will be deleted.

@ hybrid mode (resilient pool group, non-resilient groups for HSM, etc.)

Current Replica Service

No significant modification since 2007.

— Maintains a rather heavyweight set of database tables (written before move from PNFS to
Chimera).

The basis for replication is established by the pool the file ends up on; if it

is in the resilient group, it gets replicated, regardless of the storage
information associated with it; hence replication must ultimately be
controlled by the way links direct files to pool groups.

— Is this how it should work? (what about tags? storage class?)

— Ifitis, is the current behavior consistent?

Limitations/brittleness:

— Allows for only one “resilient” pool group per instance.
To simulate the existence of different resilient groups, one has to run as many Replica Managers as the

pool groups one wants to make resilient. This entails hacking broadcast.batch as only one Replica
Manager is supported.

— Replica range is fixed to 2 <= n <= 3 for all pools in the group.

dCache User Workshop Hamburg 15/05/2014

. : 2: Pools 1 and 2 t d
Pool States & Replication — - o

o Can’t access File A; replicate B and C

File A
online File B
[. .] File C
“” | File D
(omlne-pnpue ’[dulnoﬁ‘ }
unknown = .
. ‘ 2: Set pools 1 and 2 to drainoff
0 ne
| \ [File A extracted from pool 1

o _‘ \
down down down i
/transient ;J /transient File A
END File B

File C
o File D

1: Initial state, 2<= N <=3

O All pools are online

2: set pool pool_1 offline

O Temporarily take pool out, no replication

Pool 1 Count
File A File A |A 2
File B File B |B 2
File C File C 2
File D File D 2

offline

Tags & Pools

How does/should replication take into consideration the
relationship between the following?

1. Retention Policy (REPLICA, CUSTODIAL, OUTPUT)
2. Access Latency (NEARLINE, ONLINE)
3. Large File Store pool settings (none, precious, volatile)

When does it make sense, for instance, to replicate files with
CUSTODIAL retention policy? What about those with
NEARLINE access latency? (As it stands, dCache relies on the
admin to set up pools and tags in a way that makes sense.)

dCache User Workshop

Tags & Pools

Hamburg 15/05/2014

An experiment to test for consistency the current handling of
replication according to these tags and large file store type.

With a resilient group of two pools, the following results were
obtained:

POOLS

e 08 =
e 10 =

DATA

v-dmsdca08-1
v-dmsdcalO-1

S| = tags given by PnfsManager storageinfoof
¢ Cl = pool copies given by PnfsManager cacheinfoof

e ST = Entry State (Cached C, Precious P, Sticky X)

REPLICA ONLINE REPLICA NONE CUSTODIAL ONLINE CUSTODIAL NEARLINE
run-none-140108Jan001389211254 run-none-140108Jan011389211262 run-none-140108Jan011389211269 run-none-140108Jan011389211276
I0000BAS786E13F7543199D35D63E680D3255 |0000D39BC75EF18645CCI6A911A16EC6A74C[0000D0310AF807 7A4DOEA7COEEF75C2D4COF DO006F7ESED2AF144448BBC3AS4A9B4ED732

Ifs=none |SI: REPLICA ONLINE SI: REPLICA NEARLINE [SI: CUSTODIAL ONLINE S1: CUSTODIAL NEARLINE
Cl: 08, 10 Cl: 10, 08 ICl: 10, 08 ICl: 08, 10
ST: CX, P ST:C, P ST: PX, P BT:P, P
run-precious-140108Jan591389211154 run-precious-140108Jan591389211162 run-precious-140108Jan591389211169 Fun-precious-140108Jan591389211177
I00009F4EAB7582C94C11A4CB852D2B43EF4D |0000CESOSABBGELID46AD8F2213F8F6DEBACS J0000F58ED7CEBB0941619741B288A514AB02 |0000220B23FSAFDE4C1B8419EC877D27A03A
Ifs=precious|SI: REPLICA ONLINE SI: REPLICA NEARLINE [SI: CUSTODIAL ONLINE S1: CUSTODIAL NEARLINE
ICl: 10, 08 Cl: 10, 08 ICl: 10, 08 ICl: 08, 10
ST: CX, P STE IST: PX, P ST:P, P
run-volatile-140108)Jan021389211328 run-volatile-140108Jan021389211336 run-volatile-140108Jan021389211344 run-volatile-140108)an021389211351
1000046D10A6B303C4BD69SAS5 1CDE24DDASF8|0000BCDCFSE60AF045D99B3584A174BD3169 |[0000CESOAGEAA0924ACE83E898769236BF8B 0000BADCSAF020404DCAA3A9BS51BBDE3607
Ifs=volatile |SI: REPLICA ONLINE SI: REPLICA NEARLINE [SI: CUSTODIAL ONLINE S1: CUSTODIAL NEARLINE
Cl: 10, 08 Cl: 10, 08 ICl: 10, 08 ICl: 08, 10
ST:C, P ST: C, P ST:C, P KT:C, P

dCache User Workshop Hamburg 15/05/2014

Tags & Pools

Summary

1. Regardless of retention policy and access latency tags, files are indeed replicated.
2. REPLICA NONE is changed to REPLICA NEARLINE; this combination is somewhat
non-sensical, but attempts to specify a temporary copy without using Ifs.
3. Coming onto the source pool, the file is marked cached unless
a. Retention Policy is CUSTODIAL and Large File Store is not volatile;
b. If CUSTODIAL + ONLINE, original is precious + sticky.
In other words:
i. REPLICA | volatile =>C, else => P
ii. ONLINE & not volatile => X
(This is just the way dCache works.)
4. But the replicated copy is currently marked precious (P).

Regardless of replication policy concerning CUSTODIAL, NEARLINE or precious
files, it would make more sense that the resulting replica be CACHED+STICKY.

dCache User Workshop Hamburg 15/05/2014

User-Facing Changes

1. Provide flexibility in defining how replication is handled on the

basis of:
a. Pool Group
b. Storage Unit (overrides pool group constraints)

» defined on basis of storage class, e.g.
psu create unit -store <storage class tag>

poolmanager.conf

psu set pgroup <group name> [-minreplicas=<integer>] [-maxreplicas=<integer>] \
[sameHostEnabled=<true|false>]

psu set storage unit <unit name> [-minreplicas=<integer>] [-maxreplicas=<integer>] \
[sameHostEnabled=<true|false>]

NB. There is a tacit assumption that replicating pools must be partitioned by group
(that is, any pool in a replicating group may not belong to another replicating pool

group).

User-Facing Changes

2. Retain some current admin commands, and add several new

ones.

current

set pool <pool><state>
show pool <pool>

Is unique <pool>
exclude <pnfsid>
release <pnfsld>

nhew

replicate <pnfisd> <pool>
reduce <pnfisd> <pool group>
Is unavailable <pool>
statistics

dump queues

next scan

run scan

(for controlling in particular drain, offline settings)
(show pool state)

(show pnfsids unique to this pool)

(do not replicate this particular file)

(allow replication for this particular file)

(a single file using a pool as source)

(a single file to minimum copies)

(show pnfsids on this pool with no replicas on active pools)
(current and total counts for requests, messages and queues)
(current content of all the queue data)

(date and time the next pool scan is scheduled to run)

(force the pool scan to run immediately)

User-Facing Changes

3. Some new properties

replicamanager.limits.pool-scan-initial-wait=1
replicamanager.limits.pool-scan-initial-wait.unit=MINUTES

replicamanager.limits.pool-scan-period=12
replicamanager.limits.pool-scan-period.unit=HOURS

replicamanager.limits.status-workers-per-poolgroup=2
replicamanager.limits.replica-workers-per-poolgroup=10
replicamanager.limits.wait-queue-capacity=10000

replicamanager.requests.use-greedy-limits=true

Implementation Goals

* Make use of existing services and modules (Chimera,
Migration Module) to do the heavy lifting.

* Make persistence more limited and lightweight
(eliminate need for rdbms and unnecessary
replication of stored data).

* Bring code up to date to use modern libraries and OO
design praxis.

A partial prototype is under review, will go through
several more iterations before inclusion in release.

2.117

Feedback & suggestions
welcome, especially from
those of you who make use
of this feature in production.

dCache User Workshop Hamburg 15/05/2014

MessageHandler Queues Executor/Task RequestHandler PoolMonitor Namespace Pool

periodic scan in progress ?
if yes) enqueue messagi (and return)
psu get pool group

«

replication in progress ?

PnfsAddCacheLocation

L

|(if no) register request

>
(else return)

lexecute request task

psu check for replication

Note that the arrival of a metadata

PnfsAddCachelLocationMessage currently is
not handled in an entirely correct
fashion. This is because the status of a scatter/gather rep Is pnfsid on other active pools of group
migration job which actually does a copy,
and one which skips it because a copy
already exists, are identical; hence we (if deficient) request replication
cannot hold onto the request token for
the replication until a
PnfsAddCachelocationMessage arrives, yet
at the same time we cannot guarantee that
one will not arrive after we receive a
final status message on the migration
job. The implementation as it stands
risks triggering needlessly another register job or unregistef request (if no deficiency
migration request in the latter case.
The way to fix this is to allow the
replica manager to distinguish between a
copy and a skip by the migration module.

migration copy (currently repeated once for each replica requested;
what is needed is a -replica parameter with the number of copies for the pnfsid)
>

PnfsAddCacheLocation

job status update

unregister job/request

MessageHandler Queues Executor TaskHandler PoolMonitor Namespace Pool

dCache User Workshop Hamburg 15/05/2014

MessageHandler Queues Executor/Task RequestHandler PoolMonitor Namespace Pool

PoolStatusChangedMessage

L

periodic scan in progress ?

(if yes) enqueue message (and return)

pool check already in progress ?

|(if no) register request

(else return)
psu get pool group

execute request task

>
call() | Psu get constraints, inactive pools

ListPnfsldsForPoolMessage deficient (status=DOWN) or redundant (status=sRESTART)

(ListenableFuture) (ListenableFuture)
run() | (if DOWN) for each deficient pnfsid (Executor.execute)

request replication
q P The procedure is the same as for the request

initiated by a PnfsidAddCachelLocation method. The
If there are any deficient replicas task uses a barrier on all such requests, waiting
which cannot be replicated, an alarm for all to complete before unregistering.

is sent with instructions to use the
admin command ‘list singletons’ to
discover files in need of recovery.

(else) for each redundant pnfsid

request reduction

psu check for replication
metadata

scatter/gather rep Is pnfsid on other active pools of group
« >

Fire-and-forget | until upper limit reached, do on candidate pools rep rm -force

unregister request

MessageHandler Queues Executor TaskHandler PoolMonitor Namespace Pool

dCache User Workshop Hamburg 15/05/2014

Cron Module MessageHandler Queues Executor/Task RequestHandler PoolMonitor Namespace Pool

pause cache

location processing o || blocks until current
g replication jobs complete.

psu get pool groups, replica metadata

v

for each replicating pool group

register active pools for scan

for each active pool

CheckRepIicaCoherentiw

combines the DOWN/RESTART phases of the PoolStatusChanged task (see
previous slide), but enforces serialization on the processing first
of deficient, then of redundant pnfsids, and serialization by pool
within those sections, in order to avoid unnecessary copies and
deletes across pools in the group.

execute task

unregister pools

\wait for scan completion|

resume cache
location processing

»
Ll

drain waiting messages
»

»

for each quelled message

message arrived

Cron Module MessageHandler Queues Executor TaskHandler PoolMonitor Namespace Pool

Addendum:
Why Replica Manager should interact with the
Migration Module and not the Pool Manager

* Pool Manager manages transfers. Its primary job is to do pool selection. This is
designed to respond to client read requests by initiating hot spot replication, staging
from files, failing on load, dealing with the aging of files, link fallback etc. Different
thresholds can be defined for it which are irrelevant to the replication of a file. The
Migration Module on the other hand was designed to operate independently of the
Pool Manager, precisely because the task of internally moving files is different from
clients reading files.

* Pool Manager queues reads to same file, but not different files. Replica Manager
should handle all replication requests via queuing/throttling, i.e., allow only X
number of replications of different pnfsids proceeding concurrently.

