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Introduction and Motivation

Before we start

Please

I can only show a small fraction of all the incredibly interesting
searches going on

Whether ATLAS or CMS is shown is typically purely accidential

Please ask questions anytime whenever you have one

Interrupt if I’m too fast, or

Speed me up if I’m telling you stuff which has been told several times
before

Maybe, you’ll hear about some crazy stuff which is not completely
explained in this lecture. In this case: Ask questions anytime! ;-)

Let’s have as much interesting discussion as possible!

P. Bechtle: Higgs Terascale Intro School 20.03.2014 4



Introduction and Motivation

Motivation – March 2012

We live in truly exciting times

The LHC is a huge success

Recent results could mean that the Higgs boson might be discovered
soon

The end of the reign of the SM is eagerly avaited

You have the chance to witness and actively contribute to a new era of
revolution in particle physics
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Introduction and Motivation

Motivation – March 2014

We live in truly exciting times

The LHC is a huge success

Recent results show that there is a SM-like Higgs boson

The end of the reign of the SM is still eagerly avaited

You have the chance to witness and actively contribute to a new era of
revolution in particle physics
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Introduction and Motivation

Our Current Picture of Elementary Particles
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Introduction and Motivation

The Standard Model of Elementary Particles

”
Dass ich erkenne, was die Welt im Innersten zusammenhält“
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Introduction and Motivation

Particle Physics is Philosophy

Not from the beginning the gods disclosed everything to us,
but in the course of time we find, searching, a better knowledge.
These things have seemed to me to resemble the truth.
There never was nor will be a person who has certain knowledge
about the gods and about all the things I speak of.
Even if he should chance to say the complete truth,
yet he himself can not know that it is so.

Xenophanes of Kolophon, ca. 500 b.c.
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Reminder: A bit of Theory on the Higgs

QFD: SU(2)L × U(1)Y Leptonic Sector

Now we construct the gauge fields W a
µ for SU(2)L analogously to SU(3)C

before and Bµ of U(1)Y analously to the QED before. We get the covariant
derivative

Dµ = ∂µ + ig
τa
2
W a

µ + ig ′Y

2
Bµ.

Using this, we can construct the first part of the QFD Lagrangian

L1
QFD = −1

4
W a

µνW
µν
a − 1

4
BµνB

µν + iLD/L+ iRD/R ,

with
W a

µν = ∂µW
a
ν − ∂νW

a
µ − gǫabcW

b
µW

c
ν

Bµν = ∂µBν − ∂νBµ.
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Reminder: A bit of Theory on the Higgs

QFD: SU(2)L × U(1)Y Masses

Mass of the gauge bosons
Now we would like to add gauge boson masses:

1

2
M2BµBµ

However, this is not invariant under SU(2):

→ 1

2
M2(Bµ − 1

g ′
∂µα(x))(Bµ − 1

g ′
∂µα(x))
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Now we would like to add gauge boson masses:

1

2
M2BµBµ

However, this is not invariant under SU(2):

→ 1

2
M2(Bµ − 1

g ′
∂µα(x))(Bµ − 1

g ′
∂µα(x))

Mass of the fermions

−mēe = −mē

(

1

2
(1 − γ5) +

1

2
(1 + γ5)

)

e

= −m(ēReL + ēLeR)

But only eL and not eR is transforming under SU(2)!
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Reminder: A bit of Theory on the Higgs

QFD: SU(2)L × U(1)Y Masses

Mass of the gauge bosons
Now we would like to add gauge boson masses:

1

2
M2BµBµ

However, this is not invariant under SU(2):

→ 1

2
M2(Bµ − 1

g ′
∂µα(x))(Bµ − 1

g ′
∂µα(x))

Mass of the fermions

−mēe = −mē

(

1

2
(1 − γ5) +

1

2
(1 + γ5)

)

e

= −m(ēReL + ēLeR)

But only eL and not eR is transforming under SU(2)!

We have a beautiful theory of massless particles!
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Reminder: A bit of Theory on the Higgs

QFD: SU(2)L × U(1)Y EWSB

In order to allow masses for the gauge bosons, we introduce the Higgs
doublett into the theory:

Φ =

(

φ+

φ0

)

, Y = +1 which is gauged like Φ = e i
σaα

a

2v
1√
2

(

0
v + η

)

We obtain v =
√

−µ2/λ as vacuum expectation value of the field in the
potential

V (Φ) =
µ2

2
Φ+Φ+

λ

4
(Φ+Φ)2

with λ > 0 and µ2 < 0, such that there is spontaneous symmetry breaking
(the ground state does not obey the symmetries of the theory). φ+ has to
be gauged to 0 in order to render the charge operator Q = I3 +

Y
2

unbroken. Otherwise the photon acquires mass.
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Reminder: A bit of Theory on the Higgs

QFD: SU(2)L × U(1)Y EWSB

Using the global SU(2)L gauge transformation from before

L → L′ = e−i σ
aαa
2v L ⇒ Φ =

1√
2

(

0
v + η

)

we obtain the following expression for the mass sector of the QFD:

L2
QFD = −

√
2f (LΦR + RΦ+L) + |DµΦ|2 − V (Φ)
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Reminder: A bit of Theory on the Higgs

QFD: SU(2)L × U(1)Y EWSB

Using the global SU(2)L gauge transformation from before

L → L′ = e−i σ
aαa
2v L ⇒ Φ =

1√
2

(

0
v + η

)

we obtain the following expression for the mass sector of the QFD:

L2
QFD = −

√
2f (LΦR + RΦ+L) + |DµΦ|2 − V (Φ)

From where do we get the fermion masses?

−
√
2f (LΦR + RΦ+L)

acts as a mass term with the Yukawa coupling parameter f determining the
mass of the fermion.
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Reminder: A bit of Theory on the Higgs

QFD: SU(2)L × U(1)Y EWSB

The gauge boson masses are coming from

|DµΦ|2 =
1

8
g 2v2(W a

µν )
2 +

1

8
g ′2v2BµB

µ − 1

4
gg ′v2BµW 3

µ

using
(W 1

µ )
2 + (W 2

µ)
2 = (W 1

µ + iW 2
µ)(W

1
µ − iW 2

µ) = 2W+
µ W−

µ

introducing the charged currents. That yields

1

4
g 2v2W+

µ W−

µ +
1

8
v2(Bµ,W 3

µ)

(

g ′2 −gg ′

−gg ′ g 2

)(

Bµ

W 3µ

)

We have the mass term on the W± already. Let’s diagonalize the mass matrix of
the hypercharge field Bµ and the third component of the SU(2)L gauge field W 3

µ :

(

Aµ

Z 0
µ

)

=

(

cos θW sin θW
− sin θW cos θW

)(

Bµ

W 3µ

)

Now another miracle has occured: The photon field Aµ drops out of EWSB!
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Reminder: A bit of Theory on the Higgs

QFD: SU(2)L × U(1)Y EWSB

we have now introduced the Weinberg angle

sin θW =
g ′

√

g2 + g ′2

From the diagonalization of the mass matrix for W 3
µ and Bµ

Aµ =
1

√

g2 + g ′2
(g ′W 3

µ + gBµ), m2
A = 0

Z 0
µ =

1
√

g2 + g ′2
(gW 3

µ − g ′Bµ), m2
Z0 =

(g2 + g ′2)v2

4
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Reminder: A bit of Theory on the Higgs

QFD: SU(2)L × U(1)Y EWSB

We also obtain the charged current and its coupling to the W+
µ as

g

2
√
2
(ν̄Lγ

µeLW
+
µ + h.c .)

In addition, as the first tested firm prediction of this theory, the neutral
currents have been introduced (’74 November revolution: Gargamelle):

√

g2 + g ′2

4
(Lγµτ3L− 2

g ′2

g2 + g ′2 ēγ
µe)Z 0

µ ,
gg ′

√

g2 + g ′2
ēγµe Aµ

where

qe =
gg ′

√

g2 + g ′2

is the electromagnetic charge and e = eL + eR

This formalism has to be written for all three lepton families ℓ = e, µ, τ .
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Reminder: A bit of Theory on the Higgs

QFD: SU(2)L × U(1)Y Properties of the Higgs

v

P
ot

en
tia

l

Φ

The heavier the particle, the stronger the
Higgs coupling to it (or the other way
around!)

The position of the minimum of the
potential

V (Φ) =
µ2

2
Φ+Φ +

λ

4
(Φ+Φ)2

is known: Compare

g

2
√
2
ν̄Lγ

µeLW
+
µ

with V − A theory: LV−A
eff ∼ −GF

2 . . .

(

g

2
√
2

)2
1

M2
W

=
GF

2
⇒ v = 246GeV
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Reminder: A bit of Theory on the Higgs

QFD: SU(2)L × U(1)Y Remarks

There are a few non-trivial observations about EWSB in the SM:

It is not trivial that the photon field Aµ fullfills

mA = 0

qe ēγ
µ
eAµ

(i.e. no coupling to the neutrino and the same coupling to the left and right fields)
at the same time!

All three elements of
MW

MZ

= cos θW

can be measured independently ⇒ precision tests

The Higgs has been introduced to give mass to the gauge bosons, but it offers an
elegant way to introduce masses of the fermions, too.

There is a self-interaction among the gauge bosons in the − 1
4
W a

µνW
µν
a term. This

just pops out of the theory, it was not constructed as the gauge boson fermion
interactions. Does Nature obey the SM also in this unforeseen field? ⇒ precision
tests
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Reminder: A bit of Theory on the Higgs

The Higgs Mechanism, the easy way

Dynamic generation of mass:

Spontaneous symmetry breaking: Higgs field is always present

Massless fermion interaction with the non-vanishing background field:

H H H
1/q 1/q1/q

(g  v/    )2f
+ + + ...

f

Geometric sum yields massive propagator:

1

q/
+

1

q/

(

gf v√
2

)

1

q/
+ · · · = 1

q/

∞
∑

n=0

[(

gf v√
2

)

1

q/

]n

=
1

q/ −
(

gf v√
2

)

Effective mass of the fermion

Similar process for gauge bosons
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Reminder: A bit of Theory on the Higgs

The Higgs Boson

H
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Reminder: A bit of Theory on the Higgs

The Higgs Boson

H
The Higgs boson fullfills

(at least!) 3 wishes at once!
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Reminder: A bit of Theory on the Higgs

The Higgs Boson

H

The SM is the most complete
theory of fundamental particles
and interaction that we ever had

But without the Higgs:

WW scattering crosses the
unitarity bound at√
s ≈ 850GeV

SUL(2) ×UY (1) does not allow
masses for the gauge bosons
and the fermions

The Higgs allows to make the
photon massless and uncoupled
to the neutrinos at the same
time
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Reminder: A bit of Theory on the Higgs

The Puzzle of Electroweak Symmetry Breaking

Higgs-like particle at
mh ≈ 125 GeV!

A whole new window of
experimental and theoretical
possibilities opens!
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Reminder: A bit of Theory on the Higgs

The Puzzle of Electroweak Symmetry Breaking

Higgs-like particle at
mh ≈ 125 GeV!

A whole new window of
experimental and theoretical
possibilities opens!

It fits very well into the SM

But is the SM really correctly
describing EWSB? Need very
precise model independent
confirmation

0

1

2

3

4

5

6

10040 200

mH [GeV]

∆χ
2

LEP
excluded

LHC
excluded

∆αhad =∆α(5)

0.02750±0.00033

0.02749±0.00010

incl. low Q2 data

Theory uncertainty
March 2012 mLimit = 152 GeV

m   = 125 GeVH
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Reminder: A bit of Theory on the Higgs

The Puzzle of Electroweak Symmetry Breaking

Higgs-like particle at
mh ≈ 125 GeV!

A whole new window of
experimental and theoretical
possibilities opens!

It fits very well into the SM

But is the SM really correctly
describing EWSB? Need very
precise model independent
confirmation

Why is that so important?

Up to 2011, we directly
studied only half of the
EW SM Lagrangian!

LSM
EW = −1

4
W

a
µνW

µν
a −−1

4
BµνB

µν

+L̄γµ

(

i∂µ − 1

2
gτaW

a
µ − 1

2
g
′

YBµ

)

L

+R̄γµ

(

i∂µ −−1

2
g
′

YBµ

)

R

Studied since 1974 in many great experiments
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Reminder: A bit of Theory on the Higgs

The Puzzle of Electroweak Symmetry Breaking

Higgs-like particle at
mh ≈ 125 GeV!

A whole new window of
experimental and theoretical
possibilities opens!

It fits very well into the SM

But is the SM really correctly
describing EWSB? Need very
precise model independent
confirmation

Why is that so important?

Up to 2011, we directly
studied only half of the
EW SM Lagrangian!

LSM
EW = −1

4
W

a
µνW

µν
a −−1

4
BµνB

µν

+L̄γµ

(

i∂µ − 1

2
gτaW

a
µ − 1

2
g
′

YBµ

)

L

+R̄γµ

(

i∂µ −−1

2
g
′

YBµ

)

R

−
∣

∣

∣

∣

(

i∂µ − 1

2
gτaW

a
µ − 1

2
g
′
YBµ

)

Φ

∣

∣

∣

∣

2

+µ2|Φ|2 − λ|Φ|4

−(
√
2λd L̄ΦR +

√
2λuL̄ΦcR + h.c.)

Only began to explore this part

at ATLAS and CMS in 2011
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Reminder: A bit of Theory on the Higgs

The Puzzle of Electroweak Symmetry Breaking

Higgs-like particle at
mh ≈ 125 GeV!

A whole new window of
experimental and theoretical
possibilities opens!

It fits very well into the SM

But is the SM really correctly
describing EWSB? Need very
precise model independent
confirmation

Why is that so important?

Up to 2011, we directly
studied only half of the
EW SM Lagrangian!
The masses of the particles
shape our universe!

e.g. Bohr radius of the Hydrogen:

a0 =
~

mecα

No atoms without fundamental mass!
At least not as we know them . . .
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Reminder: A bit of Theory on the Higgs

Supersymmetry

Even if we have found the Higgs, we still have a problem . . .

m2
h ∼ Λ2

in the presence of gravity:
natural

mh = Λ = MPlanck ≈ 1019 GeV

Finetuning at MPlanck :

m2
h,obs = m2

h,bare+(fine−tuned difference of couplings ≈ M−2
Planck)×M2

Planck

If the new particle is the Higgs:
mh ≈ 126 GeV
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Reminder: A bit of Theory on the Higgs

Supersymmetry

Even if we have found the Higgs, we still have a problem . . .

only SM: m2
h ∼ Λ2

SUSY: mh ∼ m lnM2
SUSY /µ

2

If the new particle is the Higgs:
mh ≈ 126 GeV

To prevent quadratic divergencies:
Introduce shadow world:
One SUSY partner for each SM d.o.f.

Nice addition for free: If R-parity
conserved, automatically the Lightest
SUSY Particle (LSP) is a stable DM
candidate

But: Where are all those states?
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Reminder: A bit of Theory on the Higgs

Supersymmetry

Even if we have found the Higgs, we still have a problem . . .

In any case: mHlike < 1TeV
mSUSY ≤ O(TeV)

⇒ Terascala

If the new particle is the Higgs:
mh ≈ 126 GeV

To prevent quadratic divergencies:
Introduce shadow world:
One SUSY partner for each SM d.o.f.

Nice addition for free: If R-parity
conserved, automatically the Lightest
SUSY Particle (LSP) is a stable DM
candidate

But: Where are all those states?

SUSY breaking introduces a lot of
additional parameters
Understand model: Measure
parameters!
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Reminder: A bit of Theory on the Higgs

Why try (trust?) SUSY?
Wim de Boer et al. (1991):

”
Prediction“ of sin2 θW :

sin2 θSUSYW = 0.2335(17), sin2 θexpW = 0.2315(02)
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Reminder: A bit of Theory on the Higgs

Explaining the Higgs Potential

Naturally include V (Φ) = −µ2|Φ|2 + λ|Φ|4 through RGE running for
large mt

Example from arXiv:hep-ph/0511006v2
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Reminder: A bit of Theory on the Higgs

A Warning: Apparent Finetuning
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Reminder: A bit of Theory on the Higgs

Putting it all Together

Perform a global fit to all measurements to get the most precise
indirect measurement of mh:

160

180

200

10 10
2

10
3

mH  [GeV]

m
t  

[G
eV

]

Excluded

High Q2 except mt

68% CL

mt (Tevatron)

March 2012

From the fit:
mh < 155GeV @ 95% CL

What’s the yellow bar?

P. Bechtle: Higgs Terascale Intro School 20.03.2014 27



Reminder: A bit of Theory on the Higgs

Higgs Production Mechanisms at Hadron Colliders

This part: Some content thanks to A. Juste
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This part: Some content thanks to A. Juste
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Reminder: A bit of Theory on the Higgs

Higgs Decays

Blue: Tevatron

Red: LHC

bb̄ final state cannot be
effectively triggered and
tagged at the LHC
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Statistics for Higgs Searches

The Task
Statistics can be used for very many purposes
I guess here we are most concerned about

Finding or excluding a signal
Determining uncertainties
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Statistics for Higgs Searches

The Task
Statistics can be used for very many purposes
I guess here we are most concerned about

Finding or excluding a signal
Determining uncertainties
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Statistics for Higgs Searches

The Definition of the Probability

For most of the talk: Define Probability P of X as

P(X ) = N(X )/N for N → ∞

Examples: coins, dice, cards

For continuous x extend to Probability Density

P(x to x + dx) = p(x)dx

p(x) is the probability density function (pdf)

Examples:

Measuring continuous quantities (p(x) often Gaussian, Poisson, . . . )
Counting rates
Physical Quantities: Parton momentum fractions (proton pdfs) . . .

Alternative: Define Probability P(X ) as “degree of belief that X is
true”
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Statistics for Higgs Searches

The Likelihood

Probability distribution of random variable x often depends on some
parameter a

Joint function p(x , a):

Considered as p(x)|a this is the pdf.
Normalised:

∫

p(x)dx = 1
Considered as p(a)|x this is the Likelihood L(a) (or L(a))
Not “likelihood of a” but “likelihood that a would give x”
Not normalised. Indeed, must never be integrated.

This is going to be one of the central concepts/quantities for the rest
of the talk

If we want to know a parameter a, we are looking for the point where
the likelihood that a would predict the data x is maximized

If we want to test a Hypothesis H0 against another one (H1), we want
to compare their likelihoods

If we want to know what a cannot be, we want to know where L(a)|x
is small
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Statistics for Higgs Searches

Frequentist Reasoning

It’s pretty simple, I think:

Probability of an event is the relative frequency of its occurrence
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Probability of an event is the relative frequency of its occurrence

Need something which (at least in a simulation) can in principle
repeated indefinitely, otherwise there exists no probability
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Statistics for Higgs Searches

Frequentist Reasoning

It’s pretty simple, I think:

Probability of an event is the relative frequency of its occurrence

Need something which (at least in a simulation) can in principle
repeated indefinitely, otherwise there exists no probability

Since the universe can’t be repeated (we don’t know how to simulate
its genesis before the big bang, therefore the parameters of the
Universe are not random variables): there exists no probability density
in theory/parameter space
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Statistics for Higgs Searches

Frequentist Reasoning

It’s pretty simple, I think:

Probability of an event is the relative frequency of its occurrence

Need something which (at least in a simulation) can in principle
repeated indefinitely, otherwise there exists no probability

Since the universe can’t be repeated (we don’t know how to simulate
its genesis before the big bang, therefore the parameters of the
Universe are not random variables): there exists no probability density
in theory/parameter space

Therefore, the only statements we can make are:
If theory H is true (which we will never know), then the probability of
the observed outcome D of our experiment P(D|H) is . . .
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Statistics for Higgs Searches

Frequentist Reasoning: Examples for interpeting
physics results

Can’t say
“mt has a 68% probability of lying between 171 and 175 GeV”

Have to say “The statement ‘mt lies between 171 and 175 GeV’ has a
68% probability of being true”

Be aware:

In this context, a certain value of mt has no probability. It is either true
or false.
But the interval [171, 175] depends on the data and does fluctuate. If
you repeat the experiment, you will get different intervals each time, and
68% of them should cover the invariant true value.

if you always say a value lies within its error bars, you will be right
68% of the time

Say “mt lies between 171 and 175 GeV” with 68% Confidence. Or 169
to 177 with 95% confidence.

That is the Confidence Level CL
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Statistics for Higgs Searches

Do we see a Higgs mass peak? Use LEP for
simplcity

Are there many of these candidates?
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Statistics for Higgs Searches

The Neyman Interval

Let’s neglect systematics
for the time being . . .

Use Poisson-Distribution
p(n;λ) = e−λλn/n!

For any true λ the
probability that (n|λ) is
within the belt is 68%
(or more) by construction

For any n, [λ−, λ+]
covers the true λ at 68%
confidence

Only integrated over n,
not over λ!

Technique technically works for every CL, and single or double sided
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Statistics for Higgs Searches

Getting the most out of the availale events?

If hypothesis exists with d≈ s+b on a significant level: Higgs found

If not: Calculate, how improbable d is under a certain hypothesis s:
→ exclusion

First example: Add all s, b, d of all channels (Counting Experiment)

If s 6=0 only in one channel: this degrades sensitivity

Poisson-distributions for s=4,b=2
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Not the most sensitive method . . .
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Statistics for Higgs Searches

Avoiding a big problem?

Observe d = 5 events. Expected background b of 0.9 events
Data d = signal s + background b

Say with 68% confidence: [2.84, 8.38] covers s + b

So say with 68% confidence: [1.94, 7.48] covers s
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Statistics for Higgs Searches

Avoiding a big problem?

Observe d = 5 events. Expected background b of 0.9 events
Data d = signal s + background b

Say with 68% confidence: [2.84, 8.38] covers s + b

So say with 68% confidence: [1.94, 7.48] covers s

Suppose expected background 10.9 events?
“We say at 68% confidence that [−8.06,−2.52] covers s with 68% CL”

This is technically correct. We are allowed to be wrong 32% of the
times
While it is mathematically correct, it makes no sense physically

We know that the background happens to have a downward
fluctuation. How can we incorporate that knowledge?

We assume here that the background is calculated correctly
Deal with systematics later using nuisance parameters
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Statistics for Higgs Searches

A simple choice of a better test statistics Q

For optimal sensitivity, do just
not add the total channel
contents
but use the information of full
(mass) distributions

Define the test statistics Q as a
likelihood ratio
Q =

∏

i Pdi (si + bi)/Pdi (bi )

Define 1− CLb: Probability of
a b-experiment to give a less
background like result than the
observed one

Define CLs+b: Probability of a
s+b-experiment to give a more
background like result than the
observed one

Conservative limit:
CLs = CLs+b/CLb
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Statistics for Higgs Searches

The Likelihood Ratio: Neyman-Pearson-Lemma

We are performing a hypothesis test between two hypotheses
H0: θ = θ0 and H1: θ = θ1

the likelihood-ratio test which rejects H0 in favour of H1 when the test
statistics

Q(d) =
L(d |θ0)
L(d |θ1)

≤ η

with
P(Q(d) ≤ η | H0) = α

is the most powerful test of size α

What does that mean? And what are H0 and H1?
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Statistics for Higgs Searches

The Likelihood Ratio: Neyman-Pearson-Lemma

We are performing a hypothesis test between two hypotheses
H0: θ = θ0 and H1: θ = θ1

the likelihood-ratio test which rejects H0 in favour of H1 when the test
statistics

Q(d) =
L(d |θ0)
L(d |θ1)

≤ η

with
P(Q(d) ≤ η | H0) = α

is the most powerful test of size α

What does that mean? And what are H0 and H1?

We want α (“Type I” error) very small

We want the power

P(rejectH0|H0 is false) = β

to be as large as possible. 1− β is the “Type II” error.
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Statistics for Higgs Searches

The Likelihood Ratio: Neyman-Pearson-Lemma
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Statistics for Higgs Searches

Is there a Significant Excess?
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outcome to be caused by a
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5%

No excess above 3σ

Be aware of the ’look-elsewhere’
effect!
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Statistics for Higgs Searches

No Significant Excess: What’s the Limit?
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CLs is a measure of how
signal-like the outcome of an
experiment is. If CLs is small, it
is very unlikely that there is a
signal. Hence, a 95% CL
corresponds to CLs = 0.05

Final word from LEP on the SM
Higgs:

mh > 114.4GeV
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Statistics for Higgs Searches

Developments since LEP: Profile Likelihood

Already at LEP: The important thing is to split the the statistics in bins with high
si/bi and low si/bi

New: Introduce signal strength scaling parameter µ

Assume you measure di and try to explain it with µsi + bi as assumed expectation
values

In addition, measure mk background bins and try to explain with uk(~θ) as
expectation value

Significance test is based on profile likelihood test statistics:

See how this is similar to a fit?
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Statistics for Higgs Searches

The Profile Likelihood Technique in a fit
In a fit to measurements ~x , you vary the parameters ~a and either
maximize the Likelihood lnL(~x ;~a) (or minimize the χ2)

In special cases:

−2 lnL = χ2 = (~x − ~̄x(~a))TC−1(~x − ~̄x(~a))
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Statistics for Higgs Searches

The Profile Likelihood Technique in a fit
In a fit to measurements ~x , you vary the parameters ~a and either
maximize the Likelihood lnL(~x ;~a) (or minimize the χ2)
In special cases: (and no correlations)

−2 lnL = χ2 =
∑

i

(xi − x̄i (~a))
2

σ2i
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Statistics for Higgs Searches

The Profile Likelihood Technique in a fit

In the above fit, the uncertainty on the number of signal events seems
to be larger than the poisson uncertainty

√
N . Why?
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Statistics for Higgs Searches

The Profile Likelihood Technique in a fit

In the above fit, the uncertainty on the number of signal events seems
to be larger than the poisson uncertainty

√
N . Why?

Obviously that is because there is an uncertainty on the background
model. Let’s fix everything apart from NSig:

 / ndf 2χ  69.83 / 55
Prob   0.08596
nsig      10.27± 32.33 
mass      0.7± 125.7 
width     0.578± 1.825 
backg1    0.066± 7.917 
backg2    0.00053± -0.02012 
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 / ndf 2χ  69.83 / 59

Prob   0.1581

nsig      8.69± 32.33 

Toy Higgs mass distribution
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Statistics for Higgs Searches

The Profile Likelihood Technique in a fit

So what does “profiling” mean?
Study how the χ2 (or more precisely −2 lnL) behaves if one parameter
of interest is varied and if all other nuisance parameters are varied such
that they give the lowest possible −2 lnL for each given parameter of
interest
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Statistics for Higgs Searches

The Profile Likelihood Technique in a fit

The test statistics chosen at LHC for the exclusion of a given signal
hypothesis with strength µ is

λ(µ) =
L(d ;µ,

ˆ̂
~θ)

L(d ; µ̂, ~̂θ)
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Statistics for Higgs Searches

The Profile Likelihood Technique in a fit

The test statistics chosen at LHC for the exclusion of a given signal
hypothesis with strength µ is

λ(µ) =
L(d ;µ,

ˆ̂
~θ)

L(d ; µ̂, ~̂θ)
Let’s rewrite that:

−2 lnλ(µ) = −2 lnL(d ;µ,
ˆ̂
~θ) + 2 lnL(d ; µ̂, ~̂θ)

that looks mightily familiar to the fit. There, we plotted

−2∆ lnL ≈ ∆χ2 = χ2(µ)− χ2
min
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The Profile Likelihood Technique in a fit

The test statistics chosen at LHC for the exclusion of a given signal
hypothesis with strength µ is

λ(µ) =
L(d ;µ,

ˆ̂
~θ)

L(d ; µ̂, ~̂θ)
Let’s rewrite that:

−2 lnλ(µ) = −2 lnL(d ;µ,
ˆ̂
~θ) + 2 lnL(d ; µ̂, ~̂θ)

that looks mightily familiar to the fit. There, we plotted

−2∆ lnL ≈ ∆χ2 = χ2(µ)− χ2
min

The choice of λ(µ) is optimal (Neyman-Pearson) for distinguishing the
hypothesis µ from what is observed (µ̂). I.e. it is optimal for excluding
ranges of µ.
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Statistics for Higgs Searches

The Profile Likelihood Technique in a fit

The test statistics chosen at LHC for the exclusion of a given signal
hypothesis with strength µ is

λ(µ) =
L(d ;µ,

ˆ̂
~θ)

L(d ; µ̂, ~̂θ)
Let’s rewrite that:

−2 lnλ(µ) = −2 lnL(d ;µ,
ˆ̂
~θ) + 2 lnL(d ; µ̂, ~̂θ)

that looks mightily familiar to the fit. There, we plotted

−2∆ lnL ≈ ∆χ2 = χ2(µ)− χ2
min

The choice of λ(µ) is optimal (Neyman-Pearson) for distinguishing the
hypothesis µ from what is observed (µ̂). I.e. it is optimal for excluding
ranges of µ.
Example: If we exclude µ = 0: Exclude that there is no Higgs
If we exclude µ = 1: Exclude that there is a SM Higgs
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The Profile Likelihood Technique in a fit

We can do this with every parameter . . . here it’s the mass:
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Statistics for Higgs Searches

The Profile Likelihood Technique in a fit

So fitting the nuisance parameters is a great thing because we
automatically include our systematics (i.e. the uncertainty of the
background description) into the limit or fit result.
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The Profile Likelihood Technique in a fit

So fitting the nuisance parameters is a great thing because we
automatically include our systematics (i.e. the uncertainty of the
background description) into the limit or fit result.
In addition, it can be (depends on the experimental situation) an
elegant way of determining the background in the first place:
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Statistics for Higgs Searches

The Profile Likelihood Technique in a fit
So how do we know the uncertainty of our measurements?
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The Profile Likelihood Technique in a fit
So how do we know the uncertainty of our measurements?

Either we just read it off at ∆χ2 = 1 (or ∆ lnL = 1/2)
If we know that the errors are gaussian, and the relation between all
parameters and all observables is linear
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The Profile Likelihood Technique in a fit
So how do we know the uncertainty of our measurements?

Either we just read it off at ∆χ2 = 1 (or ∆ lnL = 1/2)
If we know that the errors are gaussian, and the relation between all
parameters and all observables is linear

Or we throw toys

 / ndf 2χ  903.4 / 35
Prob       0
nEvents   88.7±  3935 
mean      0.36± 37.36 

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

140

160

180

200

toyHistogramNSig
 / ndf 2χ  190.7 / 34

Prob   1.058e-23
Constant  5.0± 206.5 
Mean      0.24± 38.25 
Sigma     0.15± 10.37 

 / ndf 2χ  190.7 / 34
Prob   1.058e-23
Constant  5.0± 206.5 
Mean      0.24± 38.25 
Sigma     0.15± 10.37 

toyHistogramNSig

P. Bechtle: Higgs Terascale Intro School 20.03.2014 52



Statistics for Higgs Searches

The Profile Likelihood Technique in a fit
So how do we know the uncertainty of our measurements?

Either we just read it off at ∆χ2 = 1 (or ∆ lnL = 1/2)
If we know that the errors are gaussian, and the relation between all
parameters and all observables is linear
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0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

toyHistogramNSig
 / ndf 2χ  903.4 / 35

Prob       0
nEvents   88.7±  3935 
mean      0.36± 37.36 

 / ndf 2χ  903.4 / 35
Prob       0
nEvents   88.7±  3935 
mean      0.36± 37.36 

toyHistogramNSig

P. Bechtle: Higgs Terascale Intro School 20.03.2014 52



Statistics for Higgs Searches

Developments since LEP
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Statistics for Higgs Searches

Limits at the LHC: Setting the CL

Try to reject the background hypothesis based on q0, independent of si

E.g. could get the following: if p0 small, reject SM! Found new physics!
But it doesn’t tell us whether we found the SM Higgs. We might have found
something else!

To get a hint whether a new observation could be the SM Higgs, µ̂ must be
compatible with 1
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Statistics for Higgs Searches

Limits at the LHC: How to control θ

The big thing since LEP: Ged rid of partly bayesian techniques by
fitting the systematic uncertainties to the data during limit setting at
each toy MC
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Searches at the LHC

1 Introduction and Motivation

2 Reminder: A bit of Theory on the Higgs

3 Statistics for Higgs Searches

4 Searches at the LHC
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6 (Very short part on) BSM Higgs at the LHC

7 Outlook
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Searches at the LHC

The ATLAS Experiment

ATLAS and CMS: First direct experimental access to the Terascale

Diameter 25 m
Length 46 m
Weight 7000 t

≈ 100 Million readout channels

≈ 3000 km cables
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Searches at the LHC

Very quick summary of CMS and ATLAS

In this section some content from A. Korytov
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Searches at the LHC

Impressive Luminosity at LHC

Around intL = 3 fb−1 per experiment on tape, Lpeak5× 1033
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Searches at the LHC

The most sensitive search at very low masses

Inclusive production

Two isolated photons

Best ∆m ≈ 1%

Entirely data-driven analysis,
use sidebands

Background from real ’SM’
di-photons and from fakes (e or
π with missing tracks)
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Searches at the LHC

Different classes for h → γγ
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Searches at the LHC

h → γγ Results

MC just for illustration, not used

Very good statistics already acquired

Some interesting spikes . . . but can we have so many Higgses?
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Searches at the LHC

h → γγ Results

vspace*-3mm

Set limit around 3 times the SM cross section times BR

Two small spikes at 113 and 120 compatible with Higgs and no Higgs

Spike at 140 much too big for SM Higgs!

Beware of the Look Elsewhere Effect!
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Searches at the LHC

Very wide sensitivity: h → WW → ℓνℓ̄ν̄

Covers big region in mh

mass resolution only ∆m ≈ 20%

Trigger on two isolated leptons

Require Emiss
T , small ∆φ, small ml l

Use transverse mass
mT =

√

(2pℓℓ
T Emiss

T (1− cos θ))

Split up in different regions accoring
to njets, lepton flavour, due to
different backgrounds

Backgrounds: tt̄, W+jets, WZ ,WW ,
Drell-Yan
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Searches at the LHC

h → WW Properties

Remarkable agreement cut by cut

Would have seen a 160 GeV SM Higgs since long!
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Searches at the LHC

h → WW Properties

P. Bechtle: Higgs Terascale Intro School 20.03.2014 66



Searches at the LHC

Very good mass res.: h → ZZ → 4ℓ

Inclusive Producton

4 isolated leptons 4e, 4µ, 2e2µ

no impact parameter

final discriminant: m4ℓ

∆m ≈ 1%

ZZ and tt̄,Z+jets backgrounds

Also look at 2ℓ2ν
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Searches at the LHC

Very good data/bkg agreement in h → ZZ → 4ℓ

21 obs, 21.2 expected

Note: Low background and
very good ∆m: Very single
candidate will make big
impact on limit/discovery!

Therefore, observed limits
still strongly changing with
each update
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(Precision) Measurements at the LHC

1 Introduction and Motivation
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(Precision) Measurements at the LHC

General Features of Higgs Production

One new particle, often a clearly reconstructable resonance
Production mode not easy to isolate, but Higgs decays can be
disentangled very clearly
Nature couldn’t have been more kind than putting mH ≈ 125 GeV!
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(Precision) Measurements at the LHC

Controlling Higgs Searches
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EM scale from Z → e+e−

Energy scale known
to 0.3% – 0.45%

ZZ → 4ℓ, γγ seem straightforward, but a lot of challenging details!

Fermionic final states still very challenging due to high backgrounds and
coarser mass resolution
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(Precision) Measurements at the LHC

Is the New Particle actually a JP = 0+ Boson?
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Example of observable from H → γγ. Look at | cos θ∗|, decay angle
distribution in the Collins-Soper frame
Exclude JP = 2+ at > 99.9%CL independent of qq̄ fraction in the
production of the J = 2 particle
Exclude JP = 0− at 99.6%CL based on H → ZZ (∗) → 4ℓ
Assume JP = 0+ hypothesis for all following measurements

ATLAS-CONF-2013-040, ATLAS-CONF-2013-029, ATLAS-CONF-2013-031,

ATLAS-CONF-2013-013
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(Precision) Measurements at the LHC

Higgs Peaks in H → ZZ and H → γγ
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µZZ→4ℓ = 1.7 ± 0.5(stat + syst)

mHZZ→4ℓ
= 124.3 ± 0.6(stat)± 0.4(syst)

local p0 < 10−10 (> 6σ)

ATLAS-CONF-2013-012, ATLAS-CONF-2013-013
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(Precision) Measurements at the LHC

Mass Consistency in the ZZ and γγ Channels
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Measure mass using Profile Likelihood Ratio

Λ(mH) = L(mH ,
ˆ̂θ)/L(m̂H , θ̂)

put all systematics and parametric uncertainties in θ (µ4l , µγγ ,theo,exp.syst.)

mH = 125.5± 0.2(stat)+0.5
−0.6(syst) GeV

Use mH ,∆mH for parametrization and flat E scale profile:

P(∆mH = 0) = 8%

ATLAS-CONF-2013-014
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(Precision) Measurements at the LHC

Higgs Coupling Measurements: Z vs. W
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Overview over the coupling measurements: Fermionic channels not yet very
significant, bosonic channels a bit high, but consistent with SM

µ = 1.30± 0.13(stat) ± 0.14(syst), P(µi = 1) = 8%

Fundamental prediction of QFD (Custodial Symmetry):

ρZZ/WW =
B(H → ZZ )

B(H → WW )
× BSM (H → WW )

BSM(H → ZZ )
= 1

exp.result : ρZZ/WW = 1.6+0.8
−0.5

ATLAS-CONF-2013-034
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(Precision) Measurements at the LHC

Higgs Coupling Measurements: f vs. V (I)
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Separate vector boson couplings from fermion couplings, assuming NWA

Sensitivity to both even within H → WW ,ZZ , γγ:
Direct couplings HZZ ,HWW and in loops Htt

µγγ ∝ σ(gg → H)B(H → γγ) = (σSM(gg → H)κ2
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or µVBF+VH/µggH+tt̄H with the same final state each, incl. all final states

P(µVBF/µggH+tt̄H = 0) = 0.09%(3.1σ) Evidence for VBF!

ATLAS-CONF-2013-034
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(Precision) Measurements at the LHC

Higgs Coupling Measurements: f vs. V (II)

Signal strength
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This works even when only using H → γγ

MVA based selection of events with 2 (forward) jets

VBF purity 74% (initial SM σgg→H = 19.5 pb−1/σVBF = 1.6 pb−1)

VH enriched samples using
ETmiss significance, inclusive lepton, W ,Z → jj mass

Then vary µggH , µVBF and µVH individually in

Λ(µggH , µVBF , µVH) =
L(µggH , µVBF , µVH ,

ˆ̂θ)

L(µ̂ggH , µ̂VBF , µ̂VH , θ̂)
ATLAS-CONF-2013-012
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(Precision) Measurements at the LHC

Searching for Invisible Higgs Decays in ZH → ℓℓ inv
Extremely important, since total width of the Higgs
cannot be directly measured at the LHC for narrow
ΓH < O(0.5) GeV

Select events with

2 SFOS leptons pT > 20GeV
overlap ∆φ(ETmiss , ~pTmiss) < 0.2, large
∆φ(~pZ ,ETmiss) > 2.6
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(Precision) Measurements at the LHC

Searching for Invisible Higgs Decays in ZH → ℓℓ inv
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No significant deviation from the SM found

At SM production strength: B(H → inv .) < 0.65(0.84)@ 95%CL

For mH = 125.5 GeV: Result also presented in terms of
PL ratio −2 ln Λ ≈ χ2. Fully model independent!
Can directly be used in a (global) fit
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(Precision) Measurements at the LHC

Does anything show a clear hint for New Physics?
from arxiv:1403:1582
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(Precision) Measurements at the LHC

So do we already know its the SM Higgs?

from arxiv:1403:1582

κ2H,limit = 40 (10) → κ ≤ 2.51 (1.78) and B(h → NP) ≤ 84% (68%)
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(Precision) Measurements at the LHC
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(Very short part on) BSM Higgs at the LHC

1 Introduction and Motivation

2 Reminder: A bit of Theory on the Higgs

3 Statistics for Higgs Searches

4 Searches at the LHC

5 (Precision) Measurements at the LHC

6 (Very short part on) BSM Higgs at the LHC

7 Outlook
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(Very short part on) BSM Higgs at the LHC

The most important Channel for BSM Higgs

Let’s just accept for the time
being that e.g. in SUSY we
have extended Higgs sectors,
e.g. h,A,H,H±

E.g. in SUSY: High
tanβ = v2/v1 means much
increased couplingof A to down
type fermions (b, τ)

can have significantly increased
σ × BR

Some content in this section from M. Schumacher
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(Very short part on) BSM Higgs at the LHC

φ → τ+τ− → eµ

Lots of background in all searches

Trigger on leptons, Good Lepton ID crucial

final discriminant: meff
ττ = pτ+ + pτ− + pmiss
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(Very short part on) BSM Higgs at the LHC

φ → τ+τ− → ℓhad

Lots of background in all searches. Trigger on one lepton

τhad performance: ǫ ≈ 60% for jet rejection of 20

Cut against W → τν, ℓν using mT
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(Very short part on) BSM Higgs at the LHC

The Missing Mass Calculator
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(Very short part on) BSM Higgs at the LHC

Checking the Simulation: Embedding
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(Very short part on) BSM Higgs at the LHC

Checking the Simulation: Embedding
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(Very short part on) BSM Higgs at the LHC

The Result in terms of Histograms
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(Very short part on) BSM Higgs at the LHC

The Result in terms of Model Independent Limits

Slight difference in production modes gg → φX and gg → bb̄X → bb̄φX

Due to different efficiencies and mass resolutions
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(Very short part on) BSM Higgs at the LHC

The Result in terms of the MSSM
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(Very short part on) BSM Higgs at the LHC

Example: MSSM benchmark mmod+
h scenario

Carena, Heinemeyer, St̊al, Wagner, Weiglein ’13, [arXiv:1302.7033]
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( + HiggsBounds LEP χ2 extension) χ2/ndf = 70.6/66
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Outlook

The ILC Machine

The ILC is the most advanced future e+e− collider proposal

Polarized e+(30%)e−(80%)

Superconducting RF technology

High luminosity from√
s = 250 GeV to 500 GeV,

expandabe to 1 TeV

About 31 km site length

Proven technology

Facilities and tests (final focus,
damping rings, positron polarization,
RF) exist or under construction
(XFEL)

Industrialization underway
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Outlook

The Detector Concepts ILD and SiD

ILD

ILD tracking material budget (incl.

cabling, cooling, support)

ILD and SiD concepts optimized for the particle flow concept –
imaging calorimetry, coil outside HCAL, large B field (3.5 − 5 T)
Detailed engineering and R&D going on for every component – lots of
test beam activity to test components and verify full sim
Detector baseline Documents (DBD) going to be public soon

P. Bechtle: Higgs Terascale Intro School 20.03.2014 96



Outlook

Taking Backgrounds fully into account

tt̄ event with 150 BX background overlayed

Never had such advanced and controlled full simulation for a new
project at such an early state!

Need high B > 3.5 T to control beam backgrounds

P. Bechtle: Higgs Terascale Intro School 20.03.2014 97



Outlook

Taking Backgrounds fully into account

same event after microcurler removal algorithm

Never had such advanced and controlled full simulation for a new
project at such an early state!

Need high B > 3.5 T to control beam backgrounds
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Outlook

Taking Backgrounds fully into account

result from track finding (hits attached to tracks) clean event

Never had such advanced and controlled full simulation for a new
project at such an early state!

Need high B > 3.5 T to control beam backgrounds
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Outlook

Observe the Higgs without looking at it

�

Z ∗

h

Z

e+

e−

X

X̄

µ+

µ−

Reconstruct the Higgs mass from the recoiling Z :

s = m2
h +m2

Z + 2((
√
s,~0)− pZ )pZ → mh =

√

s +m2
Z − 2EZ

√
s
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Outlook

Why we know that we missed something

Experimental Knowledge: The SM is incomplete!

In the SM, there are no particles with the correct properties for Dark
Matter
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Outlook
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Outlook

Why is the electromagnetic force of the tiny magnet stronger than the
gravity of all the earth combined?
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Outlook

A warning: Order without fundamental reason
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Backup Slides
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Introduction: QED

QED is a local abelian U(1) gauge symmetry

Using our knowledge about the Lagrangian, we construct the Lagrangian
which gives us the equation of motion of the Dirac equation
((i∂µγ

µ −m)ψ = 0):
Lfree = ψ̄(i∂/−m)ψ

using ∂/ = ∂µγ
µ.

Make the theory gauge invariant under local U(1) transformations:

ψ(x) → e iα(x)ψ(x)

What is the transformation behaviour of the free Lagrangian?
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ψ(x) → e iα(x)ψ(x)

What is the transformation behaviour of the free Lagrangian?

Lfree → Lfree − ψ̄γµψ(∂
µα(x))

That’s not invariant!
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Introduction: QED

QED is a local abelian U(1) gauge symmetry

Using our knowledge about the Lagrangian, we construct the Lagrangian
which gives us the equation of motion of the Dirac equation
((i∂µγ

µ −m)ψ = 0):
Lfree = ψ̄(i∂/−m)ψ

using ∂/ = ∂µγ
µ.

Make the theory gauge invariant under local U(1) transformations:

ψ(x) → e iα(x)ψ(x)

What is the transformation behaviour of the free Lagrangian?

Lfree → Lfree − ψ̄γµψ(∂
µα(x))

That’s not invariant!
But luckily it’s also not QED . . .
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Introduction: QED
In order to save QED under the transformation U(x) = e−1α(x), add a
gauge field obeying:

Aµ(x) → U−1AµU +
1

q
U−1∂µU = Aµ(x)−

1

q
∂µα(x)

A miracle has occured: we introduced not only a gauge field, but also a
charge q. Also, we would have needed the photon Aµ anyway . . .

Now modify the derivative:

∂µ → ∂µ + iqAµ(x) = Dµ

Let’s write L again with all possible Lorentz and gauge invariant terms:

L = −1

4
FµνF

µν + ψ̄(i∂/−m)ψ − qψ̄A/ψ

using
Fµν = ∂µAν − ∂νAµ
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Introduction: QED

Let’s check the transformational behaviour under local U(1) again:

L → L′ = −1

4
F ′
µνF

′µν + ψ̄′(i∂/−m)ψ′ − qψ̄′A/′ψ′

= −1

4
FµνF

µν + ψ̄(i∂/−m)ψ− ψ̄γµψ(∂µα(x))− qψ̄γµψA
µ+ ψ̄γµψ(∂

µα(x))

= L
with

F ′
µν = ∂µ(Aν −

1

q
∂να(x)) − ∂ν(Aµ − 1

q
∂να(x))

= Fµν − ∂µ
1

q
∂να(x) + ∂ν

1

q
∂µα(x) = Fµν

QED including a gauge field is invariant under local U(1)!
Use this principle to construct the SM
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QFD: SU(2)L × U(1)Y Leptonic Sector

We choose the SU(2)L doublett

L =

(

ν
e

)

L

=
1

2
(1− γ5)

(

ν
e

)

,
I3 = +1

2 , Q = 0, Y = −1
I3 = −1

2 , Q = −1, Y = −1

and the singlett

R = eR =
1

2
(1 + γ5)e, I3 = 0, Q = −1, Y = −2

which transform SU(2)L according to

L → L′ = e iα
a τa

2 L, R → R ′ = R

and under U(1)Y according to

L → L′ = e iβ
a Y
2 L, R → R ′ = e iβ

a Y
2 R
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Success over almost the full SM range

Tremendous Success of
the SM

Tremendous success of
the experiments

Just one last piece
missing for the
completion of the SM
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Success over almost the full SM range

Tremendous Success of
the SM

Tremendous success of
the experiments

Just one last piece
missing for the
completion of the SM

It would look so
perfect, let;s hope we
find something else
instead!
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Most important Channel: h → bb̄

Associated production with W or Z allows to trigger on high-pT lepton from
leptonic gauge boson decays

Also Emiss
T from W → ℓν or Z → νν̄
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Most important Channel: h → bb̄
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h → bb̄ Control Regions
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Searching for a similar process
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Now let’s look at the Tevatron Limits
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Visualizing the Tevatron Limits
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Visualizing the Tevatron Limits
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Interplay of the Searches in the SM
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CMS and ATLAS SM Combinations
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CMS and ATLAS SM Combinations
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CMS Projections for 2011/12

Could cover the full SM range in 2012

At least in a LHC combination . . .
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