

How to use timing system parameter in applications

3rd Collaboration Meeting of the European XFEL, Hamburg, 7-9 April 2014

Olaf Hensler DESY – MCS WP28

- Outline
 - Old times
 - Many sampling frequencies and bigger buffer
 - More then one accelerator (beamline)

3

Good old TTF times ...

- 1 MHz sampling (1.00308 MHz)
- to at 700 after A6 trigger=> 1.Bunch at 700
- 1 MHz max. bunch rate
- Index of 1.Bunch at 700
- Increment of 1
- One flattop of 800
- Data block length always 2048 samples

Many frequencies

- Many different sampling frequencies
 - LLRF: 81.25 MHz internal and 9.027 MHz for displays
 - Diagnostics : 108.3333 MHz raw data
 - BLMs: 36,1111 MHz
 - XGM: 3.6 GS (12 bit)
- Much higher data rates
 - LLRF: 18432 samples (float) for ~2ms
 - Diagnostics : 90000 samples (16 bit) for ~800µs
- Higher bunch frequencies possible
 - 3 MHz at FLASH
 - 4.5 MHz at XFEL

Definitions

- Base frequency is 9.027777 MHz
- t₀ is at 700μs
- No bunches before to
- Time Domain (.TD) plots are now in μs
- Bunch pattern in 9 MHz steps integer type to be used as indexes
- BUNCH_FIRST_INDEX.* Structure (4 integer)
 - I1 : first bunch $0 = 700 \mu s$
 - l2: Duration
 - 13: Increment
 - 14: Number of Bunches
- PRE_BUNCH_TIME in µs before t₀
- 9MHZ_DIV from 9 MHz base frequency, could be 1,2,3,9
 to configure the display frequency
- SAMPLE.FLASH* structure for reduced data + PRE SAMPLES offset

BUNCH_FIRST_INDEX.1 Definition

6.2.14

Kay Rehlich

DESY MCS4

24

Get 1. bunch to $700\mu s$ (t₀)

Software needed to do it?

Steps to do:

- Define PRE_BUNCH_TIME
- Set SAMPLE_FREQ
- 3. View Raw Data Signal
- Adjust trigger delay at the timing card
- 5. Adjust SAMPLE.SHIFT (for different cable length)

PRE_SAMPLES = PRE_BUNCH_TIME * SAMPLE_FREQ

How to use timing system parameter in applications

More then one beamline

- Several flattops possible
- Start and duration of every flattop needed
- Properties for every beamline needed, CHARGE.FLASH1 and CHARGE.FLASH2
- Histories for every beamline needed, e.g. CHARGE.FLASH1.HIST or CHARGE.FLASH2.HIST
- Laser order may swap
- 1. Bunch maybe later then t₀ (700µs)
- Different bunch pattern possible

Colour code with jDDD

How to use timing system parameter in applications

How to use timing system parameter in applications Inside DAQ

Toroid Middle-layer Server provides:

- Desired Bunch Pattern
- Actual PulsePattern at every toroid location
- NUMBER_OF_BUNCHES.* for every beamline
- CHARGE and CHARGE.HIST for every beamline at every toroid
- Feeds the Shared Memory of the DAQ
- FLASH.DIAG/TOROID.ML

- Front-end software is ready
- High complexity is handled by DOOCS C++ libraries
- Under test at FLASH now
- Timing Parameter available inside DAQ Shared Memory
 - But not used yet in all DAQ server