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How we learn 

Figure 1: Paradigm for data analysis. Knowledge is gained from a comparison of model
predictions with data. Intermediate steps may be necessary, e.g., to model experimental
conditions.

the experiment many times under identical conditions. This is possible be-
cause the model is a mathematical construction which allows the calculation
(or simulation) of frequencies of outcomes. The predictions from the model
cannot usually be directly compared to experimental results. An additional
step is needed, either to modify the predictions to allow for the experimental
effects, or to undo the experimental effects from the data. Obviously, an ac-
curate description of the experimental effects is necessary to produce reliable
conclusions.

The function g(!y|!λ, M) gives the relative frequency of getting result !y
assuming the model M and parameters !λ. It should satisfy:

g(!y|!λ, M) ≥ 0 (1)

and
∑

i

g(yi|!λ, M) = 1 or

∫

g(!y|!λ, M) d!y = 1 (2)

depending on whether discrete or continuous values are measured. In the
following, we will write formulae for the continuous case; the modification
for the discrete case will be clear. Note that the normalization requirement
is often discarded when only relative probabilities of outcomes are needed.
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How we Learn 
We learn by comparing measured data with frequency distributions for 
possible results resulting from a theory, parameters, and a modeling of 
the experimental process. 
 
What we typically want to know: 
•  Is the theory reasonable ?  I.e., is the observed data a `likely result’ 
from this theory. 

•  If we have more than one potential explanation, then we want to be 
able to quantify which theory is more likely to be correct given the 
observations 

•  Assuming we have a reasonable theory, we want to estimate the most 
probable values of the parameters, and their uncertainties.  This includes 
setting limits (>< some value at XX% probability).  
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Logical Basis 

Model building and making predictions from models follows deductive 
reasoning: 
 
Given AèB  (major premise) 
Given BèC  (major premise) 
Then, given A you can conclude that C is true 
 
etc. 
 
Everything is clear, we can make frequency distributions of possible 
outcomes within the model, etc.  This is math, so it is correct … 
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Logical Basis 

However, in physics what we want to know is the validity of the model 
given the data.  i.e., logic of the form: 
 
Given AèC 
Measure C, what can we say about A ? 
 
Well, maybe A1èC, A2èC, … 
 
We now need inductive logic.  We can never say anything absolutely 
conclusive about A unless we can guarantee a complete set of 
alternatives Ai and only one of them can give outcome C.  This does not 
happen in science, so we can never say we found the true model. 
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Logical basis 

Instead of truth, we consider knowledge 
 
Knowledge = justified true belief 
 
Justification comes from the data. 
 
 
Start with some knowledge or maybe plain belief 
 
Do the experiment 
 
Data analysis gives updated knowledge.  Experimental results in line 
with model predictions give justification for believing our model.  
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Elements of Data Analysis 

Probability of the data (Likelihood) 
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P (D|�, M) = L(�|D)

P (n|�) =
e���n

n!
� fixed

L(�|n) =
e���n

n!
n fixed

e.g., Poisson process 

In a Bayesian analysis, also need the prior probability P0(�|M)

P (�|M, D) =
P (D|�, M)P0(�|M)

P (D|M)
Then use 

All that is 
used in 
frequentist 
or classical 
approach 

Z = P (D|M) =
�

d�P (D|�, M)P0(�|M) “evidence”  
often not needed 



Bayesians and Frequentists 
It is possible (Frequentism) to make statements of the kind: 
 
‘Assuming the model is correct, this result will occur in XX% of the 
experiments’ 
 
In the ‘classical’ approach, this is then converted to ‘assuming the model, 
the bounds [a,b] will contain the true value in XX% of experiments 
performed’ (confidence levels). Does not imply that the true value is in 
the range [a,b] with probability XX ! 
 
Only use deductive reasoning and the probability of the data assuming 
the model.  The inductive part of the reasoning is left out of the analysis 
– up to the user to decide what to believe.  Often proceed with a 
community consensus (e.g., 5σ tail for background only hypothesis) (but 
only when convenient, e.g., Higgs but not superluminal neutrinos). 
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Bayesians and Frequentists 

It is also possible (Bayesianism) to make statements of the kind: 
 
‘the degree-of-belief in model A is XX (between 0,1)’ 
 
Given the new data, the degree-of-belief is updated using the frequencies 
of possible outcomes in the context of the models  
 
Credible regions are then defined: with XX% credibility, the parameter is 
in the interval [a,b]. Note – very different from a CL. 
 
The inductive part of the reasoning is built into the analysis, and the 
connection between prior beliefs and posterior beliefs is made clear.  
 
Subjective, but the subjective element is made explicit. 
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Why isn’t everyone a Bayesian ? 
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G. D’Agostini, Probably a discovery: Bad mathematics means rough scientific communication, 
arXiv:1112.3620v2 [physics.data-an] 

Quoting a Discovery article:  
It is what is known as a ``three-
sigma event,” and this refers to the 
statistical certainty of a given result. 
In this case, this result has a 99.7 
percent chance of being correct (and 
a 0.3 percent chance of being 
wrong).” 
 

This is logical nonsense - confusion is very widespread ! 

1� P (D|H0) = P (H1|D)



Probability of the data 
The expected distribution (density) of the data assuming a model M and 
parameters     is written as                       where     is a possible realization 
of the data.  There is usually no unique definition of the ‘probability of 
the data.’  Different choices incorporate different information. 
 
Imagine we flip a coin 10 times, and get the following result: 
 
  
 

⇥� �x

 
   T H T H H T H T T H 

 
We now repeat the process with a different coin and get 
 

   T T T T T T T T T T 
 
 
Which outcome has higher probability ? 
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P (⇥x|⇥�, M)



Take a model where H, T are equally likely.  Then, 
 

 outcome 1  
And 

 outcome 2 

prob = (1/2)10

prob = (1/2)10

Something seem wrong with this result ?  This is because (in our head) 
we evaluate many probabilities at once.  The result above is the 
probability for any sequence of ten flips of a fair coin.  Given a fair coin, 
we could also calculate the chance of getting n times H: 

�
10
n

⇥ �
1
2

⇥10
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And we find the following result: 

n p
0 1·2�10

1 10·2�10

2 45·2�10

3 120·2�10

4 210 ·2�10

5 252 ·2�10

6 210 ·2�10

7 120 ·2�10

8 45 ·2�10

9 10 ·2�10

10 1 ·2�10

There are many more ways to get 5 H 
than 0, so this is why the first result 
somehow looks more probable, even 
if each sequence has exactly the same 
probability in the model. 
 
Maybe the model is wrong  and one 
coin is not fair ?  How would we test 
this ? 
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Exercise	
  –	
  think	
  up	
  two	
  more	
  possible	
  probabili+es	
  of	
  the	
  data	
  for	
  the	
  
heads	
  &	
  tails	
  experiment	
  



Summarizing	
  a	
  Distribu+on	
  
	
  
•  Mean	
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•  rms	
  

E[p] =
� 1

0
pP (p|N, r)dp � =

⇥
E[p2]� E[p]2



Summarizing	
  a	
  Distribu+on	
  
	
  
•  Median	
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•  Central	
  interval	
  

F (pmedian) = 0.5 F (plower) =
�

2
F (pupper) = 1� �

2



Summarizing	
  a	
  Distribu+on	
  

•  Most-­‐probable	
  value	
  (mode)	
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•  Shortest	
  interval(s)	
  
pmode = max

p
[P (p|r, N)] 1� � =

�

P (p|r,N)>C
P (p|r, N)dp



Example	
  –	
  mul+modal	
  distribu+on	
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Figure 8: Results from fits of model III to the data. Left: An example for the distribution
of y-values for a fixed value of x = 5.0. The shaded area is the smallest set of intervals
containing 68% of the probability. Right: The uncertainty band calculated using this
definition.

taken to be the same. The posterior probabilities are then calculated accord-
ing to Eq. (22). The results for the four models were 0.88, 7.6 ·10−6, 0.12 and
8.2 · 10−3, respectively. These values are very sensitive to the range allowed
for the parameter values in the model, and models with more parameters
are automatically disfavored. Making use of this probability requires a very
considered choice of the priors used for the models as well as the priors on
the individual parameters within a model.

7.2. Example: Poissonian Uncertainties

In this example, the data were generated assuming the expression in
Eq. (26) is the expectation value for a Poisson distribution in bin i. I.e.,
the number of events in the ith bin, ni, was simulated using a Poisson dis-
tributed number with mean f(xi). The same models were fitted to the data,
and the parameter ranges were those specified in Tab. 1. The data which
were fitted are shown in Fig. 9, together with the models evaluated using the
parameter values from the global mode of the fits.

28
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Exercise	
  –	
  compare	
  the	
  mode	
  &	
  smallest	
  68%	
  probability	
  interval;	
  the	
  
mean	
  and	
  rms;	
  and	
  the	
  median	
  and	
  central	
  68%	
  probability	
  interval	
  for	
  
the	
  func+on	
  

f(x) = 1� x 0  x  1



Poisson	
  Distribu+on	
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A Poisson distribution applies when we do not know the number of trials 
(it is a large number), but we know that there is a fixed probability of 
‘success’ per  trial, and the trials occur independently of each other. 
 
Alternatively – a continuous time process with a constant rate will 
produce a Poisson distributed number of events in a fixed time interval.   

High energy physics example: beams collide at a high frequency (10 
MHz, say), and the chance of a ‘good event’ is very small.  The resulting 
number of events in a fixed time will follow a Poisson distribution.  A 
single trial is one crossing of the beams. 
 
Nuclear physics example: a large sample of radioactive atoms will 
produce a Poisson distributed number of events in a fixed time interval 
(assuming a τ>>T) 



22	
  

The Poisson distribution can be derived from the Binomial distribution in 
the limit when N →∞ and p →0, but Np fixed and finite. Then  

Poisson	
  Distribu+on	
  

P (r|N, p)� P (n|�)

� = R · T or � = L · ⇥ or...

The expected number of events is calculated from a rate, or from a 
luminosity and cross section or some other way 
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Poisson	
  Distribu+on	
  -­‐	
  deriva+on	
  

N �⇥

N !
(N � n)!

= N · (N � 1) · ... · (N � n + 1) ⇥ Nn

�
1� �

N

⇥N�n
⇤

�
1� �

N

⇥N
⇤ e��

P (n|N, p) =
N !

n!(N � n)!
pn(1� p)N�n

P (n|N,
�

N
) =

N !
n!(N � n)!

�n

Nn

�
1� �

N

⇥N�n

P (n|�) =
e���n

n!
Poisson Distribution 



Poisson	
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24	
  

0
2
4
6
8
10
12
14
16
18

0

2

4

6

8

10

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9 Likelihood used in likelihood 

analysis 

Probability of 
the data used 
in confidence 
level setting 



 ν=0.1 ν=0.5 

ν=1.0 ν=2.0 

ν=5.0 ν=10. 

ν=20. ν=50. 

Notes: 
•  As ν increases, the 
distribution becomes more 
symmetric 
•  Approximately Gaussian for 
large ν 
•  Poisson formula is much 
easier to use that the Binomial 
formula. 

Poisson	
  Distribu+on-­‐cont.	
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€ 

P(n |ν) =
ν ne−ν

n!

r⇤ = b⌫c
r⇤ = d⌫e � 1

E[n] = ⌫

�2 = ⌫



Example	
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R. Aggarwal, A. Caldwell: Error bars for distributions of numbers of events 3

If P (o = 0|⇥) > �/2, then we take o1 = 0.
We define the set of observations which fall into the central 1� � probability interval2 as

OC
1�� = {o1, o1 + 1, ..., o2}

and we display these values of o. Di�erent colors can be used to represent di�erent 1 � � probability ranges. For
example, if we take ⇥ = 3.3̄, then we find the values given in Table 1. If we choose 1�� = 0.68, then our definitions
give

OC
0.68 = {2, 3, 4, 5}

whereas
OC

0.95 = {0, 1, 2, 3, 4, 5, 6, 7}
and

OC
0.999 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} .

Table 1. Values of o, the probability to observe such a value given ⇥ = 3.3̄ and the cumulative probability, rounded to four
decimal places. The fourth column gives the rank in terms of probability - i.e., the order in which this value of o is used in
calculating the smallest set OS

1��, and the last column gives the cumulative probability summed according to the rank.

o P (o|⇥) F (o|⇥) R FR(o|⇥)

0 0.0357 0.0357 7 0.9468
1 0.1189 0.1546 5 0.8431
2 0.1982 0.3528 2 0.4184
3 0.2202 0.5730 1 0.2202
4 0.1835 0.7565 3 0.6019
5 0.1223 0.8788 4 0.7242
6 0.0680 0.9468 6 0.9111
7 0.0324 0.9792 8 0.9792
8 0.0135 0.9927 9 0.9927
9 0.0050 0.9976 10 0.9976
10 0.0017 0.9993 11 0.9993
11 0.0005 0.9998 12 0.9998
12 0.0001 1.0000 13 1.0000

2. The second option for the probability interval is to use the smallest interval containing a given probability. In the
case of a unimodal continuous distribution, we can write the condition as

1� � =
� x2

x1

P (x)dx and P (x1) = P (x2) .

For our discrete case, the set making up the smallest interval containing probability at least 1��, OS
1��, is defined

by the following algorithm
(a) Start with OS

1�� = {o⇥}. If P (o⇥|⇥) ⇥ 1� �, then we are done. An example where this requirement is fulfilled
for 1� � = 0.68 is (⇥ = 0.001, o⇥ = 0,OS

0.68 = {0}).
(b) If P (o⇥|⇥) < 1��, then we need to add the next most probable number of observations, which in the unimodal

case is either o⇥ + 1 or o⇥ � 1. Assume that P (o⇥ + 1|⇥) > P (o⇥ � 1|⇥). Then, we would extend our set to
OS

1�� = {o⇥, o⇥ + 1} and check again whether P (OS
1��) ⇥ 1��. We would continue to add members to the set

OS
1�� until this condition is met, always taking the highest probability of the remaining possible observations.

In the special cases that two observations have exactly the same probability (when ⇥ takes on an integer value,
P (o = ⇥) = P (o = ⇥ � 1)), then both values should be taken in the set.

If we consider the example given in Table 1, then using the cumulative according to rank, FR, we find

OS
0.68 = {2, 3, 4, 5}

whereas
OS

0.95 = {0, 1, 2, 3, 4, 5, 6, 7}
2 Note that 1� � is the minimum probability covered and that the set generally covers a larger probability.

Example for ν=10/3 
rank 

Ordinal 
cumulative 
probability 

Cumulative 
probability 
according to 
rank 
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P (r = 0|N, p) > ↵/2! r1 = 0

P (r = N |N, p) > ↵/2! r2 = N

r1 = sup
r20,. . . ,N

{
rX

i=0

P (i|N, p)  ↵/2} + 1

r2 = inf
r20,. . . ,N

{
NX

i=r

P (i|N, p)  ↵/2}� 1

OC
1�↵ = {r1, r1 + 1, ..., r2}



Smallest	
  Interval	
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OS
1�↵ = {r⇤}

P (r⇤ + 1|N, p)
?
> P (r⇤ � 1|N, p)

OS
1�↵ = {r⇤, r⇤ + 1} OS

1�↵ = {r⇤, r⇤ � 1}

P (OS
1�↵|N, p)

?� 1� ↵

P (OS
1�↵|N, p)

?� 1� ↵
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R. Aggarwal, A. Caldwell: Error bars for distributions of numbers of events 3

If P (o = 0|⇥) > �/2, then we take o1 = 0.
We define the set of observations which fall into the central 1� � probability interval2 as

OC
1�� = {o1, o1 + 1, ..., o2}

and we display these values of o. Di�erent colors can be used to represent di�erent 1 � � probability ranges. For
example, if we take ⇥ = 3.3̄, then we find the values given in Table 1. If we choose 1�� = 0.68, then our definitions
give

OC
0.68 = {2, 3, 4, 5}

whereas
OC

0.95 = {0, 1, 2, 3, 4, 5, 6, 7}
and

OC
0.999 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} .

Table 1. Values of o, the probability to observe such a value given ⇥ = 3.3̄ and the cumulative probability, rounded to four
decimal places. The fourth column gives the rank in terms of probability - i.e., the order in which this value of o is used in
calculating the smallest set OS

1��, and the last column gives the cumulative probability summed according to the rank.

o P (o|⇥) F (o|⇥) R FR(o|⇥)

0 0.0357 0.0357 7 0.9468
1 0.1189 0.1546 5 0.8431
2 0.1982 0.3528 2 0.4184
3 0.2202 0.5730 1 0.2202
4 0.1835 0.7565 3 0.6019
5 0.1223 0.8788 4 0.7242
6 0.0680 0.9468 6 0.9111
7 0.0324 0.9792 8 0.9792
8 0.0135 0.9927 9 0.9927
9 0.0050 0.9976 10 0.9976
10 0.0017 0.9993 11 0.9993
11 0.0005 0.9998 12 0.9998
12 0.0001 1.0000 13 1.0000

2. The second option for the probability interval is to use the smallest interval containing a given probability. In the
case of a unimodal continuous distribution, we can write the condition as

1� � =
� x2

x1

P (x)dx and P (x1) = P (x2) .

For our discrete case, the set making up the smallest interval containing probability at least 1��, OS
1��, is defined

by the following algorithm
(a) Start with OS

1�� = {o⇥}. If P (o⇥|⇥) ⇥ 1� �, then we are done. An example where this requirement is fulfilled
for 1� � = 0.68 is (⇥ = 0.001, o⇥ = 0,OS

0.68 = {0}).
(b) If P (o⇥|⇥) < 1��, then we need to add the next most probable number of observations, which in the unimodal

case is either o⇥ + 1 or o⇥ � 1. Assume that P (o⇥ + 1|⇥) > P (o⇥ � 1|⇥). Then, we would extend our set to
OS

1�� = {o⇥, o⇥ + 1} and check again whether P (OS
1��) ⇥ 1��. We would continue to add members to the set

OS
1�� until this condition is met, always taking the highest probability of the remaining possible observations.

In the special cases that two observations have exactly the same probability (when ⇥ takes on an integer value,
P (o = ⇥) = P (o = ⇥ � 1)), then both values should be taken in the set.

If we consider the example given in Table 1, then using the cumulative according to rank, FR, we find

OS
0.68 = {2, 3, 4, 5}

whereas
OS

0.95 = {0, 1, 2, 3, 4, 5, 6, 7}
2 Note that 1� � is the minimum probability covered and that the set generally covers a larger probability.

What	
  is	
  the	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  central	
  interval;	
  smallest	
  interval	
  ?	
  1� ↵ = 0.9



Confidence	
  Interval	
  Calcula+on	
  

We	
  observe	
  x	
  events,	
  and	
  ask	
  which	
  values	
  of	
  ν	
  are	
  accepted	
  with	
  
confidence	
  level	
  1-­‐α.	
  	
  For	
  1-­‐	
  α=0.9,	
  central	
  intervals:	
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We often have to deal with a superposition of two Poisson processes – 
the signal distribution and the background distribution, which are 
indistinguishable in the experiment. Usually we know the background 
expectations and want to know the likelihood of a signal in addition. 
 
 
Example, the signal for large extra dimensions may be the observation of 
events where momentum balance is (apparently) strongly violated.  
However this can be mimicked by neutrinos, energy leakage from the 
detector, etc. 
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€ 

Use the subscripts B for background, s for signal, 
and assume n events are observed

P(n) = P(ns |ν s)P(n − ns |νB )
ns = 0

n

∑

         = e−(ν B +ν s ) ν s
nsνB

n−ns

ns!(n − ns)!ns = 0

n

∑

         = e−(ν B +ν s ) ν s + νB( )n

n!
n!

ns!(n − ns)!ns = 0

n

∑ ν s

ν s + νB

% 

& 
' 

( 

) 
* 

ns
νB

ν s + νB

% 

& 
' 

( 

) 
* 

n−ns

         = e−(ν B +ν s ) ν s + νB( )n

n!

Binomial formula with  

€ 

p =
ν s

ν s +νB

# 

$ 
% 

& 

' 
( 

=1 by normalization 
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Typical examples – counting experiments such as source activity, failure 
rates, cross sections,… 

This is our master formula.  Result in general will depend on choice of 
prior. 

P (�|n) =
P (n|�)P0(�)��

0 P (n|�)P0(�)d�
=

�ne��

n! P0(�)
��
0

�ne��

n! P0(�)d�



Poisson	
  -­‐	
  cont.	
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If we assume a flat prior starting at 0 and extending up to some 
maximum of ν much larger than n.  

� �max

0

�ne��

n!
d� � 1

n!

� ⇥

0
�ne��d� =

1
n!

n! = 1

P (�|n) =
�ne��

n! P0(�)
��
0

�ne��

n! P0(�)d�
=

�ne��

n!� �max

0
�ne��

n! d�

P (�|n) =
e���n

n!
⌫⇤ = n
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Comments: 

If you decide to quote the mode as your nominal result, you would use 
ν*=n.  For large enough n, the 68% probability region is then 
approximately    

Some examples  

n�
⇤

n⇥ n +
⇤

n
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The cumulative distribution function: 

F (�|n) =
⌅ �

0

�⇥ne���

n!
d�⇥

=
1
n!

�
��⇥ne���

|�0 + n

⌅ �

0
�⇥n�1e���d��

⇥

= 1� e��
n⇤

i=0

�i

i!
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First, no background, measure zero counts. 

P (�|n = 0) = e��

F (�|n = 0) = 1� e��

With flat prior assumption 
 
 
For a 95% upper limit 

0.95 = 1� e��

� ⇥ 3
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And now suppose we have background: 

€ 

µ = λ + ν, P(x | µ) =
e−µµx

x!

P(ν | x,λ) =

e−(λ+ν )(λ + ν )x
x!

% 
& 
' 

( 
) 
* P0(ν)

e−(λ+ν )(λ + ν)x
x!

% 
& 
' 

( 
) 
* P0(ν )dν

0

∞

∫
    

€ 

P(ν | x,λ) =
e−ν (λ + ν )x

x! λn

n!n= 0

x
∑

F(ν | x,λ) =1−
e−ν (λ + ν )n

n!n= 0

x
∑

λn

n!n= 0

x
∑

assuming a flat P0(ν) and 
integrating by parts. 
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Comment: 
For x=0, P(ν|x, λ)=e-ν .  It 
does not matter how much 
background you have, you 
get the same probability 
distribution for the signal.  
Source of much confusion 
& discussion (very 
different for Confidence 
Level calculation). 
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Imagine	
  two	
  measurements	
  are	
  performed	
  where	
  the	
  same	
  Poisson	
  
mean,	
  ν,	
  is	
  expected.	
  	
  The	
  measurements	
  yield	
  n1	
  and	
  n2	
  events.	
  	
  
Star+ng	
  with	
  a	
  flat	
  prior	
  for	
  the	
  Poisson	
  mean,	
  find	
  the	
  resul+ng	
  
posterior	
  pdf.	
  	
  	
  
	
  
	
  
How	
  does	
  it	
  compare	
  to	
  running	
  the	
  experiment	
  twice	
  as	
  long	
  
(expecta+on	
  2ν)	
  and	
  measuring	
  n1+n2	
  events	
  ?	
  
	
  
(you	
  will	
  not	
  have	
  enough	
  +me	
  now	
  for	
  these	
  calcula+ons	
  –	
  set	
  up	
  the	
  
formulas	
  and	
  work	
  them	
  out	
  when	
  you	
  have	
  +me)	
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Want	
  to	
  test	
  a	
  new	
  theory	
  –	
  Large	
  Extra	
  Dimensions.	
  	
  If	
  this	
  hypothesis	
  
is	
  correct,	
  we	
  expect	
  events	
  with	
  certain	
  characteris+cs	
  in	
  (let’s	
  say)	
  
proton-­‐proton	
  collisions.	
  	
  We	
  design	
  an	
  experiment	
  to	
  look	
  for	
  this	
  
process.	
  
	
  
There	
  will	
  also	
  be	
  indis+nguishable	
  events	
  from	
  ‘known’	
  physics.	
  	
  The	
  
analysis	
  has	
  been	
  designed	
  to	
  reduce	
  these,	
  but	
  there	
  will	
  be	
  some	
  
background	
  leh.	
  
	
  
Background	
  expecta+on:	
   � = �SM · L · aSM

⌫ = �LED · L · aLED

	
  
Signal	
  expecta+on:	
  
	
  

Have	
  a	
  nearly	
  infinite	
  number	
  of	
  collisions	
  of	
  protons	
  with	
  very	
  small	
  
probability	
  to	
  generate	
  an	
  event	
  per	
  bunch	
  crossing:	
  Poisson	
  process	
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Probabilis+c	
  model:	
  

P (nB |�) =
e���nB

nB !

P (nS |⌫) =
e�⌫⌫nS

nS !

P (n|�, ⌫) =
e�µµn

n!
µ = � + ⌫
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Compare	
  two	
  situa+ons:	
  	
  
1)  no	
  knowledge	
  on	
  the	
  background	
  

2)  Separate	
  data	
  help	
  us	
  constrain	
  the	
  background	
  

Suppose	
  we	
  measure	
  n=7	
  events,	
  what	
  can	
  we	
  say	
  ?	
  
	
  



N=7	
  Poisson	
  

44	
  

0
5

10
15

0
5

10
15

0
0.02
0.04
0.06
0.08
0.1
0.12
0.14



N=7	
  

45	
  

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0

5

10

15

0 5 10 15



With	
  Background	
  knowledge	
  

46	
  

P (�) =
1p

2⇡��

e
� 1

2
(���0)2

�2
�

Can	
  build	
  this	
  into	
  the	
  likelihood	
  (e.g.,	
  frequen+st	
  analysis)	
  or	
  call	
  it	
  
prior	
  knowledge	
  (either	
  way	
  for	
  Bayes)	
  

L(⌫, �) = P (N |⌫, �)P (�)

Note:	
  a	
  likelihood	
  is	
  not	
  a	
  probability	
  !	
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P (�) =
1p

2⇡��

e
� 1

2
(���0)2

�2
�

Can	
  build	
  this	
  into	
  the	
  likelihood	
  (Frequen+st	
  Analysis)	
  or	
  call	
  it	
  prior	
  
knowledge	
  (either	
  way	
  for	
  Bayes)	
  

P (⌫, �|N) =
P (N |⌫, �)P (�)P (⌫)R

P (N |⌫, �)P (�)P (⌫)d�d⌫

To	
  get	
  a	
  probability	
  distribu+on	
  for	
  the	
  physics	
  parameter,	
  we	
  
marginalize	
  

P (⌫|N) =
Z

P (⌫, �|N)d�
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That’s	
  it	
  
	
  

Enjoy	
  the	
  school	
  !	
  


