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How we Learn

We learn by comparing measured data with frequency distributions for
possible results resulting from a theory, parameters, and a modeling of
the experimental process.

What we typically want to know:

* [s the theory reasonable ? I.e., is the observed data a "likely result’
from this theory.

* [f we have more than one potential explanation, then we want to be
able to quantify which theory 1s more likely to be correct given the
observations

» Assuming we have a reasonable theory, we want to estimate the most
probable values of the parameters, and their uncertainties. This includes
setting limits (>< some value at XX% probability).



Logical Basis

Model building and making predictions from models follows deductive
reasoning:

Given A=»B (major premise)
Given B=C (major premise)

Then, given A you can conclude that C 1s true

etc.

Everything is clear, we can make frequency distributions of possible
outcomes within the model, etc. This 1s math, so 1t 1s correct ...



Logical Basis

However, in physics what we want to know 1s the validity of the model
given the data. 1.e., logic of the form:

Given A=>C
Measure C, what can we say about A ?

Well, maybe A,=>C, A,=>C, ...

We now need inductive logic. We can never say anything absolutely
conclusive about A unless we can guarantee a complete set of
alternatives A; and only one of them can give outcome C. This does not
happen 1n science, so we can never say we found the true model.



Logical basis

Instead of truth, we consider knowledge
Knowledge = justified true belief

Justification comes from the data.

Start with some knowledge or maybe plain belief
Do the experiment

Data analysis gives updated knowledge. Experimental results in line
with model predictions give justification for believing our model.



Elements of Data Analysis

Probability of the data (Likelihood) P(D|\, M) = L(A\|D)

==

—A\n .
e.g., Poisson process P(n|\) = e A A fixed | Allthatis
n! used 1n
_ frequentist
o= A\ or classical
L(Aln) = ol n fixed approach

In a Bayesian analysis, also need the prior probability Fo(A|M)
P(D|>. M) Po(AM)
P(D|M)

Thenuse P(AM,D) =

Z =P(D|M) = /d)\P(Dp\,M)PO()\\M) “evidence”
often not needed



Bayesians and Frequentists

It 1s possible (Frequentism) to make statements of the kind:

‘Assuming the model 1s correct, this result will occur in XX% of the
experiments’

In the ‘classical’ approach, this 1s then converted to ‘assuming the model,
the bounds [a,b] will contain the true value in XX% of experiments
performed’ (confidence levels). Does not imply that the true value 1s in
the range [a,b] with probability XX !

Only use deductive reasoning and the probability of the data assuming
the model. The inductive part of the reasoning is left out of the analysis
— up to the user to decide what to believe. Often proceed with a
community consensus (e.g., 5o tail for background only hypothesis) (but
only when convenient, e.g., Higgs but not superluminal neutrinos).



Bayesians and Frequentists
It 1s also possible (Bayesianism) to make statements of the kind:

‘the degree-of-belief in model A 1s XX (between 0,1)’

Given the new data, the degree-of-belief 1s updated using the frequencies
of possible outcomes 1n the context of the models

Credible regions are then defined: with XX% credibility, the parameter 1s
in the interval [a,b]. Note — very different from a CL.

The inductive part of the reasoning is built into the analysis, and the
connection between prior beliefs and posterior beliefs is made clear.

Subjective, but the subjective element is made explicit.
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Why 1sn’t everyone a Bayesian ?

G. D’ Agostini, Probably a discovery: Bad mathematics means rough scientific communication,
arXiv:1112.3620v2 [physics.data-an]
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Quoting a Discovery article:

It 1s what 1s known as a " "three-
sigma event,” and this refers to the
statistical certainty of a given result.
In this case, this result has a 99.7
percent chance of being correct (and
a 0.3 percent chance of being
wrong).”

| — P(D|Ho) = P(H;|D)

This 1s logical nonsense - confusion 1s very widespread !
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Probability of the data

The expected distribution (densﬂy) of the data assummg a model M and
parameters X is written as P(Z| >\ M) where Z is a possible realization
of the data. There 1s usually no unique definition of the ‘probability of
the data.” Different choices incorporate different information.

Imagine we flip a coin 10 times, and get the following result:

THTHHTHTTH
We now repeat the process with a different coin and get

TTTTTTTTTT

Which outcome has higher probability ?
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Take a model where H, T are equally likely. Then,

outcome 1 prob = (1/2)""

And
outcome 2 prob = (1/2)"

Something seem wrong with this result ? This 1s because (in our head)
we evaluate many probabilities at once. The result above is the
probability for any sequence of ten flips of a fair coin. Given a fair coin,

we could also calculate the chance of getting n times H:
10 1 10
n 2
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And we find the following result:

1 P

0 1.2—10

1 10-2—10 There are many more ways to get 5 H
2 45.9—10 than 0, so this is why the first result

3 120-2—10 somehow looks more probable, even
4 2102710 if each sequence has exactly the same
5 252 .21 probability in the model.

6 210 -2~ 10

7 120 2710 Maybe the model is wrong and one

8 45 -2—10 coin is not fair ? How would we test
9 10 -2—10 this ?

10 1.2—10
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Exercise — think up two more possible probabilities of the data for the
heads & tails experiment



Summarizing a Distribution

* rms

/O pP(IN,r)dp o = VER] — ElpP



Summarizing a Distribution

e Median e (Central interval

Q Q
F'(pmedian) = 0.5 F(Prower) = & F(Pupper) = 1 — 2
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Summarizing a Distribution

most-probable value (mode) « Shortest interval(s)

Pmode = max [P(pr, N)] 1 —q = / Pplr. N)dp
p P(p|r,N)>C



Example — multimodal distribution

p(y)

0.6 — p(y) at x=5.0
0 5:_ Smallest 68%
L v f(x=5.0) for the best fit
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Exercise — compare the mode & smallest 68% probability interval; the
mean and rms; and the median and central 68% probability interval for
the function

flxy=1—2 0<zx<1



Poisson Distribution

A Poisson distribution applies when we do not know the number of trials
(it 1s a large number), but we know that there 1s a fixed probability of
‘success’ per trial, and the trials occur independently of each other.

Alternatively — a continuous time process with a constant rate will
produce a Poisson distributed number of events 1n a fixed time interval.

High energy physics example: beams collide at a high frequency (10
MHz, say), and the chance of a ‘good event’ i1s very small. The resulting
number of events in a fixed time will follow a Poisson distribution. A
single trial 1s one crossing of the beams.

Nuclear physics example: a large sample of radioactive atoms will
produce a Poisson distributed number of events in a fixed time interval
(assuming a ™>>T)

21



Poisson Distribution

The Poisson distribution can be derived from the Binomial distribution in
the limit when N —o and p —0, but Np fixed and finite. Then

P(r|N,p) — P(n|v)

The expected number of events 1s calculated from a rate, or from a
luminosity and cross section or some other way

v=R-T or v=L -0 or...



Poisson Distribution - derivation

P(n|N,p) =

N

n(] _ N—n
n!(N—n)!p (1=p)
v N " ( V)N_”

P(n|N, 2 =
N, N = N )i v

P(n|v) = Poisson Distribution
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Poisson Example
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Poisson Distribution-cont.

P(nlv)=v €

n!

v=0.1
e l
0 5
v=1.0
1|
0 10
v=5.0
ln””HHHH”n&
0 10
v=20.

il

0 25

r*=lv] -1
En]=v
o =v

Notes:

* As v increases, the
distribution becomes more
symmetric

» Approximately Gaussian for
large v

* Poisson formula 1s much
easier to use that the Binomial
formula.
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Example for v=10/3

Example

Ordinal "

cumulative fan

probability
0 P(olv) | F(o|v) R | Fr(o|v)
0 0.0357 | 0.0357 7 0.9468
1 0.1189 | 0.1546 5} 0.8431
2 0.1982 | 0.3528 2 0.4184
3 0.2202 | 0.5730 1 0.2202
4 0.1835 | 0.7565 3 0.6019
5} 0.1223 | 0.8788 4 0.7242
§) 0.0680 | 0.9468 §) 0.9111
7 0.0324 | 0.9792 8 0.9792
8 0.0135 | 0.9927 9 0.9927
9 0.0050 | 0.9976 | 10 0.9976
10 | 0.0017 | 0.9993 | 11 0.9993
11 | 0.0005 | 0.9998 | 12 0.9998
12 | 0.0001 1.0000 13 1.0000

Cumulative
probability
according to
rank



Central Interval

ri= _sup {ZP i|N,p) < a/2} +1
re0,. N 1 =0

P(r=0|N,p) >a/2—1r1 =0

N
it . < B
ra= L (OO PINp) S0/} -1
P(r=N|N,p)>a/2 -r9=N

O?—a — {7“1,7“1 + 1, ...,7“2}



Smallest Interval

(?

08 = {r*} PO _IN,p)>1—-a

l—«

‘?

P(r* +1|N,p) > P(r* — 1|N, p)
O?—a — {T*7T* + 1} O?—a — {T*7T* o 1}

?
P(O§—a’N7p) > l -«



Whatisthe 1 — a = 0.9 central interval; smallest interval ?

Exercise

o | Plolv) | F(olv) | R | Fr(olv)
0 | 0.0357 | 0.0357 | 7 0.9468
1 | 0.1189 | 0.1546 | 5 0.8431
2 | 0.1982 | 0.3528 | 2 0.4184
3 | 0.2202 | 0.5730 1 0.2202
4 | 0.1835 | 0.7565 | 3 0.6019
5 | 0.1223 | 0.8788 | 4 0.7242
6 | 0.0680 | 0.9468 | 6 0.9111
7 1 0.0324 | 0.9792 | 8 0.9792
8 | 0.0135 | 0.9927 | 9 0.9927
9 | 0.0050 | 0.9976 | 10 | 0.9976
10 | 0.0017 | 0.9993 | 11 | 0.9993
11 | 0.0005 | 0.9998 | 12 | 0.9998
12 | 0.0001 | 1.0000 | 13 1.0000




Confidence Interval Calculation

We observe x events, and ask which values of v are accepted with
confidence level 1-a.. For 1- a=0.9, central intervals:




Poisson Distribution-cont.

We often have to deal with a superposition of two Poisson processes —
the signal distribution and the background distribution, which are
indistinguishable in the experiment. Usually we know the background
expectations and want to know the likelihood of a signal in addition.

Example, the signal for large extra dimensions may be the observation of
events where momentum balance 1s (apparently) strongly violated.
However this can be mimicked by neutrinos, energy leakage from the
detector, etc.



Use the subscripts B for background, s for signal,

and assume n events are observed

P(n) = iP(ns lv)P(n—n_lvy)

4%
ng Binomial formula with P = >
o VBtV E /\ V. + Vg
'(n n)l
n ng n—ng
— e_(VB +Vy) V T Vp E Vs Vg
'(n n)'v+v V. +V,
n
_e—(v3+v )(V TV )

=1 by normalization



Bayesian Data Analysis-Poisson Distribution

Typical examples — counting experiments such as source activity, failure
rates, cross sections,...

_ Pah) R
P = T Pl Po)de [ 2 Ry

This 1s our master formula. Result in general will depend on choice of
prior.
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Poisson - cont.

If we assume a flat prior starting at 0 and extending up to some
maximum of v much larger than .

p L - Ti! PO(V) L - T(j!
(vn) = ——i— =
fo S—Po(v)dv | —dv

Vmax n ,—v ©.@)

/ v e dy =~ l/ Ve Vdy = ln! —
0 n! n! Jo n!
—rV,,Nn
P(v|n) = i vt =n
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Poisson — cont.

Some examples

Comments: v

If you decide to quote the mode as your nominal result, you would use
v'=n. For large enough n, the 68% probability region is then
approximately

n—+v/n—n-+n



Poisson - cont.

The cumulative distribution function:

v m ,—v
Ve
F(vin) = / ' dv'
0 n!
1 m_—v v g m—1_—v'dv’
= — |=v"e " |f+n | v e
n' 0



Poisson — Examples

First, no background, measure zero counts.

With flat prior assumption Plviln=0) = e"
Flvjn=0) = 1—¢e"
For a 95% upper limit S —
095 = 1—e"
v o~ J
Sx=s o x=10
0 0J — 0 5 20
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Poisson — cont.

And now suppose we have background:

u
x!

(e_()“”)()w v)%) P (v)
x!)" 0
}(8_(“”(7» + V)yx!) P,(v)dv

0

e

u=AiA+v, P(xlu)=

P(vix,A) =

e (A+ v)x

P(vIx,A)= assuming a flat P(v) and

X! E integrating by parts.
n=0 n'

o (A+v)"
e En=0 n‘
F(vix,A)=1- :

x N\
2oy




f(v)

0.15

0.1

0.05

0.75

0.5
0.25

Poisson — cont.

20

Comment:

For x=0, P(v|x, A)=eV. It
does not matter how much
background you have, you
get the same probability
distribution for the signal.
Source of much confusion
& discussion (very
different for Confidence
Level calculation).
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Exercise

Imagine two measurements are performed where the same Poisson
mean, v, is expected. The measurements yield n, and n, events.
Starting with a flat prior for the Poisson mean, find the resulting
posterior pdf.

How does it compare to running the experiment twice as long
(expectation 2v) and measuring n,+n, events ?

(you will not have enough time now for these calculations — set up the
formulas and work them out when you have time)



Example

Want to test a new theory — Large Extra Dimensions. If this hypothesis
is correct, we expect events with certain characteristics in (let’s say)
proton-proton collisions. We design an experiment to look for this
process.

There will also be indistinguishable events from ‘known’ physics. The
analysis has been designed to reduce these, but there will be some
background left.

Background expectation: A=osm - L-asm
Signal expectation: v=orgp- L aLEp

Have a nearly infinite number of collisions of protons with very small
probability to generate an event per bunch crossing: Poisson process



Example

Probabilistic model:

—A\n
e "A\"'B
P A\) =
sl = =
e~ Vymns
P —
(ns|v) ol
e Fu™
P(n|A,v) =



Example

Compare two situations:
1) no knowledge on the background

2) Separate data help us constrain the background

Suppose we measure n=7 events, what can we say ?



N=7 Poisson

B AN RO
A A A T R O
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With Background knowledge

1 _% (>\—>éo)2
P()\) = e X
(A) V2o,

Can build this into the likelihood (e.g., frequentist analysis) or call it
prior knowledge (either way for Bayes)

L(v,\) = P(N|v, ) P(\)

Note: a likelihood is not a probability !



With Background knowledge

1 _% (>\—>éo)2
P()\) = e X
(A) V2o,

Can build this into the likelihood (Frequentist Analysis) or call it prior
knowledge (either way for Bayes)

~ P(N|y,\)P(\)P(v)
P, AIN) = [ PN, \)P(\)P(v)ddv

To get a probability distribution for the physics parameter, we
marginalize

P(v|N) = /p(y, AN
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lambda
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p(nuldata)
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That's it

Enjoy the school !



