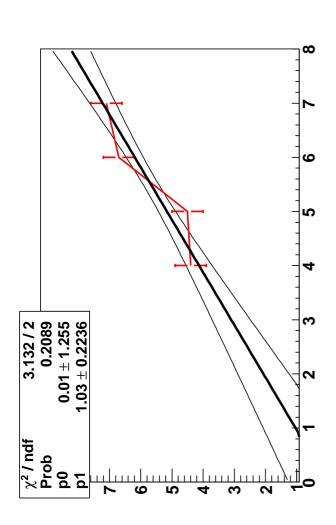
Computer Exercise Straight line trajectory fit

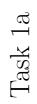
Physics example: A muon track is measured in four layers of streamer tube detectors at x positions of 4., 5., 6. and 7. (in cm), with a measurement precision for y of 0.5 cm. The goal is to determine its trajectory, assuming it to be a straight line.

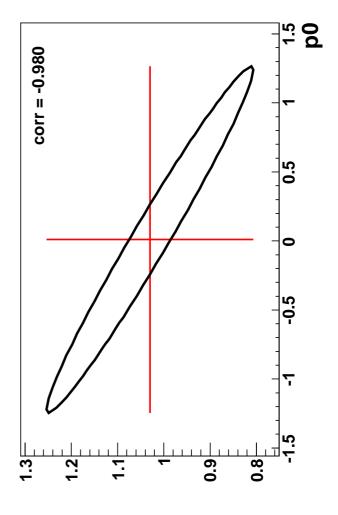
 $www.desy.de/\tilde{o}behnke/stat/school_apr14/StraightLineFit.C$ Macro StraightLineFit.C, accessible at

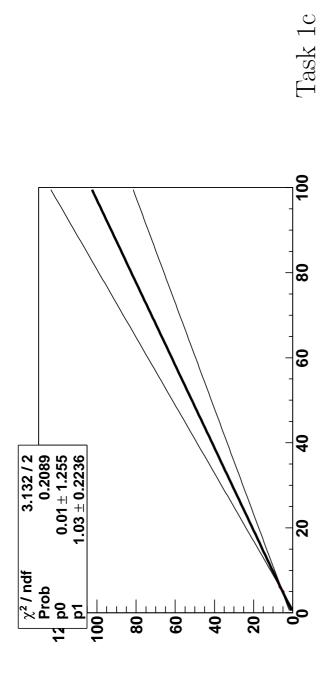
fits a straight line track trajectory through four measured points.

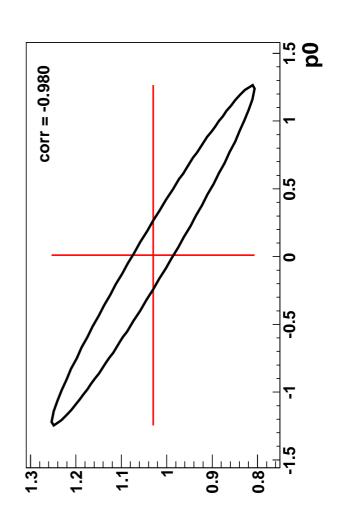
• Steering parameters in the macro:

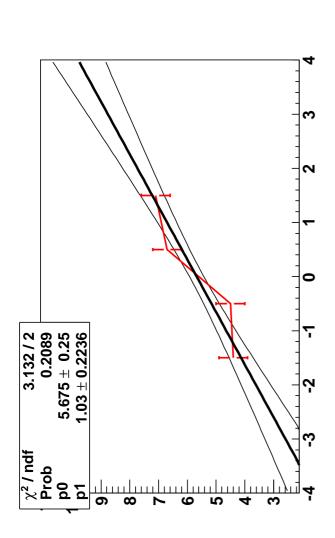

-xmin, xmax = Interval of the trajectory displayed

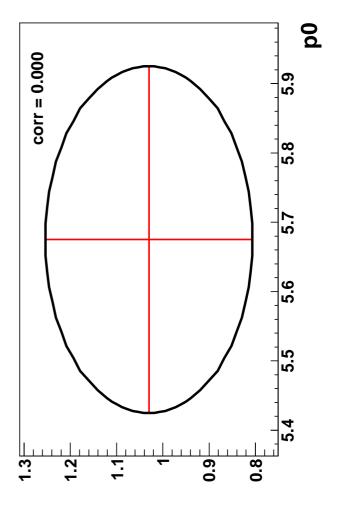

- Output:
- Histogram data (it's of the type TGraphErrors)
- Plots are drawn of the
- * fitted histogram with error bands
- * error ellipse of the two fitparameters

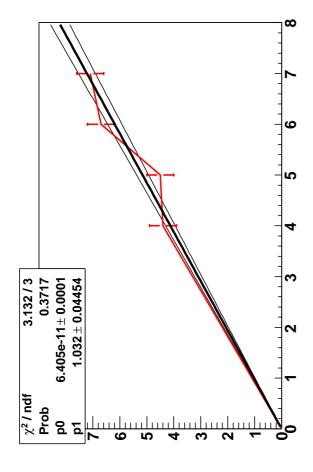

S	
k	
S	
a.	
•	

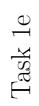

- a) Run the macro as it is by .x StraightLineFit.C and fill the fit results for $p0,\ p1,$ their errors and correlation into the table below
- b) Precision of trajectory: Evaluate (by eye) from the shown error bands at which point roughly the trajectory is known best and with which precision (fill the results in the table below)
- c) Precision of extrapolated trajectory: Evaluate the precision of the extrapolated trajectory at x=100(Hint: Change xmax to large value and run the macro again)
- d) Effect of shift of x coordinate origin: Shift all four xVal points in the macro (simply by overwriting by hand) by a constant value -5.5, set xmin = -4. and xmax = 4. and run the macro again. Fill the fit results in the table. Can you explain why the correlation of p0 and p1 has changed?
- e) Apply a very precise vertex constraint at the origin: Change N to 5 and add a new first point to by hand). Run the macro again and write down the fitted results in the table. How much are the the measurement points list with xVal = 0.0, xErr = 0.0, yVal = 0.0 and yErr = 0.001 (just parameter errors reduced by adding this extra point?

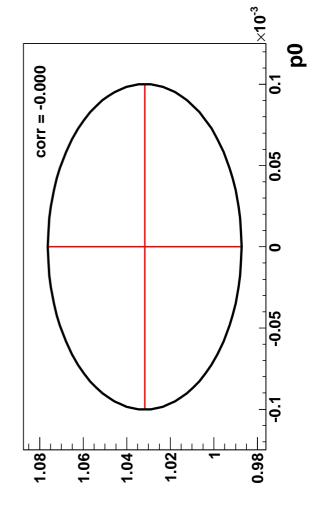

$p0 = 0.01 \pm 1.255$ Task a) $p1 = 1.03 \pm 0.224$ corr = -0.980Task b) x -best precision = 5.5Task b) y -error = 0.3Task c) y -error($x = 100$) = 22 cmTask d) $p0 = 5.7 \pm 0.25$ $p1 = 1.03 \pm 0.22$ Task e) $p1 = 1.03 \pm 0.22$ Task e) $p1 = 1.03 \pm 0.22$ Task e) $p0 = 0.0 \pm 0.0011$ Task e) $p1 = 1.032 \pm 0.044$ corr = 0.0Corr = 0.0Task e) $p1 = 1.032 \pm 0.044$		Straight line fit trough four points
$p1 = 1.03 \pm 0.224$ corr = -0.980 x-best precision = 5.5 y-error = 0.3 y-error = 0.3 y-error(x = 100) = 22 cm y-error(x = 100) = 22 cm p0 = 5.7 \pm 0.25 p0 = 5.7 \pm 0.25 p1 = 1.03 \pm 0.22 corr = 0.0 p1 = 1.03 \pm 0.22 corr = 0.0 p1 = 1.032 \pm 0.044 p1 = 1.032 ± 0.044 corr = 0.0		$p0 = 0.01 \pm 1.255$
corr = -0.980 x-best precision = 5.5 y-error = 0.3 y-error = 0.3 y-error (x = 100) = 22 cm y-error(x = 100) = 22 cm p0 = 5.7 ± 0.25 p1 = 1.03 ± 0.22 corr = 0.0 Adding vertex constraint at $x =$ p0 = 0.0 ± 0.0001 p1 = 1.032 ± 0.044 corr = 0.0	Task a)	$p1 = 1.03 \pm 0.224$
x-best precision = 5.5 y-error = 0.3 y-error(x = 100) = 22 cm y-error(x = 100) = 22 cm Shifting all x values by -5.5: $p0 = 5.7 \pm 0.25$ $p1 = 1.03 \pm 0.22$ corr = 0.0 Adding vertex constraint at $x =$ $p0 = 0.0 \pm 0.0001$ $p1 = 1.032 \pm 0.044$ corr = 0.0 $p1 = 1.032 \pm 0.044$ corr = 0.0		corr = -0.980
y -error = 0.3 y -error($x = 100$) = 22 cm y -error($x = 100$) = 22 cm Shifting all x values by -5.5: $p0 = 5.7 \pm 0.25$ $p1 = 1.03 \pm 0.22$ $p1 = 1.03 \pm 0.22$ corr = 0.0 $p0 = 0.0 \pm 0.001$ $p1 = 1.032 \pm 0.044$ $p0 = 0.0 \pm 0.001$ $p1 = 1.032 \pm 0.044$ corr = 0.0		x-best precision = 5.5
y -error($x = 100$) = 22 cm Shifting all x values by -5.5: $p0 = 5.7 \pm 0.25$ $p1 = 1.03 \pm 0.22$ corr = 0.0 Adding vertex constraint at $x =$ $p0 = 0.0 \pm 0.0001$ $p1 = 1.032 \pm 0.044$ corr = 0.0 corr = 0.0		y-error = 0.3
Shifting all x values by -5.5: $p0 = 5.7 \pm 0.25$ $p1 = 1.03 \pm 0.22$ corr = 0.0 Adding vertex constraint at $x =$ $p0 = 0.0 \pm 0.0001$ $p1 = 1.032 \pm 0.044$ corr = 0.0 corr = 0.0	Task c)	y-error $(x=100)=22$ cm
$p0 = 5.7 \pm 0.25$ $p1 = 1.03 \pm 0.22$ corr = 0.0 Adding vertex constraint at $x =$ $p0 = 0.0 \pm 0.0001$ $p1 = 1.032 \pm 0.044$ corr = 0.0 corr = 0.0		Shifting all x values by -5.5:
$p1 = 1.03 \pm 0.22$ corr = 0.0 Adding vertex constraint at $x =$ $p0 = 0.0 \pm 0.0001$ $p1 = 1.032 \pm 0.044$ corr = 0.0	Tack d	$p0 = 5.7 \pm 0.25$
corr = 0.0 Adding vertex constraint at $x = p0 = 0.0 \pm 0.0001$ $p1 = 1.032 \pm 0.044$ corr = 0.0	(n yce i	$p1 = 1.03 \pm 0.22$
Adding vertex constraint at $x = p0 = 0.0 \pm 0.0001$ $p1 = 1.032 \pm 0.044$ corr = 0.0		corr = 0.0
		Adding vertex constraint at $x = 0$:
	Tack o	$p0 = 0.0 \pm 0.0001$
corr = 0.0		$p1 = 1.032 \pm 0.044$
		corr = 0.0



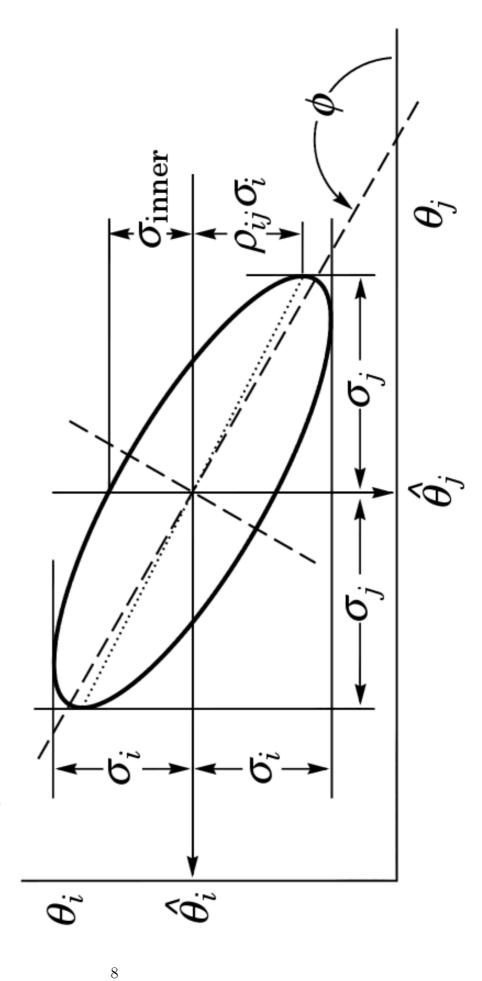





5



Task 1c



7

 $\sigma_i^2 \quad \rho_{ij}\sigma_i\sigma_j$ of two parameters θ_i and θ_j can be represented by error ellipses (see Fig. from PDG below) The role of the correlation coefficient The covariance matrix V = ho_{ij} :

- If one shifts θ_i to $\hat{\theta}_i + \sigma_i$ one has to shift θ_j to $\hat{\theta}_j + \rho_{ij}\sigma_j$ to keep the χ^2 increase minimal (stay down in the χ^2 valley)
- When fixing θ_j the error on θ_i is reduced to $\sigma_{inner} = \sqrt{1 \rho^2} \sigma_i$

