Mass peak fit tutorial

Terascale statistic school workshop april 2, 2014

Olaf Behnke (DESY), Vladyslav Libov (DESY)

What you really want to know:

- Number of signal events
- Mass of resonance
- Width of resonance
- Practical questions:
- Choice of binning
- Use χ^2 variants or Poisson Likelihood?
- Parameterisation for signal and background
- + many more 🙂

Mass peak fit tutorial with MINUIT

- We will use TMINUIT program
- Note: we will use practical features of MINUIT to perform mass-peak fit – we will not really look deeply behind the scenes to understand the MINUIT program/algorithms – focus is on getting a feeling for mass peak fits and results

MINUIT program

- Fortran code developed in the 1970s by Fred James (CERN)
 - Minimization of a function FCN
 - MIGRAD is main minimization algorithm:
 - uses a variable metric algorithm (Davidson-Fletcher-Powell)
 - difference to the basic Newton-Raphson method: the Hesse matrix is not completely re-evaluated at each iteration but only updated from last iteration (saves time) \rightarrow Sometimes needed to call HESSE after MIGRAD to obtain correct parameter error matrix $V = H^{-1}$

MINUIT program phases

- Initialisation (e.g. defining parameters)
- Minimization (many commands possible)
- Finishing (retrieving results)

MINUIT commands we will use

"SET PRI 2"
 "Fix 3 4"
 "Release 3 4"
 "MIGRAD"

"HESSE"

"MINOS"

Defines printout level (range -1 to 3) Fix parameter 3 and 4 (they will be not fitted) Free parameter 3 and 4 (they will be fitted) Run main minimizer to minimize FCN Determine Hesse matrix H = $\frac{1}{2} \frac{d^2(FCN)}{dpar^2}$

Determine negative and positive uncertainties from points where FCN=FCN_min+1 (Profile Likelihood: FCN is minimised wrt all other free parameters) Calculates contours of FCN=FCN_min+1 with respect to parameters 1 and 2 (Profile Likelihood: FCN is minimised wrt all other free parameters)

Tutorial code structure (in main directory)

- Generating masspeak pseudodata:
 - generate_data.exe*
 - Steering in config/generate_data/gauss_pol0
- Fit signal and background in pseudodata:
 - Mass_peak_fit.exe*
 - Steering in config/mass_peak_fit/gauss_pol0
 - Call to MINUIT commands in src/Fit.cxx

Compile and run scripts (generating data and fitting)
 ./run.sh (gen+fit) .rungen.sh (gen) .runfit.sh (fit)

Note: for most tasks you have to edit only the two steering files and rerun the run.sh script!

Get the tutorial code

Module load root cp /afs/desy.de/group/school/statschool2014/mass_peak_tutorial.tar.gz . tar -zvxf mass_peak_tutorial.tar.gz cd mass_peak_tutorial

Tutorial topic

gauss_pol0

$$N_s/(\sigma\sqrt{2\pi})\exp\left(-\frac{(m-\mu)^2}{2\sigma}\right)+c N_b$$

Note: Ns and Nb denote the total number of signal and background events in the sample (c is appropriate normalisation constant)

If time allows (probably not):

• gauss_pol3

$$N_s/(\sigma\sqrt{2\pi})\exp\left(-\frac{(m-\mu)^2}{2\sigma}\right) + p0 + p1 \cdot m + p2 \cdot m^2 + p3 \cdot m^3$$

Tutorial Intro – step by step – 1. generate

- Generating masspeak pseudodata:
 - generate_data.exe*
 - Steering in config/generate_data/gauss_pol0

1) ./rungen.sh Compile and generate data/test.root

2) gv data/test.eps

Look at generated mass spectrum

3) emacs config/generate_data/gauss_pol0 Edit generation steering file

Tutorial Intro – step by step – 1. generate

- Generating masspeak pseudodata:
 - generate_data.exe*
 - Steering in config/generate_data/gauss_pol0

Tutorial Intro – step by step – 1. generate

- Generating masspeak pseudodata:
 - generate_data.exe*
 - Steering in config/generate_data/gauss_pol0
- 1) ./rungen.sh

Compile and generate data/test.root

2) gv data/test.eps

Look at generated mass spectrum

3) emacs
config/generate_data/gauss_pol0
4) Change some parameter, save
and repeat 1) and 2) see effect?

Edit generation steering file

5) Restore default version, do it in editor or by cp config/generate_data/gauss_pol0_ref config/generate_data/gauss_pol0

- Fit Signal and background in the pseudo data
 - Mass_peak_fit.exe*
 - Steering in config/mass_peak_fit/gauss_pol0
 - Call to MINUIT commands in src/Fit.cxx
- 1) ./runfit.sh Compile and fit watch the screen output
- 2) gv results/fit.eps

Look at fitted data

3) emacs config/mass_peak_fit/gauss_pol0

Edit fit steering file

INFU: opened contig/mass_peak_tit/gauss_poiv PARAMETER DEFINITIONS: NAME NO. VALUE STEP SIZE LIMITS 1 Ns 1.00000e+02 1.00000e+01 no limits 2 Mu 4.00000e+00 1.00000e-01 no limits ****** Minuit print out 2 1 **FIX PARAMETER DEFINITIONS: LIMITS NO. NAME VALUE STEP SIZE 3 Sigma 2.00000e-02 1.00000e-01 no limits ******* 3 2 **FIX ****** PARAMETER DEFINITIONS: VALUE STEP SIZE LIMITS NO. NAME 4 Nb 1.00000e+03 1.00000e+01 no limits 4 3 **FIX Migrad started 4 **MIGRAD FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-04 FCN=-3224.14 FROM MIGRAD STATUS=INITIATE 2 CALLS 3 TOTAL NO ERROR MATRIX EDM= unknown STRATEGY = 1EXT PARAMETER CURRENT GUESS STEP FIRST NAME ERROR SIZE DERIVATIVE NO. VALUE 1 Ns 1.00000e+02 1.00000e+01 1.00000e+01 -5.49348e-03 2 4.00000e+00 fixed Mu 3 Sigma 2.00000e-02 fixed 4 1.00000e+03 Nb fixed Migrad has converged MIGRAD MINIMIZATION HAS CONVERGED. MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. COVARIANCE MATRIX CALCULATED SUCCESSFULLY FCN=-3224.15 FROM MIGRAD STATUS=CONVERGED 12 CALLS **13 TOTAL** EDM=1.22711e-08 ERROR MATRIX ACCURATE STRATEGY= 1EXT PARAMETER STEP FIRST ERROR DERIVATIVE NO. NAME VALUE SIZE 1.00392e+02 1.19765e+01 3.31155e-01 -1.30806e-05 1 Ns Min.FCN 2 4.00000e+00 Mu fixed Migrad results 3 Sigma 2.00000e-02 fixed 4 Nb 1.00000e+03 fixed EXTERNAL ERROR MATRIX. NDIM= 25 NPAR = 1ERR DEF=1 1.434e+02 -- -- -- -- -- -- -- -- -- --

Steering in config/mass_peak_fit/gauss_pol0

- Fit Signal and background in the pseudo data
 - Mass_peak_fit.exe*
 - Steering in config/mass_peak_fit/gauss_pol0
 - Call to MINUIT commands in src/Fit.cxx
- 1) ./runfit.sh Compile and fit watch the screen output
- 2) gv results/fit.eps Look at fitted data

3) emacs Edit fit
config/mass_peak_fit/gauss_pol0
4) Change some parameter, save and repeat 1) and 2) see effect?
Edit fit
steering file

5) Restore default version, e.g. by cp config/mass_peak_fit/gauss_pol0_ref config/mass_peak_fit/gauss_pol0

Call to MINUIT commands in src/Fit.cxx

```
// ********** USER EDITABLE PART ********** //
```

```
// perform the minimization!
fMinuit -> Command("MIGRAD");
fMinuit -> Command("HESSE");
fMinuit -> Command("MINOS");
```

// ******* END OF USER EDITABLE PART ******* //

6) emacs src/Fit.cxx Add command line before the other three comands: fMinuit -> Command("Set Pri 3");

1) ./runfit.sh

watch the **changed** screen output ok, it's somewhat tedious Take it out again then

Gauss_pol0 Task 1a: fit only Ns

- Generation: config/generate_data/gauss_pol0
 → Use reference gauss_pol0_ref
- Fitting: config/mass_peak_fit/gauss_pol0
 → Use reference gauss_pol0_ref
- Run script: ./run.sh

Task 1a): Error estimates

• Fill the fitted Ns and its error from Hesse and MINOS in the table below (get all results from Minuit printout)

Ns	Nb	Fitted Ns	Hesse $\Delta(Ns)$	Minos ΔNs –	Minos ΔNs +
100	1000				

Can you explain why the MINOS errors are asymmetric?

Gauss_pol0 Task 1a: fit only Ns SOL

- Generation: config/generate_data/gauss_pol0
 → Use reference gauss_pol0_ref
- Fitting: config/mass_peak_fit/gauss_pol0
 → Use reference gauss_pol0_ref
- Run script: ./run.sh

Task 1a): Error estimates

• Fill the fitted Ns and its error from Hesse and MINOS in the table below (get all results from Minuit printout).

Ns	Nb	Fitted Ns	Hesse $\Delta(Ns)$	Minos Δ <i>Ns</i> –	Minos ΔNs +
100	1000	100.4	11.9	-11.6	12.3
10	10	9.15	3.14	-2.8	3.5

Can you explain why the MINOS errors are asymmetric?

> Due to Poisson Likelihood

Gauss_pol0 Task 1a: fit only Ns SOL

Error on Ns ~ sqrt(NT) with NT = total number of events in peak region

Gauss_pol0 Task 1b: fit only Ns

Task 1b): Migrad convergence

- Change the fit start value for Ns to different values (see table below) and rerun run.sh for each value
- Check in the printout messages if MIGRAD converged and mark in the table below

Ns	Nb	Fit start value for Ns	Migrad converged?
100	1000	100	
100	1000	300	
100	1000	10	

What is the "fitted" Ns value (given in the Minuit printout) if MIGRAD did **not** converge?

Gauss_pol0 Task 1b: fit only Ns SOL

Task 1b): Migrad convergence

- Change the fit start value for Ns to different values (see table below) and rerun run.sh for each value
- Check in the printout messages if MIGRAD converged and mark in the table below

Ns	Nb	Fit start value for Ns	Migrad converged?
100	1000	100	yes
100	1000	300	no
100	1000	200	yes
100	1000	10	yes

What is the "fitted" Ns value (given in the Minuit printout) if MIGRAD did **not** converge?

The initial parameter values are taken!

Gauss_pol0 Task 2: fit Ns and Nb

- Depending on the process Nb can be estimated from
 - NLO QCD or QEW
 - from MCs using scaling factors determined in background enriched samples (can be risky!)
 - fitting the mass spectrum \rightarrow what we will do \odot

Gauss_pol0 Task 2a: fit Ns and Nb

- Generation: config/generate_data/gauss_pol0
 → Use reference gauss_pol0_ref
- Fitting: config/mass_peak_fit/gauss_pol0
 → Use reference gauss_pol0_ref
 Change: fix parameters 0 1 1 0
 covariance_ellipse_parameters 1 4
- Run script: ./run.sh

 Fitting: src/Fit.cxx
 Change to: fMinuit -> Command("MIGRAD"); fMinuit -> Command("HESSE"); fMinuit -> Command("Set Pri -1");

Task 2a): Correlation of parameters

- Fill fitted Ns, Nb, errors and correlation coefficient ρ in the table (get all results from Minuit printout)
- Have a look at the FCN contours around the fitted parameters (shown are contours for values FCN_min+0.25,+1,+2.25,+4,+6.25,+9): gv results/cov_ellipse.eps
 → are the two parameters correlated or anticorrelated? (and can you explain why?)

Ns	Nb	Fitted Ns	Fitted Nb	$\Delta(Ns)$	$\Delta(Nb)$	Correlation Coefficient (ρ)
100	1000					

Gauss_pol0 Task 2a: fit Ns and Nb SOL

- Generation: config/generate_data/gauss_pol0
 → Use reference gauss_pol0_ref
- Fitting: config/mass_peak_fit/gauss_pol0
 → Use reference gauss_pol0_ref
 Change: fix parameters 0 1 1 0
 covariance_ellipse_parameters 1 4
- Run script: ./run.sh

Fitting: src/Fit.cxx
 Change to:
 fMinuit -> Command("MIGRAD");
 fMinuit -> Command("HESSE");
 fMinuit -> Command("Set Pri -1");

Task 2a): Correlation of parameters

- Fill fitted Ns, Nb, errors and correlation coefficient ρ in the table (get all results from Minuit printout)
- Have a look at the FCN contours around the fitted parameters (shown are contours for values FCN_min+0.25,+1,+2.25,+4,+6.25,+9): gv results/cov_ellipse.eps
 → are the two parameters correlated or anticorrelated? (and can you explain why?)

Ns	Nb	Fitted Ns	Fitted Nb	$\Delta(Ns)$	$\Delta(Nb)$	Correlation Coefficient ($ ho$)
100	1000	100.4	99.9	12.1	32.2	-0.115

They are anticorrelated: compensate background increase by lowering signal

Gauss_pol0 Task 2a: fit Ns and Nb SOL

> Asymmetric errors (Poisson stat.)

Gauss_pol0 Task 2b: fit Ns and Nb

Task 2b): Correlations and fit range

- Perform the fit for various fit ranges and fill the correlation of Ns and Nb in the table.
- Note: the fit range is steered in the fit steering, e.g. fit_range 3.5 4.5

Fit range	ρ
3 5	
3.5 4.5	
3.95 4.05	

Why does the anticorrelation increase for smaller fit ranges?

Gauss_pol0 Task 2b: fit Ns and Nb SOL

Task 2b): Correlations and fit range

- Perform the fit for various fit ranges and fill the correlation of Ns and Nb in the table.
- Note: the fit range is steered in the fit steering, e.g. fit_range 3.5 4.5

Fit range	ρ
3 5	-0.115
3.5 4.5	-0.166
3.9 4.1	-0.431
3.95 4.05	-0.648

Why does the anticorrelation increase for smaller fit ranges? In small fit range around peak the signal and background cannot be distinguished anymore (but effect is only strong for very narrow range!)

Gauss_pol0 Task 2b: fit Ns and Nb SOL

Fit from 3.95 to 4.05

Gauss_pol0 Task 2b: fit Ns and Nb SOL

Fit from 3.95 to 4.05

Gauss_pol0 Task 2c: fit Ns and Nb

Task 2c): Log likelihood vs Neyman chi2 and Pearson chi2

- Switch back the fit range to: fit_range 3 5
- Run the fit with log_likelihood, chi2_neyman and chi2_pearson, for this change in the fit steering: fit_type log_chi2_neyman etc.
- Fill FCN_min, fitted Ns and Nb and errors in the table and the sum Ns+Nb
- Have also (for fun) a look at the mass peak fits: gv results/fit.eps

Ns	Nb	Estimator	FCN_min	Fitted Ns	Fitted Nb	$\Delta(Ns)$	$\Delta(Nb)$	Fitted Ns+Nb
100	1000	Log_likelihood						
100	1000	chi2_neyman						
100	1000	chi2_pearson						

Do the fits look ok? Can you see any biases in the results?

Gauss_pol0 Task 2c: fit Ns and Nb SOL

Task 2c): Log likelihood vs Neyman chi2 and Pearson chi2

- Switch back the fit range to: fit_range 3 5
- Run the fit with log_likelihood, chi2_neyman and chi2_pearson, for this change in the fit steering: fit_type log_chi2_neyman etc
- Fill FCN_min, fitted Ns and Nb and errors in the table and the sum Ns+Nb
- Have also (for fun) a look at the mass peak fits: gv results/fit.eps

Ns	Nb	Estimator	FCN_min	Fitted Ns	Fitted Nb	$\Delta(Ns)$	$\Delta(Nb)$	Fitted Ns+Nb
100	1000	Log_likelihood	-3224.15	100.4	999.6	12.1	32.3	1100
100	1000	chi2_neyman	137.1	105.4	857.5	12.0	30.0	962.9
100	1000	chi2_pearson	111.7	98.5	1057.4	12.1	33.2	1155.9

Fitted Ns+Nb – generated Ns+Nb:

= 0 (log_likelihood); = -chi2 (chi2_neyman); = +chi2/2 (chi2_pearson); Note: these relations hold in general!

Gauss_pol0 Task 2c: fit Ns and Nb SOL

Gauss_pol0 Task 3: fit Ns and mu

- Particle masses crucial parameters in the SM, e.g. Higgs mass
- Detectors: for track based mass peaks e.g. $D0 \rightarrow K$ -pi+ one can usually achieve high precision, often limited only by systematics

Gauss_pol0 Task 3a: fit Ns and mu

- Generation: config/generate_data/gauss_pol0
 → Use reference gauss_pol0_ref
- Fitting: config/mass_peak_fit/gauss_pol0

→ Use reference gauss_pol0_ref (don't forget to switch back to log_likelihood) Change: fix parameters 0 0 1 1 covariance_ellipse_parameters 1 2

• Run script: ./run.sh

Task 3a): Lets do the fit!

- Fill the fitted Ns, mu, errors and correlation coefficient ρ in the table (get all results from Minuit printout)
- Have a look at the FCN contours around the fitted parameters: gv results/cov_ellipse.eps

Ns	Nb	Fitted Ns	Fitted mu	$\Delta(Ns)$	$\Delta(mu)$	ρ
100	1000					

The lowest possible error on mu for a background free sample is $\Delta(mu)$ = sigma/sqrt(Ns) where sigma=0.02 is the fixed peak width. How much larger is our error?

Gauss_pol0 Task 3a: fit Ns and mu SOL

- Generation: config/generate_data/gauss_pol0
 → Use reference gauss_pol0_ref
- Fitting: config/mass_peak_fit/gauss_pol0
 → Use reference gauss_pol0_ref
 Change: fix parameters 0 0 1 1
 covariance_ellipse_parameters 1 2
- Run script: ./run.sh

Task 3a): Lets do the fit!

- Fill the fitted Ns, mu, errors and correlation coefficient ρ in the table (get all results from Minuit printout)
- Have a look at the FCN contours around the fitted parameters gv results/cov_ellipse.eps

Ns	Nb	Fitted Ns	Fitted mu	$\Delta(Ns)$	$\Delta(mu)$	ρ
100	1000	100.5	3.9977	12.0	0.0029	0.002

The lowest possible error on mu for a background free sample is $\Delta(mu) = \text{sigma/sqrt(Ns)}$ where sigma=0.02 is the fixed peak width. How much larger is our error?

Sigma/sqrt(Ns) = error on mean value for background free peak, our error is 45% larger

Gauss_pol0 Task 3b: fit Ns and mu

Task 3b): Stupid start values ©

- Change start values in fit steering: start_values 10 4.4 0.02 1000 and rerun the fit
- Fill fitted Ns, mu, errors and correlation coefficient ρ in the table (get all results from Minuit printout)
- Have a look at the fit: gv results/fit.eps

Ns	Nb	Fitted Ns	Fitted mu	$\Delta(Ns)$	$\Delta(mu)$	ρ
100	1000					

How do you judge the fit quality? Could you rule out that the fitted local peak is a real one?

Gauss_pol0 Task 3b: fit Ns and mu SOL

Task 3b): Stupid start values ©

- Change start values in fit steering: start_values 10 4.4 0.02 1000 and rerun the fit
- Fill fitted Ns, mu, errors and correlation coefficient ρ in the table (get all results from Minuit printout)
- Have a look at the fit: gv results/fit.eps

Ns	Nb	Fitted Ns	Fitted mu	$\Delta(Ns)$	$\Delta(mu)$	ρ
100	1000	9.5	4.40	6.6	0.01	0.001

How do you judge the fit quality?

Could you rule out that the fitted local peak is a real one?

The overall fit description poor, in particular at true peak mass at 4.0, but locally around 4.4 it is ok, cannot rule out a peak there, but it is not significant either

Gauss_pol0 Task 3b: fit Ns and mu SOL

Gauss_pol0 Task 3c: fit Ns and mu

Task 3c): Fit challenge – try to find most significant side peak

 Try yourself different start values Ns and mu in fit steering: start_values Ns mu 0.02 1000 and rerun the fit, try to find the most significant side peak and fill in table

Ns	Nb	Fitted Ns	Fitted mu	$\Delta(Ns)$	$\Delta(mu)$
100	1000				

Gauss_pol0 Task 4: fit Ns and sigma

Two contributions to observable width of peak:

- 1. Natural width of particle, Breit Wigner Resonance
- 2. Detector resolution (often dominating, e.g. $D0 \rightarrow K-pi+$)
 - often not perfectly modelled by MC, need to fit to data
 - often simplified: parametrise by single gaussian, rarely correct, but might be ok for very small statistics

Gauss_pol0 Task 4a: fit Ns and sigma

- Generation: config/generate_data/gauss_pol0
 → Use reference gauss_pol0_ref
- Fitting: config/mass_peak_fit/gauss_pol0
 → Use reference gauss_pol0_ref
 Change: fix parameters 0 1 0 1
 covariance_ellipse_parameters 1 3
- Run script: ./run.sh

Task 4a): Lets do the fit!

- Fill the fitted Ns, sigma, errors and correlation coefficient ρ in the table (get all results from Minuit printout)
- Have a look at the FCN contours around the fitted parameters: gv results/cov_ellipse.eps

Ns	Nb	Fitted Ns	Fitted sigma	$\Delta(Ns)$	$\Delta(sigma)$	ρ
100	1000					

The lowest possible error on sigma for a background free sample is $\Delta(sigma) = sigma/sqrt(2(Ns-1))$ How much larger is our error?

Gauss_pol0 Task 4a: fit Ns and sigma SOL

- Generation: config/generate_data/gauss_pol0
 → Use reference gauss_pol0_ref
- Fitting: config/mass_peak_fit/gauss_pol0
 → Use reference gauss_pol0_ref
 Change: fix parameters 0 1 0 1
 covariance_ellipse_parameters 1 3
- Run script: ./run.sh

Task 4a): Lets do the fit!

- Fill the fitted Ns, sigma, errors and correlation coefficient ρ in the table (get all results from Minuit printout)
- Have a look at the FCN contours around the fitted parameters: gv results/cov_ellipse.eps

Ns	Nb	Fitted Ns	Fitted sigma	$\Delta(Ns)$	$\Delta(sigma)$	ρ
100	1000	100.9	0.0203	12.8	0.0029	0.354

The lowest possible error on sigma for a background free sample is $\Delta(sigma) = sigma/sqrt(2(Ns-1))$ How much larger is our error? **sigma/sqrt(2(Ns-1)) = 0.0014**, **our error is ~two times larger**

Gauss_pol0 Task 4b: fit Ns and sigma

Task 4b): Switch to non-normalised gaussian function

- We will fit the signal now with $gu(m) = S \exp(-\frac{(m-mu)^2}{2sigma^2})$
- Change in the fit steering: normalised_gauss 0
- Fill the fitted S, sigma, errors and correlation coefficient ρ in the table (get all results from Minuit printout)
- Have a look at the FCN contours around the fitted parameters: gv results/cov_ellipse.eps

Ns	Nb	Fitted S (Maximum value)	Fitted sigma	$\Delta(S)$	Δ(sigma)	ρ
100	1000					

Can you explain why the correlation is negative and has a large value?

Gauss_pol0 Task 4b: fit Ns and sigma SOL

Task 4b): Switch to non-normalised gaussian function

- We will fit the signal now with $gu(m) = S \exp(-\frac{(m-mu)^2}{2sigma^2})$
- Change in the fit steering: normalised_gauss 0
- Fill the fitted S, sigma, errors and correlation coefficient ρ in the table (get all results from Minuit printout)
- Have a look at the FCN contours around the fitted parameters: gv results/cov_ellipse.eps

Ns	Nb	Fitted S (Maximum value)	Fitted sigma	$\Delta(S)$	Δ(sigma)	ρ
100	1000	39.6	0.00203	6.2	0.0029	-0.602

Can you explain why the correlation is negative and has a large value?

- For non-normalised function increasing the sigma will increase the integral of the function and this can be compensated by decreasing S.
- Note: the relative error for signal was 12.7% for normalised gaussian and has increased to 15.6%. This can be explained by factor 1/sqrt(1-rho**2) = 1.25
- One can restore the proper number of signal events: Ns ~ S sigma sqrt(2pi) and when applying error propagation the error on Ns will be again 12.7% (due to the anticorrelation of Ns and S). ALWAYS USE NORMALISED GAUSSIAN! (be on the bright side of life!) ⁴⁸

Gauss_pol0 Task 4b: fit Ns and sigma SOL

Covariance ellipse

Gauss_pol3 Task 5: fit Ns and sigma

- Generation: config/generate_data/gauss_pol3
- Fitting: config/mass_peak_fit/gauss_pol3

 Run script: ./run.sh Change to make .generate_data.exe - - config gauss_pol3 .mass_peak_fit.exe - - config gauss_pol3

Task 5): Lets do the fit!

- Run the fit ./run.sh with the default fit steering, does it look good?
- Try to play with the steering parameters in config/mass_peak_fit/gauss_pol3 to obtain a reasonable fit of signal and background, e.g.
 - free fixed parameters for the polynomial pol3 (in the default steering only the constant term is **not** fixed)
 - and/or change start values of parameters.
- Note down a configuration (which parameters are fixed and start values) for which you are happy with the resulting fit!

Mass peak fit tutorial Summary

- > Mass peak fitting **is an art**:
- Use Poisson likelihood
- Always take a look if the fit curve describes the data
- Neyman-chi2 often useful as another fit quality check
- Parameter start values are crucial
- Consider carefully signal and background parametrisation (Don't add extra parameters that do not substantially decrease -2 InL)
- +Many more aspects (fit range, binning etc.)

Thanks for your attention!