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Maximum Likelihood Method

@ The method

@ Weighted averages
@ Uncertainties

@ Exponential decay
o

Two signal processes:

o fit fractions
o fit rates (extended Likelihood)

Binned fits
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The Maximum Likelihood (ML) Method

@ Single measurements follow PDF p(x, &) with [ p(x,a)dx =1
@ Basic idea: for typical measurement x;, the p(x;,a should be larger
for true & then for wrong &

@ Example: radioactive decay p(t,\) = Ae~, one decay att = 1

Radioactive decay: A exp(-At)

a

6 12 A=5

3
os | one decoy = )\ =1seems a
o | reasonable choice
02 )\=1
o bk 5.0:02.

For n measurements x;: t

~ n
Take for estimator a the value of & for which L = [] p(x;,a) = max
i=1
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Maximization of L

n
Practical: Max. of w = InL = " In(p(x;, a))
i=1

o

%% _
=~ daja=i

o
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ML example - weighted average

@ Likelihood for averaging n measurements y; with known
uncertainties o;:

2
L =p(y1,¥2, -, ¥nla) = 1 oxp {—0i=a? ) _
(Y1, Y2 nla) il;ll\/gai { 5o? }

i=1 !
n
= cexp {—X;} with ¢ = éai and x? = > (y‘;a)z

= w:=InL=-3x*+Inc
= maximising w < minimising x? = Both methods yields same &

Error estimate x? method ML method
172 —1/2
= | 2nd derivative | o3 = E%‘azgj oy = [— dz;2L|a:é]

Value change =x3,+1 INL = INLmax — 0.5

= can define: ¥2 = —2InL and use this for fitting
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Differences between {* and y*

@ Likelihood for averaging n measurements y; with the same but
unknown uncertainty o

. _a)2
L:p(yl7y27"'7yn‘a) :H Tore exp{_%}

N n
=cexp {—X;} with c = [] ﬁ and y? = Zl (yi;za)2
=

i=1
n
= {?=-2InL=x%2—-2Inc=x?>+2> Ino + const.
i=1
@ Find estimate 5 from minimum of
X2 & — 00 can you explain why?

n
o= 5209
= “Normal” x? not suitable for this task, but ML method is ok!
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ML parameter uncertainties

@ Note: L is invariant under a parameter transformationa — b

@ Example weighted average, transform b = 1/a:

L(a) = p(y1,Y2, .-, ¥Ynla) =¢C exp{ Z (y.g. a)? }

o 2
L(b) = p(y1,Y2, .-, Yn|b) = C exp {—% El %} = L(a)
i= !
- b= 1/a Note: for any likelihood and transformation: b = b(a)

@ Number example: 4 =1, 03 = 0.5
o L(a) ~exp{ 52}
o L(b) ~ exp{ l/bisl)}
= Assess errors on 4 and b from likelihood curves (next slide)
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ML parameter uncertainties

—,F
08 —
06 [
Read off uncertainties from 04
points where L drops by 3
40% (corresponds to °1 3
AlnL = —0.5) a
— 1

@ Introduce negative and positive uncertainties Ab_ and A6+

@ Interval [b — Ab_,b + Ab,] is estimated 68% C.L. interval for b
Aby

Ab_
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ML parameter uncertainties

@ For any likelihood function L(a): estimating uncertainties from the
two points where InL drops by 0.5 from maximum is a good
method!

@ Reasoning: in theory one can always find a parameter
transformation «(a) which makes the likelihood in ¢) gaussian and
from the invariance of L we know that the 68% confidence
intervals in v correspond to 68% confidence intervals in a.

A small warning: for many/most likelihoods and finite statistics the
estimated intervals will not be exact = “the error has an error”
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Mini Exercise: ML for radioactive decay

Probability density p(t, \) = \e™
Determine an ML-estimate ) for case of one single decay at time t;
@ Analytically
o calculate w = InL = Inp(t;, ) and find A from dw/dX = 0

e Estimate the uncertainty of A from the gaussian approximation of L:

(b T
2T\ Tdae A=A

@ Graphically
Plot the y? = —2InL in ROOT (case t; = 1):
o TF1 *f1 = new TF1("f1","-2*log(x)+2*x",0,5); f1->Draw();
@ Determine ) from the min. y2 and an uncertainty estimate from
2
Xmin +1
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Mini Exercise: ML for radioactive decay

Probability density p(t, \) = \e™
Determine an MLH-estimate ) for case of one single decay at time t;

@ Analytically:
o calculate w = InL = Inp(t;, ) and find A from dw/d\ = 0
dw/d\ = % —1

dw/dA=0<A=1

f
@ Determine an estimate for the uncertainty of \ from

2 —1/2
o5 = 0% . (parabola approximation of InL around the
dA? a=5

maximum) 9% = 41 )= L = o =X =1/t
@ graphically:
Plot the y? = —2InL in ROOT (case t; = 1):
o TF1 *f1 = new TF1("f1","-2*log(x)+2*x",0,5); f1->Draw();
@ Determine ) from the min. x2 and its uncertainty from X2+ 1
=1 O+1A4
- —Y-0.6
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Mini Exercise: ML for radioactive decay

Likelihood—function for single radioactive decay ot t=1
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Mini Exercise: ML for radioactive decay

N
Maximum Likelihood (MLH): Radioactive decay L = [] Ae !

] 2 __ 2 2 i—
Define x* = —2In(L) and plot x* — x#n i=1
= s E ¥ = 4 F
E parabola opprox. | | E K . .
= / R @ For illustration here for all
| 1 £ ~
2 ;b 1decay / Z25 F\-10-deca . cases: A =1
5o SR ’
2 | / 15 E .
:\ Fy - £ @ More decays — principal
L / 1 F >
1 2 E R
A 05 frfnd shape of L doesn't change,
O:‘\ ol b bew OE\ \H\N\L/ﬁ/u\ L p g
1 2 5 0.6 0.8 1 1.2 1.4 jUSt Zooming m]
A
=~ 5F =
T 4 F T35 F
TR 100 decays T ;\ 10000 decays /
i F) o5 f\ /
¥ b JT 2 B
2 "\ 1 E
[ 15 F
L 0.5 F
0.8 0.9 1 1.1 1.2 0,98 0.99 1 1.01 1.02
A A
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ML application - Fractions of two processes

@ Often two processes contribute to data (e.g. Higgs production and
QCD background) = want to determine fractions f; and f, =1 —f;

@ Exploit different shapes in variable x (e.g. multivariate
discriminator)

@ Probability density: p(x) = fip1(x) + (1 — f1)p2(x)

@ Example:

@ gaussian shapes for p; and p, with mean values of —1 and +1 and
unit variance
@ 453 events recorded

= Likelihood function:
L~ 123 |fy e~ (i—1%/2 4 (1 — f)) e~ (i t1)?/2
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ML application - Fractions of two processes

For illustration data are shown binned unbinned In L

B 18 (@) & Of
= 16 — sum ~
=) . =
o 14t A - signal 1|| — 050
QN L signal 2 \I] '
12
‘ =
10 L=
8
6
4 -1.5
2 ., IS S T S T N S S N
0 e g o 0.220.24 0.26 0.28 0.3 0.32
X ﬁ,IOW ﬁ ﬁ,up
= f|tted fI’aCtion fl - 02731—8828 Plots Copyright Wiley & Sons
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Extended ML

@ Often one wants to determine absolute rates of processes (e.qg.
Higgs production and QCD background)

@ For repeated experiments rates will fluctuate according to Poisson
statistics

= Introduce multiplicative factor in Likelihood:
n n —
L(v,a) = exp{—v} & [ p(xi|d)
i=1
n
InL = >"Inp(x|d) + nInv — v + const.
i=1

@ When v is independentofda: = 7 =nand a stays unaltered

@ When v is a function of &: = improved estimates can be
obtained, example: m(top) determination from observed tt
production cross section at CMS, arXiv:1307.1907, needs theory
input.
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Extended ML example - Rates of two processes

[ data

entries
=

& 320 23 4
X

@ Extended likelihood for our earlier two process example:

453
L — eV .48 H [fl e~ (1?2 | (1-f,) e—(xi+1)2/2]
i=1
453
— e H [Vl e (172 4, e—(xi+1)2/2} ’
i=1

where we have used the equivalence v; = fyvand v, = (1 —f1) v
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Extended ML example - Rates of two processes

@ Plot shows InL contours vs v, and v» around In Lipax:

@ Use Profile Likelihood method

360 .
~ / \VW N2 to determine Ay _ and Ay
i
Vaap 3504 . Q=05 N\ @ Profiled curve: 0,(v1) are the
340 AQ,,\ the points in v, where InL has a
b, 330,\\ 2\ maximum for given fixed 14
3200 \\ ZP%0 e the two points where B5(11)
\ AY T crosses the AInL = —-0.5
V0w 310F
2low A7 AT / contour
300 b - @ vijow =1 — Ay _
100 110 120 130 140 150 o viup — i1+ Dby y
v (Y ’ a
Blow T T V, define a 68% CL interval for v;.
Plot Copyright Wiley & Sons @ Results: vV = 1241—%2 and

vp = 329721
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Profile Likelihood

@ The Profile Likelihood method is an generalisation/extension of
the x2,, + 1 (= InLmax — 1/2) method for one parameter a to a
parameter vector a of dimension |

o (32, §3, ey éj)(al) denote the “profiled” points in (az, as, ..., a;) with
maximal In L for given fixed a;

@ the two points where (32, §3, ey éj)(al) crosses the AInL = -0.5
contour define a 68% CL interval for a;:

@ the uncertainties coincide with the Hesse (= 2nd derivative)
approach for multivariate gaussian likelihoods
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From unbinned to binned fits (multinomial)

n
@ Unbinned ML: L = [] p(x|@) = max
i=1
= Can become CPU intensive for large event numbers n

@ Binned fits in m bins: provide an alternative

@ Probability for events to appear in bin i
x"P

i m
pi(@) = [ p(x|a)dx;  notethat} pj=1

XIIow i=1
m
@ k; = observed number of events in bini; notethat > ki =n
i=1
m ki
= Multinomial statistics: | L = n! [] % = max
i=1

o Popular bin-centre approximation: p;(a) ~ p(x°|&)Ax;
with x¢ the bin-centre position and Ax; the bin-width
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@ 10000 decays according to p(t, \) = e~ with true A = 1:

@ Multinomial fit with proper bin-integration

F ‘)(’/ndf 3098 / 305 ‘{/ndf 2623 | 8
200 ; P1 0.9892 + 0.9893E-02 6000 E P1 0.9919 + 0.1033E-01
150
4000
100 1000 bins
E 2000 20 bins
S0 -
0: TN I REEN R 0 TTEIN ERE NI AR
0 5 10 15 20 0 5 10 15 20
Lifetime distribution Lifetimedistribution
C )lfl/ndf 41490/987:i oasse-o1 | 10000 ;l_ézmdf 184701979§1 01737E-01
8000 L
[ 7500 —
6000 — L
a0 |- | 10bins 5000 - || Sbins
2000 2500 — \
07\ T T RE R RURR) 0 L T IR AR
0 5 10 15 20 0 5 10 15 20

Lifetimedistribution
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Lifetimedistribution

Maximum likelihood method

=- proper results for

any binning

= Information loss

Example binned multinomial fit: exponential decay

(error increase) only

for very rough
binning
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Example binned multinomial fit: exponential decay

@ 10000 decays according to p(t, \) = A e~ with true A = 1:
@ Multinomial fit with bin-centre approximation

F ‘ /ndf 3098 / 305 ‘{/ndf 2019 | 8
r P1 09892 + 0.9892E-02 E P1 0.9885 + 0.1024E-01
200 |- 6000
150
4000
100 1000 bins
E 2000 20 bins
S0 -
0: TN I REEN R 0 TTEIN ERE NI AR
0 5 10 15 20 0 5 10 15 20
Lifetimedistribution Lifetimedistribution
C )lfl/ndf 19530/937:1 o0a017e-01 |10000 ;Lﬁ{mdf e 0167751 0.7160E-02
8000 - f = becomes
[ 7! L .
6000 |- x0T problematic at
w00 | 10bins s000 |- \ | 5bins rough binning
2000 2500 — \
07\\\ T R RE EURR) 0 L T IR AR
0 5 10 15 20 0 5 10 15 20
Lifetimedistribution Lifetimedistribution
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Binned fits: from Multinomial to Poisson (extended ML)

m
= Multinomial statistics: L = n! ] %7 =
=- Poisson statistics: The total number of expected events v is a free
parameter

L=e" V.V_. lr_n[
N! i=1

Poisson is usually a good choice for fits to histograms!

m kl -
= [[e g =max, withy =vp;
i=1
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Binned fits: estimator choices

Histogram with m bins:
ki = number of observed events in bins
v; = number of expected events (depending on fit parameters)

Fit of mass spectrum with p2+g (option 1)

X/ndf 1049 | 84

(%]
[} PL 84824 1312 H H H
2 = = ez @ Poisson Likelihood:
UCJGO o P4 a0+ 5269 m
PS5 1373+ 01962 ~
Pe 1454 01747 Xz = —2 In L = 2[ E I/i — kl In I/|]
i=1

@ Neyman y?:
m ki —14)?
=3 ( m )

i=1
@ Pearson y?:
m
> K —1i )2
X< = Z ( |Vi i)
120 140 160 180 200 i=1

Mass(pp) [GeV]
@ Both 2 estimators have problems: biased results, cannot treat
bins with ki = 0, = use Poisson likelihood!

Olaf Behnke (DESY) Maximum likelihood method DESY, 4.4.2014 24/ 25



@ Maximum Likelihood method is a powerful tool to estimate
underlying physics parameters from data

@ Choose the appropriate likelihood function for your problem:

XZ

Unbinned: normal likelihood or extended
Binned: multinomial or Poisson,
Binomial (not discussed here)

@ etc.

@ Estimate 68% CL intervals from parameter points where InL drop

by 0.5 from maximum (or by 1.0 if you use Y= = —2InL)
For many parameters use profile likelihood

® ¢ ¢ ¢
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