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 Focus on advanced multivariate methods
— Methods in Theory

e Overview

— Methods 1in Practice
e (Classification Tutorials

— Simple gaussians, H> 77> 4] example
* Regression Tutorials

— Calorimetry exercise, function estimation with Bayesian
Neural Networks
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Literature

G. James, et al. “Introduction to Statistical Learning” Springer 2013
C.M. Bishop “Pattern Recognition and Machine Learning” Springer 2006

J. R. Quinlan “C4.5: Programs for Machine Learning” Morgan Kaufmann 1992

Talks/Tutorials

Harrison Prosper’s INFN statistics school 2013 talk

https://agenda.infn.it/getFile.py/access?
contribld=11&resld=1&materialld=slides&confld=571

TMVA @ Root Users Workshop 2013
http://indico.cern.ch/event/217511/contribution/37/material/slides/0.pdf

Past DESY Statistics schools
http://www.terascale.de/schools_and_workshops/
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TMVA: by A. Hocker et al. http://tmva.sourceforge.net
SPR: by I. Narsky http://statpatrec.sourceforge.net/

R: http://www.rproject.org

MLPFit by Jerome Schwindling
http://schwind.web.cern.ch/schwind/MLPfit.html

C4.5/C5.0 by J.R. Quinlan
http://www.rulequest.com/Personal/c4.518.tar.gz

Rulefit by J. Friedman http://statweb.stanford.edu/~jhf/R _RuleFit.html
CLUS http://dtai.cs.kuleuven.be/clus/
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Many in HEP
Some typical use cases

* C(lassification
— Particle identification (ID)
* Is this a pear (photon/electron) or an apple (jet)?

— Searches for new physics

* Various MVA methods used by past and current physics analyses to
find new physics or set limits on theoretical models
— Does this look like SUSY or background event?

* Regression

— Calorimetry

* Energy deposited by particles in non-compensating multi-layered
calorimeter better measured by a function of individual energy
deposits, cluster shapes obtained with MVA
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Available Methods

Again a short list of multivariate (MVA) methods that can be
used for classification:

April 3, 2014

Random Grid Search '

Fisher Discriminant
Quadratic Discriminant
Naive Bayes (Likelihood)
Kernel Density Estimation
Binary Decision Trees
Neural Networks
Bayesian Neural Networks
Support Vector Machines
Random Forests

Genetic Algorithms
Predictive Clustering

_/
\

Sergei V. Gleyzer, H.B. Prosper, C. Rosemann

— Lecture |

— Lecture ll
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lllustrative Example
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Signal Background
g
Z/y*
H
g
q ¢
pp—H —=ZZ—= 0" 1" pp—=>2ZZ —= 000

We'll (re)use this example to illustrate a few of the methods.
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4-Lepton Event ATLAS

@AT LAS

EXPERIMENT
http://atlas.ch

Run: 204769
Event: 71902630
Date: 2012-06-10
Time: 13:24:31 CEST
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4-Lepton Event CMS

CMS Experiment at LHC, CERN

Data recorded: Thu Oct 13 03:39:46 2011 CEST
Run/Event: 178421 / 87514902

Lumi section: 86

s,
= (Z) Ep:8 GeV
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e

7 TeV DATA

4 +7Y Mass: 126.1 GeV

U*Z,) pr:6GeV

1(Z,) pr: 14 GeV

UHZ,) pr: 67 GeV o
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Feature Selection
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Feature Selection

Picking variables:

* Usually pick variables (features) that show
standalone discrimination power

* Try to cover all degrees of freedom

— don’t worry 1f you end up with a few extra
variables, they can be winnowed afterwards

Important! how well the variables work
together 1n the classifier

April 3, 2014 Sergei V. Gleyzer, H.B. Prosper, C. Rosemann  DESY STAT School 2014 15



2t Feature Selection
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Paradigm: tool for variable selection 1n
classification context

* Variable importance —— proportional to classifier

VI(X,) = E F(S)x Wy (S) performance 1n which

Ss0_, . scvxes variable participates
2 ol Variable set V ; F(S—1X 1)
g 0 — Variable subsets S ; W, (S)=1- 7S) i
E — Classifier performance F (S)

N
(=)

Amount of classifier loss (or

I..- 1 gain)if variable X, is removed
| |

| [ 1 g
F ® o= © o= o=

= you ,Q'_h ,'——-"; }-—
'E_ 3 3 Y=Y

\
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Building Classifiers
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In supervised (as opposed to unsupervised or semi-
supervised) learning scenario, data are labeled at
the training stage

* Split data into at least two sets
— Keep training and test (evaluation) sets separated

&
Test Error
\A/

A
Training Error

S
-

— Monitor training/test error rates
* Watch out for overtraining
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Binary Decision Trees

Building a tree:

* Scan along each variable and propose a
DECISION

— A cut on value that maximizes class separation
(binary branching)

< 80% > 80.46

April 3, 2014 Sergei V. Gleyzer, H.B. Prosper, C. Rosemann  DESY STAT School 2014 21
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Building a tree:

Choose decision that leads to greatest separation
among classes signal/background
— Based on the information gained from split

* Build regions of increasing purity

* Stop when no further improvement from additional branching
* Reach terminal node (leaf) and :
o
assign purity-based class -
N

signal

+ N

< value > value

N

signal background
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Representation

2-D Example Typical N-D Tree

April 3, 2014

Sergei V. Gleyzer, H.B. Prosper, C. Rosemann

DESY STAT School 2014

23



25 Pruning

IIIII

Decision trees can become large and complex
and risk over-fitting the data

Pruning: remove parts of the tree that are less
powerful or possibly noisy

— start from the leaves and work back up

Pruned trees smaller 1n size, easier to interpret

April 3, 2014 Sergei V. Gleyzer, H.B. Prosper, C. Rosemann  DESY STAT School 2014 24
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Over-training or over-fitting sometimes occurs
when too many parameters for data size

* Diagnose with

TMVA overtraining check for classifier: BDT |
3

. . . § S'ighall ('teét éa'mfjle')l T '-'Sigﬁai(t'rai'ni'ndsérﬁplle)l o
— divergent Training/ =, [ St ot i
g 2.5 __Kolmogorov-Smirnovtesl: signal (background) probability = 2 v
=

N
LI L

Testing error slopes
— K-S test

e Treat with

— Prune decision trees

iy
- (4]
T T T T

ow (S,B): (0.0, 0.0)% / (0.0, 0.0)%

S
tn

0 A

BDT response

— Winnow: reduce number of parameters
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Neural Networks (NN

s

Sergei V. Gleyzer, H.B. Prosper, C. Rosemann
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Graphical Representation

H 1
C.
J f(x,w)y=a+ ) b.tanh|c, + Y d x,

1
1+exp[—f(x,w)]

Output Layer J

f is used for regression
n is used for classification

w=a,b,c,d

n(x,w) =

n(x, w)

Hidden Layer
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Compute optimal network weights with
derivatives dE/dw
— Calculate gradients of errors for adjustable weights

("

&

OIS

: S5 9

So—s -

@ ;,7//[/

N\ ff',//

'@
(-

Inputs go forward in feed-forward neural networks
Errors go backward! Back-propagation

April 3, 2014 Sergei V. Gleyzer, H.B. Prosper, C. Rosemann  DESY STAT School 2014
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Can approximate any continuous function
Complexity determined by number of
hidden layers and hidden nodes/layer

Many types of neural networks!
Watch out for overtraining -1

]
‘
:
'
'
]
1
'
'
'
'
i
(
\
TN,
v/ X
Vg )
\
\ h
i

Training Error: 0.160 Training Error: 0.100
Test Error: 0.223 Test Error: 0.259
Bayes Error:  0.210 Bayes Error:  0.210
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Classifier Performance
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Recerver Operating Characteristic (ROC)
curve

Perfect Classifier

Commonly used metric gof T T T
I% 08F E

) ) ?0.7F =

Shows the relationship 06; Line of pandom
between correctly classified oo guessing E
positive cases (sensitivity) and 03k E
incorrectly classified negative 0.2F E
o e 0.1F 3

cases (1-effectivity) | A
1 - effectivity
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Recerver Operating Characteristic (ROC)

| Background rejection versus Signal efficiency |

TMVA
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Ensemble Methods

Suppose you have a collection of discriminants
f (x, w,), which, individually, perform only
marginally better than random guessing.

K

f(x)=a,+ ; a, f(x,w,)

From such discriminants, weak learners, it is
possible to build highly effective ones by

averaging over them:
Jerome Friedman & Bogdan Popescu (2008)



2 Ensemble Methods
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Usually used with decision trees but they are
more general. Most popular methods are:
Bagging

* Each tree trained on a bootstrap sample drawn from
training set

Random Forest

* Bagging with randomized trees
— Random subsets of features used at each split

Boosting

* Each tree trained on a different weighting of full training
set

April 3, 2014 Sergei V. Gleyzer, H.B. Prosper, C. Rosemann  DESY STAT School 2014 36
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Adaptive Boosting
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Train 1n stages

* Adaptive weights
— ADABoost: Freund & Schapire 1997

* Misclassified events get a larger weight going into
the next training stage
— Classify with a majority vote from all trees
* Works very well to improve classification power
of “greedy” decision trees
— can be used with other classifiers

April 3, 2014 Sergei V. Gleyzer, H.B. Prosper, C. Rosemann  DESY STAT School 2014 38
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Repeat K times:

1. Create a decision tree f (x, w)

2. Compute its error rate & on the weighted training set
3. Computea=In(l-¢)/&
4

. Modify training set: increase weight of incorrectly
classified examples relative to the weights of those
that are correctly classified

Then compute weighted average f(x) = > o, f(x, w,)

Y. Freund and R.E. Schapire.
Journal of Computer and Sys. Sci. 55 (1), 119 (1997)

April 3, 2014 Sergei V. Gleyzer, H.B. Prosper, C. Rosemann  DESY STAT School 2014 39
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6 lreas 100 frees

150
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Function Estimation
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= Function Estimation

e by Gauss (1805) g
Approx1mate traJ ectory of a comet from 0bservat10ns |

/ “minimize dlfference between
measurement and pI’CdICthIlS 1n a systematle
* fashlon | ‘ R
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 Think of decision trees as multidimensional
histograms

— Bins are recursively constructed

— Each associated to the value of f(x) to be
approximated

* To go from classification to regression change the
evaluation criteria used in the learning algorithm

— from maximum separation gain to minimal
variance from resulting subspace cuts

April 3, 2014 Sergei V. Gleyzer, H.B. Prosper, C. Rosemann  DESY STAT School 2014 46
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Improve calorimeter resolution by applying
regression

Inputs: electromagnetic shower
information, other calorimetric variables

Target Output: calorimeter energy

April 3, 2014 Sergei V. Gleyzer, H.B. Prosper, C. Rosemann  DESY STAT School 2014 47
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TMVA Input Variable: vari+va TMVA Input Variable: vari-vai

g o3 3 0.5 ST Py
E’ 0.25 j £ 2 o4 7 Background 2
2 iz s i

e (lassification Exercises A,B
— Simple Gaussians

e (Classification Exercise C
— Real HEP example H=>ZZ7 41

* Regression Exercise D
— Toy calorimeter regression

pp—H—=ZZ— ("""

Optional exercises: Advanced classification
BNN regression
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* Machine learning provides powerful multivariate

methods for many classification/regression problems
in HEP

* Ensemble methods are powerful extensions of
these methods

* Comprehensive tools developed by HEP
community widely used (TMVA, SPR, Paradigm)
— try them ©

Plenty of problems await to be TACKLED!
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Proceed to
Classification Tutorial B
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Additional Material
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Problem 13: Prove the conjecture
In general, 1t 1s impossible to do the following:

f(xb""xn) - F( gl(xl)ﬁ"'a gn(xn) )

But, in 1957, Kolmogorov disproved Hilbert’s conjecture!
Today, we know that functions of the form

H 1
f(x,x,)=a+ .Elbf tanh[cj + Zdﬂ.xi
J= 1=

can provide arbitrarily accurate approximations.
(Hornik, Stinchcombe, and White,

Neural Networks 2, 359-366 (1989)) ' m,
'8y
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Bayesian Neural Networks
(BNN)
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Given: p(w|T)=p(T|w)p(w)/p(T)
over the parameter space of the functions

n(x, w)=1/[1+exp(—f (x, w))]

can estimate p(s | x) as follows

p(s | X) ~nx) = [ nx, w) p(w | 7) dw

n(x) 1s called a Bayesian Neural Network (BNN)

April 3, 2014 Sergei V. Gleyzer, H.B. Prosper, C. Rosemann  DESY STAT School 2014 54
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Generate Sample

N points {w} from p(w | 7) using a Markov chain Monte Carlo
(MCMC) technique and

average over the last M points
n@)  =[n(x, w)pw|7)dw

~Y n(x, w)) | M
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Input Space Feature Space
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Generalization of the Fisher discriminant
— Boser, Guyon and Vapnik, 1992

Basic Idea

Data that are non-separable in d-dimensions may be better
separated 1f mapped 1nto a space of higher (usually,
infinite) dimension

h:R — R

As 1n the Fisher discriminant, a hyper-plane is used to
partition the high dimensional space f(x)=w h(x)+ ¢

April 3, 2014 Sergei V. Gleyzer, H.B. Prosper, C. Rosemann  DESY STAT School 2014 58
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Consider separable data in the high
dimensional space
ogreen plane: w.h(x)+c= 0
red plane: w.A(x,)+c=+1
blue plane:  w.h(x,)+c=—1

subtract blue from red
w.lh(x,) — h(e)] =2

and normalize the high dimensional
vectorw  W.[A(X,) — h(x,)] = 2/||w||
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m = w.[h(x,) — h(x,)], the distance
between the red and blue planes, 1s
called the margin. The best separation
occurs when the margin 1is as large as
possible.

Note: because m ~ 1/||w||,

maximizing the margin

1s equivalent to minimizing
][
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7= Support Vector Machines

IIIII

Label the red dots y = +1 and the blue dots y = —1. The task 1s

to minimize ||w||* subject to the constraint
yiwhx)+c)=1, 1=1...N

‘ ‘

o that 1s, the task 1s to minimize

L(w,c,a) = %HWH

— iai [yl.(W°h(xl.)+c)—1]

where the a > 0 are Lagrange multipliers
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Ziz Support Vector Machines

IIIII

When L(w,c,0) is minimized with respect to w and ¢, the function
L(w,c,0) can be transformed to

N 1 XN
E(a) = Zai _Ezzaiajyiyjh(xi).h(xj)

At the minimum of E(a), the only non-zero coefficients o are
those corresponding to points on the red and blue planes: the so-
called support vectors. The key 1dea is to replace the scalar
product A(x;).h(x;) between two vectors of infinitely many
dimensions by a kernel function K(x; x)).

* The (unsolved) problem 1s how to choose the correct kernel for
a given problem?
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Zh e Genetic Algorlthms

IIIII

Central idea: adaptation. Inspired by evolutionary
biology concepts of mutation, selection, cross-over
(recombination) J.H. Holand, 1975

Begin with a large population of random solutions

* Evaluate each one
— Fitness function (some form of S/VB)

— Keep the best subset

e Use 1t to build new solutions
e Allow mutation, cross-over
* Optimize over number of epochs/cycles

Used most frequently in HEP for rectangular
cut optimization (computationally intensive)



Zhi Extensions

IIIII

Classification
* Relatively easy to extend existing classifiers to
handle more classes: just add more classes

Regression
* Very hard to do well

— Nevertheless, very practical

* Less explored area in machine learning
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71z Multi-Function Regression

Helmbholtz Allia

For problems that require simultaneous estimation of
N functions (that are possibly related)

— N single-function regression model solution 1s too
cumbersome

— Also less accurate

— Correlations among functions may be important and need
to be accounted for

Multi-function regression models are a better solution
in this case
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i Multi-Objective Model

IIIII

* Properly take into account dependencies between
output attributes (their correlations)

* improved performance results compared to
single-objective models, especially 1n ensembles

— usually smaller and easier to interpret

— very useful for transformations
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7l Predictive Clustering

Helmholtz Alliance

Example of a multi-function regression
model based on trees or rules

— Decision trees are equated to clustering trees
by P. Langley in 1996, first noted by Fisher in
1993

— Cluster “hierarchy”
Each tree node corresponds to a cluster

Root node contains full dataset partitioned
recursively into sub-clusters
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iz Clustering Concept

IIIII

Use decision tree induction to obtain
clusters with:
— minimal intra-cluster distance
* between examples from the same cluster

— maximal inter-cluster distance

* between examples from different clusters

* In classification trees distance metric 1s class
enthropy
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Clustering Example

14 input variables {a, b, c, d...}
— 4 of them strongly correlated

14 target outputs to estimate {A, B, C, D...}
— 4 of them strongly correlated

Challenge: build a predictive model to describe
simultaneously all the outputs {A,B,C,D...},
provided a corresponding set of inputs.

For example: These can be correlated EM shower-
shapes
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IIIII

Predictive clustering implementation
* Decision tree and rule induction system

* Designed for multi-task learning and
multi-label classification

 Well-suited for both classification and
regression problems
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i Learning Procedure

Helmholtz Alliance

Train the predictive clustering model by providing
a “map”’ between inputs and outputs. Let 1t learn.

Evaluate: Use the Test set to compare predictions
on “unseen’ data to the Target values of the
outputs.
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Helmholtz Alliance

Hlustrative Example

107 10-1?
102 102
10% 10°
104 UE L 104 | L HH ‘JH ;
Fhﬂﬂl e R :‘l‘lhmi‘:umih‘injLH\HE‘ RN
-0.04 -0.02 0 0.02 0.04 0.06 0.08 0.6 0.65 0.7 0.75 0.8 0. 0.95 1
Target A Target B
i 107"
10'1? =
B — target 102
102 : icti =
E- | e prediction E
103 10° =
10 = . H . 10 =
:HHHMHE:MH H;H | I E—— | 1 SO | N T I AP B | 6511 N S S I |
0.7 0.75 0.8 0.85 0.9 0.95 1 0.007 0.008 0.009 0.01 0.011 0.012 0.013 0.014 0.015
Target C Target D
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2R Correlations %

Helmholtz Alliance

Target Correlations

Prediction-Target Difference

Very close to Zero
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/RA Clustering Rules

IIIII

Clustering rules can be constructed from
predictive clustering trees

Main difference: simple rules focus on the
accuracy connected to the target

Predictive clustering rules focus on:
* target attribute accuracy

* tight or compact rule coverage of the instances
by computing their distance metric
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2 Summary 11

lllllllllllllllll

* Many multivariate methods available: pick
the one that best suits your problem

— Good starting points: random grid search, boosted
decision trees, neural networks

— Then: support vector machines, random forests ,
bayesian neural networks, predictive clustering

* Both classification and regression can be
generalized to multiple classes and targets

— Predictive clustering 1s a good example of both
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