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INTRODUCTION




Introduction — Multivariate Data

0.3
D@ 1995

Top quark discovery 0.2

<
p—

x= (A4, Hy)

Aplanarity
S o

<
b

pp >t >+ jets |

Data

105 pb™

l

_____________

i MC __ 71b"

- N b ns
b3 8| s "
o e S = e
" - ._’." u--"-‘ -
S B e, ¥y e
| P -

________

W-ll-ftj ets

|
|
1
1
I
I
I
1
‘i
" al o
«" |
- -
1' i
» |
227, ST
AR .
- ae e b
e _..‘-. 5.1‘-
A
ST L e B
- POl ___ ]|
LI g NS gy g
X .'..I,.

100 200 300 4000

H (GeV)

T

MC385 pb’




Introduction — General Approaches

Two general approaches:

Machine Learning

Given training data T = (y, xX) = (), X)1,...(, X)y» @
function space { f }, and a constraint on these functions,
teach a machine to learn the mapping y = 1 (x).

Bayesian Learning

Given training data 7, a function space{ f }, the
likelthood of the training data, and a prior defined on the
space of functions, infer the mapping y = 1 (x).




Machine Learning

Choose
Function space F={f(x,w)}

Constraint C F
Loss function™ L ﬁ\
S x, w*)

Method
Find f (x) by minimizing the empirical risk R(w)
subject to the constraint

RU, 1= 2 L0 5w Con)

*The loss function measures the cost of choosing badly




Machine Learning

Many methods (e.g., neural networks, boosted decision trees,
rule-based systems, random forests,...) use the

quadratic loss

L(y,f(X,W)) — [y_ f(xaw)]z

and choose f (x, w*) by minimizing the
constrained mean square empirical risk
1 N

RUf1= 5 200 = S, wF +Cw)




Bayesian Learning

Choose
Function space F={f(x,w)}
Likelihood p(T | w), T=(y,x)
Loss function L
Prior p(w)

Method

Use Bayes’ theorem to assign a probability (density)
pw [T)=p(T | w) p(w) / p(T)
=pW | x, w) p(x | w) p(w) / p(y | x) p(x)
~pW|x,w)p(w)  (assuming p(x | w) = p(x))

to every function 1n the function space.




Bayesian Learning

Given, the posterior density p(w | T), and new data x one
computes the (predictive) distribution

p(y1%.T)=[ p(y]x.w)p(w|T)dw

If a definite value for y 1s needed for every x, this can be
obtained by minimizing the (risk) function,

RIf,1= | L(y./)p(y|x.T)dy

which for L = (y — f)? approximates f (x) by the average

fx)=5x,T)= [ yp(y|x.T)dy




Bayesian Learning

Suppose that y has only two values 0 and 1, for every x, then

fx)=[yp(y|x,T)dy
reduces to

f(x)=p(|x,T)
where y = 1 1s associated with objects to be kept and y =0
with objects to be discarded. For example, in an e-mail filter,
we can reject junk e-mail using the (complement of the) rule

if p(1|x, T) > q accept x

which 1s called the Bayes classifier
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CLASSIFICATION
IN THEORY
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Classification: Theory

A Signal density
p(x, s) = plx | s) p(s)

Background density
p(x, b) =p(x | b) p(b)

density
p (x)

Optimality criterion: minimize the error rate, o + 3
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Classification: Theory

The total loss L arising from classification errors is given by

L=1L, | H( ) p(x,b)dx Cgst of b.ackg.round
v misclassification
+ L |[1- H(f)]p(x,s)dx  Cost of signal
: misclassification

where f (x) = 0 defines a decision boundary
such that f (x) > 0 defines the acceptance region

H(f) 1s the Heaviside step function:
H(f) =11t £> 0, 0 otherwise

13



Classification: Theory

1-D example

L= Lij(x —x,)p(x,b)dx + LSJ[I — H(x—x,)]p(x,s)dx
Minimizing the total loss L with respect to the boundary x,

L, _ pGpss) _| p(x,|9) | p(s)

leads to the result: =
L p(x,,b) | p(x,|b) | p(b)

The quantity in brackets 1s just the likelihood ratio. The
result, in the context of hypothesis testing (with p(s) = p(b)),
1s called the Neyman-Pearson lemma (1933)

14



Classification: Theory

The ratio

plx,s) _ p(s|x) _ )
b plblo) B(x), p(s|x)= p(x,s)/ p(x)

p(b[x)= p(x,b)/ p(x)

is called the Bayes discriminant because of its close
connection to Bayes’ theorem:

B _ e Pl9)p(s)
1+ B(x) p(x|$)p(s)+ p(x | b)p(b)

15



Classification: The Bayes Connection

Consider the mean squared risk in the limit N— infinity,

Zlyvm%wn+cwo

ejﬁjwu G w)F p(y,x)
= [dx po)| [y (y= 17 p(y1%)|

where we have written p(y | x) = p(y, x) / p(x) and where we
have assumed that the effect of the constraint (in this limit)
1s negligible.
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Classification: The Bayes Connection

Now minimize the functional R[ /] with respect to /. If the
function f1s sufficiently flexible, then R[ /] will reach its
absolute minimum. Then for any small change 0 f in f

SRLS1=2[dx p(x)f| [dv(y= f)p(y]x)|=0

If we require the above to hold for all variations o f, for all x,
then the term 1n brackets must be zero.

[dv(y=Fp(y]x)=0

17



Classification: The Bayes Connection

Since for the signal class s, y = 1, while for the background, b,
y = 0, we obtain the important result:

f=[ypy|x)dy=pd|x)= p(s|x)

See, Ruck et al., IEEE Trans. Neural Networks 4, 296-298 (1990);
Wan, IEEE Trans. Neural Networks 4, 303-305 (1990);
Richard and Lippmann, Neural Computation. 3, 461-483 (1991)

In summary:
1. Given sufficient training data 7 and

2. a sufficiently flexible function £ (x, w), then f (x, w) will
approximate p(s | x), if y =1 1s assigned to objects of class
s and y = 0 1s assigned to objects of class b

18



Classification: The Discriminant

In practice, we typically do not use p(s | x) directly, but rather
the discriminant

Dy = Pl exp(h)

- p(x|s)+p(x]b)  1+exp(d)
where A(x)=In[p(x|s)/ p(x|b)]

This 1s fine because p(s | x) 1s a one-to-one function of D(x)
and therefore both have the same discrimination power

D(x)

P10 = po s a= ) o)
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CLASSIFICATION
IN PRACTICE
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Classification: In Practice

Here 1s a short list of multivariate (MVA) methods that can
be used for classification:

®* Random Grid Search

® Fisher Discriminant

® Quadratic Discriminant

® Naive Bayes (Likelithood Discriminant)
® Kernel Density Estimation
® Support Vector Machines
® Binary Decision Trees

® Neural Networks

® Bayesian Neural Networks
® RuleFit

® Random Forests
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ILLUSTRATIVE EXAMPLE

22



Example — H to ZZ to 4 Leptons

Signal Background
'. g ¢
£
- Y
p
d / Z[~*
¢ q ¢
pp—>H—SZZ 07000 pp—>ZZ —> U000

We shall use this example to illustrate a few of the methods.
We start with p(s) / p(b) ~ 1 /20 and use x = (m,,, m,,)
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A 4-Lepton Event from CMS

CMS Experiment at LHC, CERN

Data recorded: Thu Oct 13 03:39:46 2011 CEST
Run/Event: 178421 / 87514902
Lumi section: 86

(Z,) Ep:8 GeV

7 TeV DATA

44 +7Y Mass: 126.1 GeV A

UHZ,) pr:6GeV
U(Z,) pr: 14 GeV

U*Z,) pr: 67 GeV
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Random Grid Search




Random Grid Search (RGS)

Take each point of
the signal class as
a cut-point
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Example — H to ZZ to 4Leptons
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The red point gives p(s | x) / p(b | x)~1/1
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Linear & Quadratic Discriminants




Fisher (Linear) Discriminant

B(x)=

p(x|s)p(s)  Takeplx|s)andplx|D)tobe
Gaussian (and dropping the

P (x | b)p (b) constant term) yields

AMx) =

G(x

)

nG(x

>W-X+¢C

>
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Quadratic Discriminant

If we use different covariance matrices for the signal and the
background densities, we obtain the quadratic discriminant:

Ax) = (= 11,)" 55 (x = 1)
—(x—p) T (x - )

a fixed value of which defines a curved
surface that partitions the space {x}
into signal-rich and background-rich
regions

0O decision
boundary
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Neural Networks




U, a

Neural Networks

function class for regression

H
f(x,w)=b+) v, tanh
j=1

function class for classification

1

n(x,w)=

1+exp[—f(x,w)]




D0 Single Top Discovery, 2009
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Kernel Density Estimation




Kernel Density Estimation

Basic Idea

Place a kernel function at each point and adjust their
widths to obtain the best approximation

Parzen Estimation (1960s)

1 X—X
— L 1<n<N
p(x) N §n,¢( . ) n

Mixtures

p(x)=2 o(x.)q(j)  j<<N
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Kernel Density Estimation
Why does it work? In the limit N goes to infinity

1 X—x, | . X—z
p<x>=ﬁ2¢( p j / Jqp( p jp@dz

the true density p(x) will be recovered provided that the
kernel converges to a d-dimensional o-function:

go[x_hx” j 507 (x—2z)
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KDE of Signal and Background
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Summary

® Multivariate methods can be applied to many aspects of
data analysis. In this talk, we considered classification in
which the classification error rate 1s minimized.

® It 1s found that the Bayes discriminant, or any function
thereof, is the function that minimizes the error rate.

® There are many ways to approximate this function. But,
since no one method 1s guaranteed to be the best in all
circumstances, 1t 1s good practice to experiment with a few
of them.
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