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Two general approaches: 

 Machine Learning 
  Given training data T = (y, x) = (y, x)1,…(y, x)N, a 
function space { f  }, and a constraint on these functions, 
teach a machine to learn the mapping y = f (x). 

 Bayesian Learning 
  Given training data T, a function space{ f  }, the  
likelihood of the training data, and a prior defined on the 
space of functions, infer the mapping  y = f (x). 
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Choose 
 Function space  F = { f (x, w) } 
 Constraint   C 
 Loss function*  L 

Method 
 Find f (x) by minimizing the empirical risk R(w) 
      subject to the constraint 

     C(w) 

   

F 

f (x, w*) 
C(w) 

  
R[ fw] = 1

N
L( yi , f (xi ,w))

i=1

N

∑

*The loss function measures the cost of choosing badly 
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Many methods (e.g., neural networks, boosted decision trees, 
rule-based systems, random forests,…) use the  
 quadratic loss 

and choose f (x, w*) by minimizing the  
 constrained mean square empirical risk 

  L( y, f (x,w)) = [y − f (x,w)]2

  
R[ fw] = 1

N
[yi − f (xi ,w)]2

i=1

N

∑ + C(w)
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Given, the posterior density p(w | T),  and new data x one 
computes the (predictive) distribution  

If a definite value for y is needed for every x, this can be 
obtained by minimizing the (risk) function, 

which for L = (y – f )2 approximates f (x) by the average 
  
R[ fw] = L( y, f ) p( y | x,T ) dy∫

   
f (x)  y(x,T ) ≡ y p( y | x,T ) dy∫
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Suppose that y has only two values 0 and 1, for every x, then 

reduces to 

where y = 1 is associated with objects to be kept and y = 0  
with objects to be discarded. For example, in an e-mail filter, 
we can reject junk e-mail using the (complement of the) rule 

which is called the Bayes classifier 

    

  
f (x) = y p( y | x,T ) dy∫

  f (x) = p(1 | x, T )

if p(1 | x, T) > q accept x 
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Optimality criterion: minimize the error rate, α + β	



Background density 
p(x, b) = p(x | b) p(b) 

Signal density 
p(x, s) = p(x | s) p(s) 

x 

de
ns

ity
 

   
p 

(x
) 

x0 

β	


α	
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The total loss L arising from classification errors is given by 

  

L = Lb H ( f ) p(x,b) dx∫
+ Ls [1− H ( f )] p(x,s) dx∫

where f (x) = 0 defines a decision boundary 
such that f (x) > 0 defines the acceptance region 

H(f ) is the Heaviside step function:  
   H(f )  = 1 if f > 0, 0 otherwise 

Cost of background 
misclassification 
Cost of signal 
misclassification 
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L = Lb H (x − x0 ) p(x,b) dx∫ + Ls [1− H (x − x0 )]p(x,s) dx∫

1-D example 

Minimizing the total loss L with respect to the boundary x0 

  

Lb

Ls

=
p(x0 ,s)
p(x0 ,b)

=
p(x0 | s)
p(x0 | b)

⎡

⎣
⎢

⎤

⎦
⎥

p(s)
p(b)

leads to the result: 

The quantity in brackets is just the likelihood ratio. The 
result, in the context of hypothesis testing (with p(s) = p(b)),  
is called the Neyman-Pearson lemma (1933) 
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B(x)
1+ B(x)

= p(s | x) = p(x | s) p(s)
p(x | s) p(s) + p(x | b) p(b)

The ratio 

  

p(x,s)
p(x,b)

= p(s | x)
p(b | x)

≡ B(x), p(s | x) = p(x,s) / p(x)

                                             p(b | x) = p(x,b) / p(x)
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Consider the mean  squared risk in the limit N     infinity, 

where we have written p(y | x) = p(y, x) / p(x) and where we 
have assumed that the effect of the constraint (in this limit) 
is negligible. 

  

R[ f ] = 1
N

[yi − f (xi , w)]2

i=1

N

∑ + C(w)

→ dx∫ dy[y − f (x, w)]2 p( y,x)∫
= dx p(x)∫ dy ( y − f )2 p( y | x)∫⎡⎣ ⎤

⎦

→
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Now minimize the functional R[ f ] with respect to f. If the 
function f is sufficiently flexible, then R[ f ] will reach its 
absolute minimum. Then for any small change δ f  in f  

If we  require the above to hold for all variations δ f, for all x, 
then the term in brackets must be zero.  

  
δR[ f ] = 2 dx p(x)∫ δ f dy ( y − f ) p( y | x)∫⎡⎣ ⎤

⎦ = 0

  
dy ( y − f ) p( y | x)∫ = 0
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Since for the signal class s, y = 1, while for the background, b,  
y = 0, we obtain the important result: 

See,   Ruck et al., IEEE Trans. Neural Networks 4, 296-298 (1990); 
  Wan, IEEE Trans. Neural Networks 4, 303-305 (1990);   
  Richard and Lippmann, Neural Computation. 3, 461-483 (1991) 

In summary: 
1.  Given sufficient training data T and 
2.  a sufficiently flexible function f (x, w), then f (x, w) will 

approximate p(s | x), if y = 1 is assigned to objects of class 
s and y = 0 is assigned to objects of class b 

  
f = y p( y | x)∫ dy = p(1 | x) ≡ p(s | x)
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In practice, we typically do not use p(s | x) directly, but rather 
the discriminant 

This is fine because p(s | x) is a one-to-one function of D(x) 
and therefore both have the same discrimination power 

  

D(x) = p(x | s)
p(x | s) + p(x | b)

= exp(λ)
1+ exp(λ)

,

                     where  λ(x) ≡ ln[ p(x | s) / p(x | b)]

  
p(s | x) = D(x)

D(x) + [1− D(x)] / a
, a = p(s) / p(b)
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Here is a short list of multivariate (MVA) methods that can 
be used for classification:  
h Random Grid Search 
h Fisher Discriminant 
h Quadratic Discriminant 
h Naïve Bayes (Likelihood Discriminant) 
h Kernel Density Estimation 
h Support Vector Machines 
h Binary Decision Trees 
h Neural Networks 
h Bayesian Neural Networks 
h RuleFit 
h Random Forests 
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 pp→ H → ZZ → +− ′ + ′ −

Signal 

 pp→ ZZ → +− ′ + ′ −

Background 

We shall use this example to illustrate a few of the methods. 
We start with p(s) / p(b) ~ 1 / 20 and use x = (mZ1, mZ2) 

mZ1

mZ2
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Ntot  = # events before cuts 
Ncut  = # events after cuts 
Fraction  = Ncut/Ntot 

x > xi ,   y > yi

H.B.P. et al., Proceedings, CHEP 1995 
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The red point gives p(s | x) / p(b | x) ~ 1 / 1 
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λ(x) = ln

G x | µs ,Σ( )
G x | µb ,Σ( ) → w ⋅ x + c

Take p(x | s) and p(x | b) to be  
Gaussian (and dropping the  
constant term) yields 

w ⋅ x + c > 0

w ⋅ x + c < 0

  
B(x) = p(x | s) p(s)

p(x | b) p(b)

w ∝ Σ−1(µs − µb )

decision boundary 



If we use different covariance matrices for the signal and the 
background densities, we obtain the quadratic discriminant: 

    

    a fixed value of  which defines a curved 
   surface that partitions the space {x}  
   into signal-rich and background-rich  
   regions 
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λ(x) = (x − µb )T Σb
−1(x − µb )

− (x − µs )
T Σs

−1(x − µs )

decision 
boundary 





n(x,w) 

x1 

x2 

u, a 

v, b 

function class for regression 

function class for classification 
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Basic Idea 
 Place a kernel function at each point and adjust their 
widths to obtain the best approximation 

Parzen Estimation (1960s) 

Mixtures 
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Why does it work? In the limit N  goes to infinity 

the true density p(x) will be recovered provided that the 
kernel converges to a d-dimensional δ-function: 
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3000 points / KDE 
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h Multivariate methods can be applied to many aspects of 
data analysis. In this talk, we considered classification in 
which the classification error rate is minimized.  

h It is found that the Bayes discriminant, or any function 
thereof, is the function that minimizes the error rate. 

h There are many ways to approximate this function. But, 
since no one method is guaranteed to be the best in all 
circumstances, it is good practice to experiment with a few 
of them. 


