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Outline

* Light Shining through the wall (LSW)
experiments

* A LSW setup with microwaves

— Microwave cavities
— Shielding of Electromagnetic Interference (EMI)

— Narrowband signal detection

e The latest measurement run and its results



A quick recap
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ALP = Axion Like Particle
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HP = Hidden Photon

The ALP and the HP are hidden — but not completely invisible (if they exist):

ALPs (a) couple to photons (y) in a
strong magnetic field (B,)
- “Primakoff effect”

~

Hidden photons (HPs) couple to
photons (y)
- “Kinetic mixing”




Light shining through the Wall (LSW) experiments

Exploit the fact that ALPs or HPs ...
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Microwave LSW (CROWS)

Strong magnet
Cavity shielding box
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Cavities: the WISP “antennas”
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Emitting cavity: Detecting cavity:
* RFinput power=50 W * No input power (passive)
* Equivalentto 1 MW e Connected to a sensitive
due to resonant low noise amplifier
enhancement * Placed in a EM. Shielding
enclosure



Electromagnetic (EM) shielding

Leakage
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Low noise frontend

EMI shielding vessel (alu)
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Needs to function in the magnet at 3 Tesla! Several design iterations were necessary!



Narrowband signal detection

* We search for a sinusoidal Average spectral noise ks = Boltzmann const.
. . 1 = length of the rec-
WISP signal at a known power: orded time trace
frequency P, = kB T, /1 T, = cav. noise temp.
(= 300 K)

e Best method:
Discreet Fourier Transf.
- Power spectrum

10—22 )

* Dominating background:
thermal noise from the cavity
e Scaleswith1/1
* Power of WISP signal
stays constant with 1

Signal becomes visible

Spectral power [W]
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ALP measurement runs in
June 2013:

a strong magnet is needed ...

MMMMMMMMMMM



UNIVERSITE

MRI magnet at | bhsst

University of Geneva, Brain & Behaviour Laboratory many thanks to
. S. Rieger & C. Burrage
Made accessible for us on weekends . .



The setup in the magnet

Receiver and
i mRF power amp.
5| | behind thiswall
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View from front

Magnet could not be ramped down!

We had to be very careful during commissioning to avoid the “Missile effect”

- Only non-magnetic tools and components allowed
M. Betz, 2013
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The results (ALPs, June 2013)
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* Test tone signal is visible as narrow

line = Receiving chain was operational
No ALP candidate visible

M. Betz, 2013

detection threshold
-212.6dBm=5:102 W
= 1 photon every 2 seconds

http://arxiv.org/abs/1310.8098




Exclusion result for ALPs
no ALP detected

Most sensitive:
ma = 7.2e-06 eV

g = 4.5e-08 GeV!
Wideband:

g = 9.9e-08 GeV!

CROWS
06/2013

Coupling parameter g [GeV ]
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Exclusion result for HSPs
same setup — but no magnet
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Conclusion

 The CERN Resonant WISP search (CROWS)

— Competitive with the currently most sensitive
optical LSW experiment for ALPs (ALPS-I)

— New exclusion limits for HPs (!)
— Purely Lab based. Most certain exclusion limits

— Not competitive with “non — terrestrial”
experiments (but complementary)

* Achieved with a minimum of manpower

M. Betz, 2013



Outlook

* Better sensitivity to ALPs with:
— Stronger magnets (free 7 T MRI scanner?)
— Larger cavities (lower frequency)
— More RF power (we are only limited by cooling)

e Better sensitivity to HSPs with:

— Superconducting cavities (very challenging to keep
them on the same resonant frequency)

M. Betz, 2013
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Axions? Hidden Photons? WISPs?

Neutrino
visible axion, = .
excluded by QCD axion. Mini Charged Particle (MCP)
collider searches solves s[roﬁg
CP problem Chameleon

KFVZ model
DFSZ model Invisible axion, Hidden Sector Photon (HSP)

active search

ongoing Axion Like Particle (ALP),

string theory, dark matter
explains a larger number

of cosmological phenomena

QCD axion:

— Postulated in 1977 as solution to the “strong CP-problem”
in the Standard Model (SM)

— Later generalized to Axion Like Particles (ALPs)
Hidden Sector Photon (HSP):
— Common feature in many SM extensions (String theory, etc.)

Both turned out to be excellent dark matter candidates and can explain
many astrophysical phenomena




Where we hunt for Axion Like Particles (ALPs)

Sensitivity
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Detecting WISPs

* WISPs couple to photons (and vice versa)

— ALPs by the “Primakoff effect”,
requires an external magnetic field

— HSPs by kinetic mixing,
identical to neutrino oscillations, Likelihood of

no magnet needed producing a WISP:
Typically < 1/ 10%

Y d

T XX EXEEXEXX Y= Photon
a = Axion like particle (ALP)
B B, = Backg. Magn. field
0)



Light shining through the Wall experiments

vy = Photon
a = Axion like particle
B, = Backg. Magn. field

The energy of the
photon can be
between peV
(microwave photon)
up to keV and beyond
(gamma quantum)

Optical LSW:

For example “Any Light
Particle Search” (ALPS-I)
at DESY.
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