

The CERN Resonant WISP search (CROWS)

M. Betz, F. Caspers, M. Gasior

"Shining microwaves through walls"

Outline

Light Shining through the wall (LSW) experiments

- A LSW setup with microwaves
 - Microwave cavities
 - Shielding of Electromagnetic Interference (EMI)
 - Narrowband signal detection
- The latest measurement run and its results

A quick recap

ALP = Axion Like Particle

HP = Hidden Photon

The ALP and the HP are **hidden** – but **not** completely **invisible** (if they exist):

ALPs (a) couple to photons (γ) in a strong magnetic field (B_0)

→ "Primakoff effect"

Hidden photons (**HP**s) couple to photons (γ)

→ "Kinetic mixing"

Light shining through the Wall (LSW) experiments

Exploit the fact that ALPs or HPs ...

- ... can convert
 to photons and
 vice versa
- ... can penetrate"walls"

γ = Photon
a = Axion Like Particle
/ Hidden Photon

 B_a = Static Magn. field

The energy of the photon can be between **µeV** (microwave photon) up to **keV** and beyond (gamma quantum)

Microwave LSW (CROWS)

Easier to build resonators

Larger tolerances (cm wavelengths)

Photons are "cheaper" (I ess energy)

Sensitive coherent detection methods

Cavities: the WISP "antennas"

Emitting cavity:

- RF input power = 50 W
- Equivalent to 1 MW due to resonant enhancement

Detecting cavity:

- No input power (passive)
- Connected to a sensitive low noise amplifier
- Placed in a EM. Shielding enclosure

Electromagnetic (EM) shielding

≈ 300 dB of EM shielding is needed to attenuate Leakage and Ambient EMI below the detection threshold

Low noise frontend

Needs to function in the magnet at 3 Tesla! Several design iterations were necessary!

Narrowband signal detection

- We search for a sinusoidal WISP signal at a known frequency
- Best method:
 Discreet Fourier Transf.
 → Power spectrum
- Dominating background: thermal noise from the cavity
 - Scales with 1/1
 - Power of WISP signal stays constant with 1

Linear increase of signal to noise ratio with measurement time

Average spectral noise power:

$$P_n = k_B T_n / 1$$

k_B = Boltzmann const.
1 = length of the recorded time trace
T_n = cav. noise temp.

 $(\approx 300 \text{ K})$

ALP measurement runs in June 2013:

a strong magnet is needed ...

MRI magnet at

University of Geneva, Brain & Behaviour Laboratory

Made accessible for us on weekends

many thanks to **S. Rieger & C. Burrage**

The setup in the magnet

Magnet could not be ramped down!

We had to be very careful during commissioning to avoid the "Missile effect"

→ Only non-magnetic tools and components allowed

The results (ALPs, June 2013)

- Test tone signal is visible as narrow line → Receiving chain was operational
- No ALP candidate visible

detection threshold

 $-212.6 \text{ dBm} = 5 \cdot 10^{-25} \text{ W}$

≈ 1 photon every 2 seconds

Exclusion result for ALPs

no ALP detected

Exclusion result for HSPs

same setup – but no magnet

http://arxiv.org/abs/1310.8098

Conclusion

- The CERN Resonant WISP search (CROWS)
 - Competitive with the currently most sensitive optical LSW experiment for ALPs (ALPS-I)
 - New exclusion limits for HPs (!)
 - Purely Lab based. Most certain exclusion limits
 - Not competitive with "non terrestrial" experiments (but complementary)
- Achieved with a minimum of manpower

Outlook

- Better sensitivity to ALPs with:
 - Stronger magnets (free 7 T MRI scanner?)
 - Larger cavities (lower frequency)
 - More RF power (we are only limited by cooling)

- Better sensitivity to HSPs with:
 - Superconducting cavities (very challenging to keep them on the same resonant frequency)

<u>Acknowledgements</u>

- Thanks to S. Rieger and the Brain & Behaviour Laboratory at the University of Geneva for making the ALPs measurement in the MRI magnet possible
- We are grateful for support from R. Jones, E. Jensen and the BE department management at CERN

Thank you!

Axions? Hidden Photons? WISPs?

QCD axion:

- Postulated in 1977 as solution to the "strong CP-problem" in the Standard Model (SM)
- Later generalized to Axion Like Particles (ALPs)
- Hidden Sector Photon (HSP):
 - Common feature in many SM extensions (String theory, etc.)
- Both turned out to be excellent dark matter candidates and can explain many astrophysical phenomena

Where we hunt for Axion Like Particles (ALPs)

Mass

Detecting WISPs

- WISPs couple to photons (and vice versa)
 - ALPs by the "Primakoff effect",
 requires an external magnetic field
 - HSPs by kinetic mixing,
 identical to neutrino oscillations,
 no magnet needed

Likelihood of producing a WISP: Typically < 1 / 10²⁴

γ = Photon
 a = Axion like particle (ALP)
 B₀ = Backg. Magn. field

Light shining through the Wall experiments

y = Photon

a = Axion like particle

 $\mathbf{B_0}$ = Backg. Magn. field

The energy of the photon can be between **µeV** (microwave photon) up to **keV** and beyond (gamma quantum)

Optical LSW:

For example "Any Light Particle Search" (ALPS-I) at DESY.

