Non perturbative results for $\mathcal{N}=4$ SCFT

July 18, 2014
in collaboration with L.F. Alday

Goal of this talk

- Use superconformal symmetry and the associativity of the operator product expansion at the level of four point function \rightarrow bootstrap equations
- Put bounds on the dimension of operators transforming in different representation of the R-symmetry group

Conformal algebra

The conformal group is defined as the set of transformations that preserve angles.

- Translations: P_{μ}
- Lorentz transformations: $M_{\mu \nu}$
- Scale transformations: D
- Special conformal transformations: K_{μ}

The conformal algebra is

$$
\begin{aligned}
{\left[D, K_{\mu}\right] } & =i K_{\mu} \\
{\left[D, P_{\mu}\right] } & =-i P_{\mu} \\
{\left[P_{\mu}, K_{\nu}\right] } & =2 i\left(\delta_{\mu \nu} D-M_{\mu \nu}\right)
\end{aligned}
$$

How it acts on fields

Primary fields are local operators $\phi(x)$ characterised by the fact that they are annihilated by the special conformal transformations generator at $x=0$. The behaviour of $\phi(0)$ is

$$
\begin{aligned}
{\left[M_{\mu \nu}, \phi(0)\right] } & =\Sigma_{\mu \nu} \phi(0) \rightarrow \text { SPIN } \\
{[D, \phi(0)] } & =-i \Delta \phi(0) \rightarrow \text { DIMENSION } \\
{\left[K_{\mu}, \phi(0)\right] } & =0 \rightarrow \text { PRIMARY FIELD }
\end{aligned}
$$

Primary fields

- P_{μ} raises the scaling dimension while K_{μ} lowers it. In unitary CFT there is a lower bound on the dimensions of the fields.
- Each representation of the conformal algebra must have some operator of lowest dimension, which must then be annihilated by $K_{\mu} \rightarrow$ PRIMARY OPERATOR
- By acting with P_{μ} on a primary \rightarrow DESCENDANTS

2 and 3 pt functions

- All the information of a CFT is encoded in the set of dimensions and structure constants of local operators
- Conformal symmerty fixes the space-time dependence of 2 and 3 point functions. If we consider scalar operators:

$$
\begin{gathered}
\left\langle\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right)\right\rangle=\frac{\delta_{12}}{x_{12}^{2 \Delta}} \\
\left\langle\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \phi_{3}\left(x_{3}\right)\right\rangle=\frac{c_{123}}{\left|x_{12}\right|^{\Delta_{123}}\left|x_{23}\right|^{\Delta_{231}}\left|x_{13}\right|^{\Delta_{132}}}
\end{gathered}
$$

where $\Delta_{i j k}=\Delta_{i}+\Delta_{j}-\Delta_{k}$

- For 2 and 3 point functions of different classes of operators there are tensorial structures to be taken into account, but still fully fixed by conformal symmetry.
- At least in principle, using the OPE all the higher point correlation functions can be constructed

$$
\phi_{A}(x) \phi_{B}(y)=\sum_{D} c_{A B D}(x-y)^{\Delta_{D}-\Delta_{A}-\Delta_{B}} \sum_{n} \beta_{A B D}^{(n)}(x-y)^{|n|} \phi_{D}^{(n)}(y)
$$

where n is the descendant level, $\phi_{D}^{(0)}$ are the primary operators and $\beta_{A B D}^{(0)}=1$.

Four point function

- For the case of four point function, conformal symmetry does not fix the full coordinate dependence.
The four point function of identical scalar primaries with dimension d takes this form

$$
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle=\frac{g(u, v)}{\left|x_{12}\right|^{2 d}\left|x_{34}\right|^{2 d}}
$$

where $g(u, v)$ is a function of the conformal invariant cross-ratios

$$
u=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, \quad v=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}
$$

Conformal blocks I

By considering the OPE $\phi\left(x_{1}\right) \times \phi\left(x_{2}\right)$ we can write

$$
g(u, v)=1+\sum_{\ell, \Delta} a_{\Delta, \ell} g_{\Delta, \ell}(u, v)
$$

- the first term is the contribution of the identity operator, which is present in the OPE
- the sum runs over the the tower of primaries present in the OPE
- ℓ and Δ denote the spin and the dimension of the intermediate primary
- $a_{\Delta, \ell}=c_{\Delta, \ell}^{2}$ is the square of the structure constants and is nonnegative due to unitarity
- $g_{\Delta, \ell}(u, v)$ are the conformal blocks...

Conformal blocks II

...conformal blocks

- repack the contributions of all descendants of a given primary
- transform under the conformal group in the same way as the four point function
- depend on the spin and the dimension of the intermediate state and on the dimension of the primary operator
- are known in a closed form in 4 dimensions:

$$
\begin{aligned}
& \qquad g_{\Delta, \ell}(u, v)=\frac{(z \bar{z})^{\frac{\Delta-\ell}{2}}}{z-\bar{z}}\left(\left(-\frac{z}{2}\right)^{\ell} z k_{\Delta+\ell}(z) k_{\Delta-\ell-2}(\bar{z})-(z \leftrightarrow \bar{z})\right) \\
& \text { with } k_{\beta}(z)={ }_{2} F_{1}(\beta / 2, \beta / 2, \beta ; z) \text { and } u=z \bar{z}, \quad v=(1-z)(1-\bar{z}) .
\end{aligned}
$$

[Dolan, Osborn, 2005]

4 point and OPE

Associativity of the conformal algebra implies that

$$
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle=\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle
$$

$$
\frac{g(u, v)}{x_{12}^{2 d} x_{34}^{2 d}}=\frac{g(v, u)}{x_{23}^{2 d} x_{14}^{2 d}} \rightarrow v^{d} g(u, v)=u^{d} g(v, u)
$$

- d is the dimension of ϕ

Sum rule

$$
\begin{gathered}
\sum_{\ell, \Delta} a_{\Delta, \ell} F_{\Delta, \ell}(u, v)=1, \quad a_{\Delta, \ell} \geq 0 \\
F_{\Delta, \ell}(u, v) \equiv \frac{v^{d} g_{\Delta, \ell}(u, v)-u^{d} g_{\Delta, \ell}(v, u)}{u^{d}-v^{d}}
\end{gathered}
$$

[Rattazzi, Rychkov, Tonni, Vichi, 2008]

- We apply a linear operator Φ
- If $\Phi\left(F_{\Delta, \ell}(u, v)\right) \geq 0$ and $\Phi(1) \leq 1$ then the sum rule has no solution for $a_{\Delta, \ell}$ non negative!
- By considering trial families of spectra it is possible to put bounds on the dimension of the leading twist operator for a given spin.

Superconformal symmetry

- $\mathcal{N}=4$ SYM has superconformal symmetry, combination of conformal symmetry and supersymmety
- conformal group $S O(2,4)+$
\square supersymmetry generators (superpartners of translations) Q_{α}^{a} and $\bar{Q}_{\dot{\alpha} a}$ with $a=1, \ldots, 4$
\square special superconformal generators(superpartners of special conformal transformations) $S_{\alpha a}$ and $\overline{S_{\dot{\alpha}}^{\bar{a}}}$
$\square \mathrm{SO}(6) \mathrm{R}$-symmetry generators T^{A} with $A=1, \ldots, 15$
- (a little bit of) superconformal algebra

$$
[L, S] \sim \bar{S} \quad[D, Q]=\frac{i}{2} Q \quad[D, S]=-\frac{i}{2} S
$$

Operators

- Among primary operators there is a subclass annihilated by conformal supercharges $S \rightarrow$ SUPERCONFORMAL PRIMARIES.
- By acting with $S(Q)$ the dimension is lowered (raised) by $\frac{1}{2}$;
- Superconformal primaries that commute with at least one of the supercharges \rightarrow CHIRAL PRIMARIES.
- They are also called BPS operators because they belong to shortened representations and their dimension is protected.

Four point function I

- The lowest component of a $\frac{1}{2}$-BPS multiplet in $\mathcal{N}=4$ SYM is a real scalar field of dimension p transforming in the irrep [$0, p, 0$] of the $S O$ (6) R-symmetry group
- This operator can be written as

$$
\mathcal{O}^{[p]}(x, t)=t_{r_{1}} \ldots t_{r_{p}} \operatorname{Tr}\left(\Phi^{r_{1}} \ldots \Phi^{r_{p}}\right)
$$

where t is a complex six-dimensional null vector $(t \cdot t=0)$ and $r_{i}=1, \ldots, 6$.

Four point function II

- The four point function of four such identical operator has the form

$$
\begin{aligned}
&\left\langle\mathcal{O}^{[p]}\left(x_{1}, t_{1}\right) \mathcal{O}^{[p]}\left(x_{2}, t_{2}\right) \mathcal{O}^{[p]}\left(x_{3}, t_{3}\right) \mathcal{O}^{[p]}\left(x_{4}, t_{4}\right)\right\rangle= \\
&\left(\frac{t_{1} \cdot t_{2} t_{3} \cdot t_{4}}{x_{12}^{2} x_{34}^{2}}\right)^{p} \mathcal{G}^{(p)}(u, v, \sigma, \tau)
\end{aligned}
$$

with

$$
\begin{array}{ccl}
u=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}} & v=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}} & \text { CROSS RATIOS } \\
\sigma=\frac{t_{1} \cdot t_{3} t_{2} \cdot t_{4}}{t_{1} \cdot t_{2} t_{3} \cdot t_{4}} & \tau=\frac{t_{1} \cdot t_{4} t_{2} \cdot t_{3}}{t_{1} \cdot t_{2} t_{3} \cdot t_{4}} & \text { HARMONIC CROSS RATIOS }
\end{array}
$$

OPE decomposition

- The function $\mathcal{G}^{(p)}(u, v, \sigma, \tau)$ can be decomposed in the $S O(6)$ Rsymmetry representations appearing in the OPE of $\mathcal{O}^{[p]}\left(x_{1}, t_{1}\right) \times$ $\mathcal{O}^{[p]}\left(x_{2}, t_{2}\right)$, determined by

$$
[0, p, 0] \times[0, p, 0]
$$

and containing $\frac{1}{2}(p+1)(p+2)$ terms

- Each of these contributions can be expanded in conformal partial waves, corresponding to CONFORMAL PRIMARY OPERATORS with dimensions Δ and spin ℓ transforming in the appropriate representation

$$
\mathcal{G}^{(p)}(u, v, \sigma, \tau)=\sum_{0 \leq m \leq n \leq p} a_{n m}(u, v) Y_{n m}(\sigma, \tau)
$$

where n and m specify the representation $[n-m, 2 m, n-m$] and $\underset{\text { of } 31}{a_{n m}}=\sum_{\ell, \Delta} a_{\Delta, \ell}^{[n m]} g_{\Delta, \ell}(u, v)$

Superconformal decomposition

- Superconformal symmetry requires that each conformal primary belongs to a given supermultiplet, with a corresponding superconformal primary
- Superconformal Ward identities dictate the decomposition of $\mathcal{G}(u, v, \sigma, \tau)$ in terms of:
\square long multiplets, containing all the dynamical non-trivial information \rightarrow $\mathcal{H}(u, v, \sigma, \tau)$
\square short and semi-short multiplets, which are fully determined by symmetries and the free field theory results
- Consider the decomposition in conformal partial wave of $\mathcal{H}(u, v, \sigma, \tau)$, it receives contributions only from $p(p-1) / 2$ representations.

Superconformal decomposition II

- It can be written as

$$
\begin{aligned}
\mathcal{H}(u, v, \sigma, \tau) & =\sum_{0 \leq m \leq n \leq p-2} \mathcal{H}^{[n m]}(u, v) Y_{n m}(\sigma, \tau) \\
\mathcal{H}^{[n m]}(u, v) & =\sum_{\Delta, \ell} A_{\Delta, \ell}^{[n m]} g_{\Delta+4}^{(\ell)}(u, v)
\end{aligned}
$$

- The sum runs over SUPERCONFORMAL PRIMARY OPERATORS with dimensions Δ and spin ℓ, where the spin is even/odd if $n+m$ is even/odd.
- F.i. for $p=2$ superconformal primaries transform only in the singlet representation $[0,0,0]$ of $S U(4)$ R-symmetry, for $p=3$ they transform under $[0,0,0],[0,2,0]$ and $[1,0,1]$.

Superconformal decomposition III

Actually not all $A_{\Delta, \ell}^{[n m]}$ are non negative:

- unitarity requires that only contributions for $\Delta \geq 2 n+\ell+2$
- long multiplet decomposes into semi-short multiplets at the unitary threshold

$$
\begin{aligned}
\mathcal{H}(u, v, \sigma, \tau) & =\sum_{0 \leq m \leq n \leq p-2} \hat{\mathcal{H}}^{[n m]}(u, v) Y_{n m}(\sigma, \tau) \\
\hat{\mathcal{H}}^{[n m]}(u, v) & =\sum_{\Delta, \ell} a_{\Delta, \ell}^{[n m]} g_{\Delta+4}^{(\ell)}(u, v)+F_{(p)}^{[n m]}(u, v)
\end{aligned}
$$

- All $a_{\Delta, \ell}^{[n m]}$ are non negative and $F_{(p)}^{[n m]}(u, v)$ contain only contributions from short and semi-short multiplets for each specific $S U(4)$ representation and do not depend on the coupling constant.

Crossing symmetry

- Crossing symmetry requires invariance of the four-point function under exchanging $\left(x_{1}, t_{1}\right)$ with $\left(x_{3}, t_{3}\right)$
- At the level of cross ratios this is equivalent to $u \rightarrow v, v \rightarrow u$, $\sigma \rightarrow \frac{\sigma}{\tau}$ and $\tau \rightarrow \frac{1}{\tau}$ and implies

$$
\mathcal{G}(u, v, \sigma, \tau)=(\tau)^{p}\left(\frac{u}{v}\right)^{p} \mathcal{G}\left(v, u, \frac{\sigma}{\tau}, \frac{1}{\tau}\right)
$$

- Plugging back the expansion in conformal partial waves of the four point function, it is possible to obtain an equation for $\mathcal{H}(u, v, \sigma, \tau)$.

Comparison

Conformal

$$
\sum_{\ell, \Delta} a_{\Delta, \ell} F_{\Delta, \ell}(u, v)=1
$$

Super-conformal (e.g. p=2)
$\sum_{\ell, \Delta} a_{\Delta, \ell} F_{\Delta+4, \ell}(u, v)=F^{\text {[Beem, Rastelli, van Rees] }}(u, v)$

- The rhs denotes the contribution of short and semishort operators (protected part)
- The sum on the lhs runs over the dimension and the spin of the superconformal primaries appearing in the OPE
- For $p=3$ the representations that contribute to the conformal partial wave decomposition of $\hat{\mathcal{H}}^{[n m]}(u, v)$ are $[0,0,0],[1,0,1]$ and [$0,2,0$].
- We have 3 equations involving different combinations of $\hat{\mathcal{H}}^{[n m]}(u, v)$ (remember that there is a factor in front of $\mathcal{H}^{[n m]}(u, v)$ in the crossing relation depending on the different R-symmetry representations!)
- It is possible to write these equations in a vectorial form.

Final equations

where

$$
H_{\Delta, \ell}^{(p)}(u, v)=v^{p} g_{\Delta+4}^{(\ell)}(u, v)+u^{p} g_{\Delta+4}^{(\ell)}(v, u)
$$

- $F_{\text {short }}^{1}(u, v), F_{\text {short }}^{2}(u, v)$ and $F_{\text {short }}^{3}(u, v)$ are simple combinations of $F_{3}^{[00]}(u, v), F_{3}^{[10]}(u, v)$ and $F_{3}^{[11]}(u, v)$.

Linear operator

$$
\sum_{\Delta, \ell} a_{\Delta, \ell}^{[00]} \vec{V}_{\Delta, \ell}^{[00]}+\sum_{\Delta, \ell} a_{\Delta, \ell}^{[10]} \vec{V}_{\Delta, \ell}^{[10]}+\sum_{\Delta, \ell} a_{\Delta, \ell}^{[11]} \vec{V}_{\Delta, \ell}^{[11]}=\vec{F}_{\text {short }}
$$

- $a_{\Delta, \ell}^{\mathcal{R}}$ are non-negative coefficients
- Unitarity requires that

$$
\Delta \geq \ell+2 \text { for }[00], \quad \Delta \geq \ell+4 \text { for [10] and [11] }
$$

- A given spectrum can be ruled out if we can find a linear functional $\Phi: \vec{V} \rightarrow R$ such that

$$
\begin{array}{ll}
\Phi \vec{V}_{\Delta, \ell}^{[00]} \geq 0, & \text { for } a_{\Delta, \ell}^{[00]} \neq 0, \ell=0,2, \ldots \\
\Phi \vec{V}_{\Delta, \ell}^{[10]} \geq 0, & \text { for } a_{\Delta, \ell}^{[10]} \neq 0, \ell=1,3, \ldots \\
\Phi \vec{V}_{\Delta, \ell}^{[11]} \geq 0, & \text { for } a_{\Delta, \ell}^{[11]} \neq 0, \ell=0,2, \ldots
\end{array}
$$

$$
\Phi \vec{F}_{\text {short }}<0
$$

Dependence on N

- $\vec{F}_{\text {short }}$ depends on 3 factors a_{1}, a_{2} and a_{3} which are related to the topologies of the free field theory graphs
- For the case of $\mathcal{N}=4 \mathrm{SYM}$ with gauge group $\operatorname{SU}(N)$ they are

$$
a_{1}=9\left(N^{2}-1\right)^{2}\left(N-\frac{4}{N}\right)^{2}, \quad a_{2}=\frac{9}{N^{2}-1} a_{1}, \quad a_{3}=162\left(N^{2}-1\right) \frac{48-16 N^{2}+N^{4}}{N^{2}}
$$

- For different gauge groups they are different, however a_{1} can always be set to 1 and a_{2} is related to the central charge.
- Notice that for $p=2$, there are only a_{1} and a_{2}, then the only input needed is the central charge of the theory.

Bounds on $[1,0,1]$

$\operatorname{Tr} \Phi^{\prime} D^{\ell} \Phi^{J} \Phi^{K} \Phi^{L}+\ldots, \quad \ell=1,3, \ldots$

$$
\Delta_{\infty} \leq 7.24
$$

Bounds on $[0,2,0]$

$\operatorname{Tr} \Phi^{\prime} D^{\ell} \Phi^{\prime} \Phi^{(J} \Phi^{K)}+\ldots, \quad \ell=0,2, \ldots$

$$
\Delta_{\infty} \leq 6.48
$$

Comments

- The bounds for the dimension of these operators represent rigorous, non-perturbative, information about non-planar $\mathcal{N}=4$ SYM
- They can be improved by using more sophisticated numerical techniques
- We expect the leading twist operators to be given by double trace operators and the dimension to behave as $\Delta \approx \Delta_{0}+2-\kappa / N^{2}$. It is possible to extrapolate with our method the values of κ, which has not been computed with any other method yet.
- For the singlet case, it has been computed in the context of AdS / CFT and it is -16 . It has been extracted via bootstrap techniques in [Beem, Rastelli, van Rees] and it is consistent with the value computed.

Conclusions

- Crossing symmetry + superconformal symmetry \rightarrow coupled bootstrap equations
- Upper bounds to the scaling dimension of unprotected superconformal primary operators transforming non-trivially under the $S U(4)$ R-symmetry group
- These bounds depend not only on the central charge but also on additional parameters that appear in the OPE of two symmetric traceless tensor fields
- Bounds for operators in the $[1,0,1]$ and $[0,2,0]$ representations for $\mathcal{N}=4$ SYM with gauge group $S U(N)$. These bounds represent rigorous, non-perturbative, information about non-planar $\mathcal{N}=4$ SYM.

Extra: linear operator

- The linear operator takes the form

$$
\Phi^{(\Lambda)}\left(\begin{array}{l}
f_{1}(a, b) \\
f_{2}(a, b) \\
f_{3}(a, b)
\end{array}\right)=\sum_{i, j=0}^{i+j=\Lambda}\left(\frac{\xi_{i j}^{(1)}}{i!j!} \partial_{a}^{i} \partial_{b}^{j} f_{1}(0,0)+\frac{\xi_{i j}^{(2)}}{i!j!} \partial_{a}^{i} \partial_{b}^{j} f_{2}(0,0)+\frac{\xi_{i j}^{(3)}}{i!j!} \partial_{a}^{i} \partial_{b}^{j} f_{3}(0,0)\right)
$$

where

$$
z=1 / 2+a+b, \quad \bar{z}=1 / 2+a-b
$$

