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Goal of this talk

m Use superconformal symmetry and the associativity of the operator
product expansion at the level of four point function — bootstrap
equations

® Put bounds on the dimension of operators transforming in different
representation of the R-symmetry group




Conformal algebra

The conformal group is defined as the set of transformations that
preserve angles.

® Translations: P,

® |orentz transformations: M,

m Scale transformations: D

® Special conformal transformations: K,

The conformal algebra is
[D.K.] = iK,
[D,P,] = —iP,
[Py, K] = 2i(6,,D — M)
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How it acts on fields

Primary fields are local operators ¢(x) characterised by the fact that
they are annihilated by the special conformal transformations generator
at x = 0. The behaviour of ¢(0) is

[Muv, #(0)] = L1,$(0) — SPIN
[D, $(0)] = —iAd(0) — DIMENSION
[K,., (0)] = 0 — PRIMARY FIELD




Primary fields

® P, raises the scaling dimension while K, lowers it. In unitary CFT
there is a lower bound on the dimensions of the fields.

m Each representation of the conformal algebra must have some ope-
rator of lowest dimension, which must then be annihilated by K, —
PRIMARY OPERATOR

® By acting with P, on a primary — DESCENDANTS




2 and 3 pt functions

m All the information of a CFT is encoded in the set of dimensions
and structure constants of local operators

m Conformal symmerty fixes the space-time dependence of 2 and 3
point functions. If we consider scalar operators:

(p1(x1)P2(x2)) = %

X12

(¢1(x1)P2(x2)P3(x3)) C123

- |X12 |A123 |X23 |A231 |X13 |A132

where Aijk =NA; + Aj AV

® For 2 and 3 point functions of different classes of operators there
are tensorial structures to be taken into account, but still fully fixed

by conformal symmetry.
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OPE

m At least in principle, using the OPE all the higher point correlation
functions can be constructed

6a(x)08(y) = Xp casp(x — y)Ao=Ba=8s 3~ 50 (o y)lg{(y)

where n is the descendant level, gb(Do) are the primary operators and

5ABD -
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Four point function

m For the case of four point function, conformal symmetry does not

fix the full coordinate dependence.
The four point function of identical scalar primaries with dimension

d takes this form

<¢(Xl)¢(X2)¢(x3)¢(X4)> _ g(u7 V)

- |X12|2d‘X34‘2d

where g(u, v) is a function of the conformal invariant cross-ratios

2,2 2,2
_ X12%34 _ X14%X23

2 20 2 2
X13%X24 X13%X24




Conformal blocks |

By considering the OPE ¢(x1) x ¢(x2) we can write

g(u,v) =14+ anga(u,v)
N

® the first term is the contribution of the identity operator, which is
present in the OPE

® the sum runs over the the tower of primaries present in the OPE

m / and A denote the spin and the dimension of the intermediate
primary

Bapy = Ciz is the square of the structure constants and is non-
negative due to unitarity

® ga ¢(u,v) are the conformal blocks...
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Conformal blocks Il

...conformal blocks
® repack the contributions of all descendants of a given primary

® transform under the conformal group in the same way as the four
point function

m depend on the spin and the dimension of the intermediate state and
on the dimension of the primary operator
® are known in a closed form in 4 dimensions:

A/

gor(0.v) = C2 7 () ko Dhasia(®) (2 5 7))

with kg(z) = 2F1(8/2,6/2,6;z) and u =2z, v=(1-2z)(1-2).
[Dolan, Osborn, 2005 |
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4 point and OPE

Associativity of the conformal algebra implies that

(p(x1)d(x2)d(x3)P(xa)) = (P(x1)P(x2)(x3)P(xa))

g(”? V) _ g(Va u)

— vig(u,v) = u’g(v,u)

2d.2d  L2d 2d
X12 X34 X523 X14

® d is the dimension of ¢
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Sum rule

> aneFa(uv) =1, ans >0
_ viga(uv)—udga e(v,u)
Fau,v) = A —yd

[Rattazzi, Rychkov, Tonni, Vichi, 2008]

®m We apply a linear operator ¢

m [fd(Far(u,v)) > 0and ® (1) < 1then the sum rule has no solution
for ap ¢ non negative!

m By considering trial families of spectra it is possible to put bounds
on the dimension of the leading twist operator for a given spin.
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Superconformal symmetry

® N'=4 SYM has superconformal symmetry, combination of conformal
symmetry and supersymmety
® conformal group SO(2,4) +
O supersymmetry generators (superpartners of translations) Q2 and Qda
witha=1,...,4
O special superconformal generators(superpartners of special conformal
transformations) S,, and 52
0 SO(6) R-symmetry generators T4 with A=1,...,15

® (a little bit of) superconformal algebra

[L,S]~5 [D, Q] = éo [D,S] = —és
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Operators

® Among primary operators there is a subclass annihilated by confor-
mal supercharges S — SUPERCONFORMAL PRIMARIES.

® By acting with S (Q) the dimension is lowered (raised) by 3;

m Superconformal primaries that commute with at least one of the
supercharges — CHIRAL PRIMARIES.

® They are also called BPS operators because they belong to shortened
representations and their dimension is protected.
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Four point function |

® The lowest component of a %—BPS multiplet in N' = 4 SYM is a
real scalar field of dimension p transforming in the irrep [0, p, 0] of
the SO(6) R-symmetry group

® This operator can be written as
OPI(x,t) =ty ... t, Tr (1. &%)

where t is a complex six-dimensional null vector ( t-t = 0 ) and
ri = 1, ...,6.
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Four point function Il

® The four point function of four such identical operator has the form

<(’)[P](x1, tl)O[p](X27 tz)@[p](X& t3)(’)[P](X4, ty)) =

t-totz-ta\P
(122324) G0, v, 0,7)
X12X34
with
y= Xi2X34 _ XaXs CROSS RATIOS
X123X224 X123X224
ottt B-fb-B LARMONIC CROSS RATIOS
ti-bhtz3-ta t1-bhtz3-ta



OPE decomposition Vel

m The function Q(P)(u, v,0,7T) can be decomposed in the SO(6) R-
symmetry representations appearing in the OPE of (’)[P](xl, t1) X
O[P](xz, tp), determined by

[0, p, 0] x [0, p, 0]

and containing %(p +1)(p +2) terms

Each of these contributions can be expanded in conformal par-
tial waves, corresponding to CONFORMAL PRIMARY OPERA-
TORS with dimensions A and spin £ transforming in the appropriate
representation

6P (u,v,00r) = D anm(u,v)Yam(o,T)
0<m<n<p
where n and m specify the representation [n — m,2m, n — m] and

anm = ZZ,A a[Aan]gA,f(uv V)
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Superconformal decomposition

m Superconformal symmetry requires that each conformal primary be-
longs to a given supermultiplet, with a corresponding superconformal
primary

m Superconformal Ward identities dictate the decomposition of G(u, v, o, 7)
in terms of:

O long multiplets, containing all the dynamical non-trivial information—
H(u,v,0,7)
O short and semi-short multiplets, which are fully determined by symme-
tries and the free field theory results
m Consider the decomposition in conformal partial wave of H(u, v, o, 7),
it receives contributions only from p(p — 1)/2 representations.
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Superconformal decomposition Il

® |t can be written as

H(u,v,0,7) = Z HO™ (1, v) Yom(o, 7)
0<m<n<p-2
H[nm]( ) = ZA[nm] () ( )
u,v AR/, NPAC RS
A

® The sum runs over SUPERCONFORMAL PRIMARY OPERATORS
with dimensions A and spin ¢, where the spin is even/odd if n+ m
is even/odd.

m F.i. for p = 2 superconformal primaries transform only in the sin-
glet representation [0,0,0] of SU(4) R-symmetry, for p = 3 they
transform under [0,0,0], [0,2,0] and [1,0,1].
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Superconformal decomposition Il

Actually not all A[Amz] are non negative:
® unitarity requires that only contributions for A > 2n+4 ¢+ 2

® long multiplet decomposes into semi-short multiplets at the unitary
threshold

H(u,v,0,7) = > A, v) Yam(o,7)

0<m<n<p-2
Alrmly v) = Z [A"’Z gA+4(u v) + F(["Sn](u, v)

= All a[A";'] are non negative and F([g;n](u, v) contain only contribu-
tions from short and semi-short multiplets for each specific SU(4)
representation and do not depend on the coupling constant.
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Crossing symmetry

m Crossing symmetry requires invariance of the four-point function
under exchanging (xi, t1) with (x3, t3)

m At the level of cross ratios this is equivalent to u — v, v — u,
o— Zand T — % and implies

G (uv.or) = (P (4) 6 (v 2.

m Plugging back the expansion in conformal partial waves of the four
point function, it is possible to obtain an equation for H(u, v, o, 7).
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Comparison
Conformal Super-conformal (e.g. p=2)
> ancFarlu,v)=1 > aniFarar(u,v) = F(u,v)
A oA

[Beem, Rastelli, van Rees]

®m The rhs denotes the contribution ®m The rhs denotes the contribution

of the identity operator of short and semishort operators
® The sum on the lhs runs over (protected part)

the dimension and the spin of the ~ ® The sum on the lhs runs over

conformal primaries appearing in the dimension and the spin

the OPE of the superconformal primaries

appearing in the OPE
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p=3

®m For p = 3 the representations that contribute to the conformal
partial wave decomposition of H["™(u,v) are [0,0,0], [1,0,1] and
[0,2,0].

= We have 3 equations involving different combinations of H["™(u, v)
(remember that there is a factor in front of H["™)(u,v) in the
crossing relation depending on the different R-symmetry representa-
tions!)

® |t is possible to write these equations in a vectorial form.
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Final equations

@) 0 e .
[oo] (& [10] [ o i [ g Faport (U, V)
a o ) + E a o)+ g a F = | Fapon(e:v)
Z A\ At 3*?3? Al 74/A-f(e3) Fﬁo,i(uv v)

A>L+2 Al A>l+4 AL A>0+4 Al
£=0,2,... £=13,... £=0,2,...
where (P) (0) (0)
p —
HA Z(ua V) - VpgA+4(u7 V) + upgA+4(V’ U)
1 2 3 H . .
w Fyo(u,v), Foo(u,v) and F3 . (u, v) are simple combinations of

F3[OO](u, v), Fglo](u, v) and Fgll](u, v).
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Linear operator

S antVAT + 3 A IVAT + 3 IR = Fonon
N A AL

m aﬁz are non-negative coefficients
® Unitarity requires that

A>/(+2 for [00], A>{+4 for [10] and [11]

m A given spectrum can be ruled out if we can find a linear functional
®:V — R such that

P Vg)g] >0, for a[AoolJ £0,0=0,2,...
$ \_/'E’%] >0, for a[Al?lJ £0, {=1,3,...
o VI >0 for a0 0=0.2, ..
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Dependence on N

u I-:Short depends on 3 factors aj, a» and az which are related to the
topologies of the free field theory graphs
® For the case of N/ = 4 SYM with gauge group SU(N) they are

9 — 16N + N*

2 2 4 2
ay = 9(N _1) (N_N) , a2 = ﬁal as — 162( 1) N

m For different gauge groups they are different, however a; can always
be set to 1 and as is related to the central charge.

m Notice that for p = 2, there are only a; and ap, then the only input
needed is the central charge of the theory.
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Bounds on [1,0, 1]

Trd! DiGIdKDL + . 1 =1,3,...

7=1
8.0
7.5
21100 7.0//
6.5
6 0 i 5 6 7 8
N
Ay <7.24
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Bounds on [0, 2, 0]

Tre!/ Do/ oUdK) 4 1 =0,2,...
7=0

L6 5//
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Comments

® The bounds for the dimension of these operators represent rigorous,
non-perturbative, information about non-planar N' = 4 SYM

B They can be improved by using more sophisticated numerical tech-
niques

®m We expect the leading twist operators to be given by double trace
operators and the dimension to behave as A ~ Ay +2— m/Nz. It is
possible to extrapolate with our method the values of k, which has
not been computed with any other method yet.

m For the singlet case, it has been computed in the context of AdS/CFT
and it is —16. It has been extracted via bootstrap techniques
in [Beem, Rastelli, van Rees| and it is consistent with the value
computed.
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Conclusions

® Crossing symmetry + superconformal symmetry — coupled boo-
tstrap equations

m Upper bounds to the scaling dimension of unprotected superconfor-
mal primary operators transforming non-trivially under the SU(4)
R-symmetry group

® These bounds depend not only on the central charge but also on

additional parameters that appear in the OPE of two symmetric
traceless tensor fields

® Bounds for operators in the [1,0,1] and [0, 2, 0] representations for
N = 4 SYM with gauge group SU(N). These bounds represent

rigorous, non-perturbative, information about non-planar N' = 4
SYM.
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Extra: linear operator

B The linear operator takes the form

o (@b i s I3 ¥
o™ [ f(a,b) | = > <I,!Jj!a;%ﬁ(o,o)+”fﬂa;éx,@(o,o)+I.!Jﬂa;évbﬁ(o,O)>
f3(a, b)

i,j=0

where

z=1/24+a+b, z=1/2+a—-b
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