The Exact Effective Couplings of 4D $N=2$ gauge theories

Vladimir Mitev

> Institute of Mathematics Institute of Physics Humboldt Universität zu Berlin

IGST Hamburg 2014

Based on [V.M., Elli Pomoni, arXiv:1406.3629] and work in progress

18th July 2014

Exact results in gauge theories

$\mathcal{N}=4$ SYM is on the way of being solved

Exact results in gauge theories

$\mathcal{N}=4$ SYM is on the way of being solved

- The spectral problem is solved in principle see talk by N. Gromov

Exact results in gauge theories

$\mathcal{N}=4$ SYM is on the way of being solved

- The spectral problem is solved in principle see talk by N. Gromov
- Progress on three-point functions see talks by Z. Bajnok and S. Komatsu

Exact results in gauge theories

$\mathcal{N}=4$ SYM is on the way of being solved

- The spectral problem is solved in principle see talk by N. Gromov
- Progress on three-point functions see talks by Z. Bajnok and S. Komatsu
- Amplitudes, Wilson loops, Scattering amplitudes etc...... see talks by B. Basso, A. Sever, T. Łukowski, M. Sprenger

Exact results in gauge theories

$\mathcal{N}=4 \mathrm{SYM}$ is on the way of being solved

- The spectral problem is solved in principle see talk by N. Gromov
- Progress on three-point functions see talks by Z. Bajnok and S. Komatsu
- Amplitudes, Wilson loops, Scattering amplitudes etc...... see talks by B. Basso, A. Sever, T. Łukowski, M. Sprenger

What can we say about less supersymmetric theories?

Techniques

Which techniques were used?

Techniques

Which techniques were used?

- Dual holographic description
- Integrability (in the planar limit)
- Localization (for any N_{c})

Techniques

Which techniques were used?

- Dual holographic description
- Integrability (in the planar limit)
- Localization (for any N_{c})

What is the reason for integrability?

- Planarity?
- Conformality?
- Supersymmetry?
- Transformation properties of the fields?

The claim

The purely gluonic sector

Pick your favorite $\mathcal{N}=2$ SCFT and take one vector multiplet

The purely gluonic sector

Pick your favorite $\mathcal{N}=2$ SCFT and take one vector multiplet

The $\operatorname{SU}(2,1 \mid 2)$ sector:
$\phi, \lambda_{+}^{I}, \mathcal{F}_{++}$in vector multiplet

The purely gluonic sector

Pick your favorite $\mathcal{N}=2$ SCFT and take one vector multiplet

The $\operatorname{SU}(2,1 \mid 2)$ sector: $\left(\mathcal{D}_{+\dot{\alpha}}\right)^{n}\left\{\phi, \lambda_{+}^{I}, \mathcal{F}_{++}\right\}$in vector multiplet

The purely gluonic sector

Pick your favorite $\mathcal{N}=2$ SCFT and take one vector multiplet

The $\operatorname{SU}(2,1 \mid 2)$ sector: $\left(\mathcal{D}_{+\dot{\alpha}}\right)^{n}\left\{\phi, \lambda_{+}^{I}, \mathcal{F}_{++}\right\}$in vector multiplet is closed to all loops
[Pomoni, 2013]

The purely gluonic sector

Pick your favorite $\mathcal{N}=2$ SCFT and take one vector multiplet

The $\operatorname{SU}(2,1 \mid 2)$ sector: $\left(\mathcal{D}_{+\dot{\alpha}}\right)^{n}\left\{\phi, \lambda_{+}^{I}, \mathcal{F}_{++}\right\}$in vector multiplet is closed to all loops
[Pomoni, 2013]

The purely gluonic sector in every $\mathcal{N}=2$ SCFT is integrable
[Pomoni, 2013]
see also [Pomoni, Sieg, 2011], [Gadde, Liendo, Rastelli, Yan, 2012]

Effective Couplings

Compute the $\mathcal{N}=4$ SYM equivalent and replace

$$
g^{2}=\frac{g_{Y M}^{2} N_{c}}{(4 \pi)^{2}}=\frac{\lambda}{(4 \pi)^{2}}
$$

Effective Couplings

Compute the $\mathcal{N}=4$ SYM equivalent and replace

$$
g^{2}=\frac{g_{Y M}^{2} N_{c}}{(4 \pi)^{2}}=\frac{\lambda}{(4 \pi)^{2}} \rightarrow f\left(g^{2}, \ldots,\right)
$$

Effective Couplings

Compute the $\mathcal{N}=4$ SYM equivalent and replace

$$
g^{2}=\frac{g_{Y M}^{2} N_{c}}{(4 \pi)^{2}}=\frac{\lambda}{(4 \pi)^{2}} \rightarrow \underbrace{f\left(g^{2}, \ldots,\right)}_{\text {Effective couplings }}
$$

Effective Couplings

Compute the $\mathcal{N}=4$ SYM equivalent and replace

$$
g^{2}=\frac{g_{Y M}^{2} N_{c}}{(4 \pi)^{2}}=\frac{\lambda}{(4 \pi)^{2}} \rightarrow \underbrace{f\left(g^{2}, \ldots,\right)}_{\text {Effective couplings }}
$$

Similar to the situation in ABJM, [see the talks of A. Cavaglia and N. Gromov]

Effective Couplings

Compute the $\mathcal{N}=4$ SYM equivalent and replace

$$
g^{2}=\frac{g_{Y M}^{2} N_{c}}{(4 \pi)^{2}}=\frac{\lambda}{(4 \pi)^{2}} \rightarrow \underbrace{f\left(g^{2}, \ldots,\right)}_{\text {Effective couplings }}
$$

Similar to the situation in ABJM, [see the talks of A. Cavaglia and N. Gromov]

Example: anomalous dimensions

$$
\gamma^{N=2}\left(g^{2}, \ldots\right)=\gamma^{N=4}\left(f\left(g^{2}, \ldots\right)\right)
$$

Effective tension

Orbifolds of $\mathcal{N}=4$ SYM are well known [Kachru, Silverstein, 1998], [Lawrence, Nekrasov, Vafa, 1998]

Effective tension

Orbifolds of $\mathcal{N}=4$ SYM are well known [Kachru, Silverstein, 1998], [Lawrence, Nekrasov, Vafa, 1998]

Effective tension

Orbifolds of $\mathcal{N}=4$ SYM are well known [Kachru, Silverstein, 1998], [Lawrence, Nekrasov, Vafa, 1998]

Effective tension

Orbifolds of $\mathcal{N}=4$ SYM are well known [Kachru, Silverstein, 1998], [Lawrence, Nekrasov, Vafa, 1998]

Effective tension

Orbifolds of $\mathcal{N}=4$ SYM are well known [Kachru, Silverstein, 1998], [Lawrence, Nekrasov, Vafa, 1998]

$$
\text { Effective couplings }=\text { effective string tension }
$$

\hat{A}_{r-1} quiver gauge theories are dual to $A d S_{5} \times S^{5} / \mathbb{Z}_{r}$

ADE classification of superconformal gauge theories

$\hat{A}_{r-1}:$ the cyclic quiver

\hat{A}_{r-1} : the cyclic quiver

\hat{A}_{r-1} : the cyclic quiver

Interpolating theory

$\downarrow \check{g} \rightarrow 0$
$\mathcal{N}=2$ SCQCD

The diagrammatic

argument

Background field formalism

Want to keep as much of the manifest local gauge invariance as possible
Background field

$$
A_{\mu}=\underbrace{\mathcal{A}_{\mu}}_{\begin{array}{c}
\text { classical } \\
\text { background }
\end{array}}+\underbrace{\mathbb{A}_{\mu}}_{\begin{array}{c}
\text { quantum } \\
\text { fluctuations }
\end{array}}
$$

Background field formalism

Want to keep as much of the manifest local gauge invariance as possible

Background field

$$
A_{\mu}=\underbrace{\mathcal{A}_{\mu}}_{\begin{array}{c}
\text { classical } \\
\text { background }
\end{array}}+\underbrace{\mathbb{A}_{\mu}}_{\begin{array}{c}
\text { quantum } \\
\text { fluctuations }
\end{array}}
$$

- \mathcal{A} outside
- \mathbb{A} inside

Simplifications

Renormalization factors

$$
\begin{array}{ll}
\mathcal{A}_{\text {bare }}^{\mu}=\sqrt{\mathcal{Z}_{\mathcal{A}}} \mathcal{A}_{\text {ren }}^{\mu} & \mathbb{A}_{\text {bare }}^{\mu}=\sqrt{\mathcal{Z}_{\mathbb{A}}} \mathbb{A}_{\text {ren }}^{\mu} \\
g_{\text {bare }}=\mathcal{Z}_{g} g_{\text {ren }} & \xi_{\text {bare }}=\mathcal{Z}_{\xi} \xi_{\text {ren }}
\end{array}
$$

- We have the relations

$$
\mathcal{Z}_{g} \sqrt{\mathcal{Z}_{\mathcal{A}}}=1 \quad \text { and } \quad \mathcal{Z}_{\mathbb{A}}=\mathcal{Z}_{\xi}
$$

Simplifications

Renormalization factors

$$
\begin{array}{ll}
\mathcal{F}_{\text {bare }}^{\mu}=\sqrt{Z_{\mathcal{P}}} \mathcal{F}_{\text {ren }}^{\mu} & \mathbb{A}_{\text {bare }}^{\mu}=\sqrt{Z_{\mathrm{A}}} \mathbb{A}_{\text {ren }}^{\mu} \\
g_{\text {bare }}=Z_{g} g_{\text {ren }} & \xi_{\text {bare }}=Z_{\xi} \xi_{\text {ren }}
\end{array}
$$

- We have the relations

$$
\mathcal{Z}_{g} \sqrt{\mathcal{Z}_{\mathcal{A}}}=1 \quad \text { and } \quad \mathcal{Z}_{\mathbb{A}}=\mathcal{Z}_{\xi}
$$

- The renormalization factors $\mathcal{Z}_{\mathbb{A}}$ cancel for each individual diagram

Cancellations

Compute $\left\langle O(y) \mathcal{A}\left(x_{1}\right) \cdots \mathcal{A}\left(x_{L}\right)\right\rangle$ for $O \sim \operatorname{tr}\left(\phi^{L}\right)$.

Cancellations

Compute $\left\langle O(y) \mathcal{A}\left(x_{1}\right) \cdots \mathcal{A}\left(x_{L}\right)\right\rangle$ for $O \sim \operatorname{tr}\left(\phi^{L}\right)$.

Cancellations

Compute $\left\langle O(y) \mathcal{A}\left(x_{1}\right) \cdots \mathcal{A}\left(x_{L}\right)\right\rangle$ for $O \sim \operatorname{tr}\left(\phi^{L}\right)$.

Cancellations

Compute $\left\langle O(y) \mathcal{A}\left(x_{1}\right) \cdots \mathcal{A}\left(x_{L}\right)\right\rangle$ for $O \sim \operatorname{tr}\left(\phi^{L}\right)$.

- $\langle\mathbb{A} \mathbb{A} \mathcal{A} \mathcal{A}\rangle$ renormalizes as $\mathcal{Z}_{\mathbb{A}} \mathcal{Z}_{\mathcal{A}}\langle\mathbb{A} \mathbb{A} \mathcal{A} \mathcal{A}\rangle$
- The \mathbb{A} propagators as $\mathcal{Z}_{\mathbb{A}}^{-1}$
- The $O^{\text {ren }}$ has two more $\mathcal{Z}_{\mathrm{A}}^{1 / 2}$

Cancellations

Compute $\left\langle O(y) \mathcal{A}\left(x_{1}\right) \cdots \mathcal{A}\left(x_{L}\right)\right\rangle$ for $O \sim \operatorname{tr}\left(\phi^{L}\right)$.

- $\langle\mathbb{A} A \mathcal{A} \mathcal{A}\rangle$ renormalizes as $\mathcal{Z}_{\mathbb{A}} \mathcal{Z}_{\mathcal{H}}\langle\mathbb{A} \mathbb{A} \mathcal{A} \mathcal{A}\rangle$
- All the $\mathcal{Z}_{\mathbb{A}}$ cancel
- The \mathbb{A} propagators as $\mathcal{Z}_{\mathbb{A}}^{-1}$
- The final result depends only on $\mathcal{Z}_{\mathcal{A}}=\mathcal{Z}_{g}^{-2}$
- The $O^{\text {ren }}$ has two more $\mathcal{Z}_{\mathbb{A}}^{1 / 2}$

Novel regularization

Regularization prescription for $N=2$ theories
Subtract from a given $\mathcal{N}=2$ diagram the
$\mathcal{N}=4$ diagram with the same external states

Novel regularization

Regularization prescription for $\mathcal{N}=2$ theories

Subtract from a given $\mathcal{N}=2$ diagram the
$\mathcal{N}=4$ diagram with the same external states
Example: the divergent bubble

The difference is zero since the gluonic tree level terms in both the $\mathcal{N}=2$ and the $\mathcal{N}=4$ Lagrangians are identical

Novel regularization

Regularization prescription for $N=2$ theories

Subtract from a given $\mathcal{N}=2$ diagram the
$\mathcal{N}=4$ diagram with the same external states

Example: First different diagram

The diagram is finite, the difference non-zero

Novel regularization

Regularization prescription for $N=2$ theories
Subtract from a given $\mathcal{N}=2$ diagram the
$\mathcal{N}=4$ diagram with the same external states

Diagrams different from the $\mathcal{N}=4$ ones \Rightarrow make hypermultiplet loops and then let fields from the other vector multiplets propagate inside
[Pomoni, Sieg, 2011], [Pomoni, 2013]

Novel regularization

- Individual UV-divergent Feynman diagrams for the renormalization of operators in the $\operatorname{SU}(2,1 \mid 2)$ sector are identical in both theories

Novel regularization

- Individual UV-divergent Feynman diagrams for the renormalization of operators in the $\operatorname{SU}(2,1 \mid 2)$ sector are identical in both theories
- Diagrams that are different from their $\mathcal{N}=4$ counterparts are finite \Rightarrow relative finite renormalization

Novel regularization

- Individual UV-divergent Feynman diagrams for the renormalization of operators in the $\operatorname{SU}(2,1 \mid 2)$ sector are identical in both theories
- Diagrams that are different from their $\mathcal{N}=4$ counterparts are finite \Rightarrow relative finite renormalization
- Difference is always finite

Novel regularization

- Individual UV-divergent Feynman diagrams for the renormalization of operators in the $\operatorname{SU}(2,1 \mid 2)$ sector are identical in both theories
- Diagrams that are different from their $\mathcal{N}=4$ counterparts are finite \Rightarrow relative finite renormalization
- Difference is always finite

Basic building block: Fan Integrals

$$
-2\binom{2 n-1}{n} \zeta(2 n-1) \frac{1}{p^{2}}
$$

New vertices

New vertices appear in the $\mathcal{N}=2$ effective action

New vertices

New vertices appear in the $\mathcal{N}=2$ effective action However: for operators in the $\mathrm{SU}(2,1 \mid 2)$ sector, the non-renormalization theorem of [Fiamberti, Santambrogio, Sieg, Zanon, 2008], [Sieg, 2010]

None of these new vertices can contribute to the anomalous dimensions

New vertices

New vertices appear in the $\mathcal{N}=2$ effective action

 However: for operators in the $\operatorname{SU}(2,1 \mid 2)$ sector, the non-renormalization theorem of [Fiamberti, Santambrogio, Sieg, Zanon, 2008], [Sieg, 2010]None of these new vertices can contribute to the anomalous dimensions Only renormalized tree level vertices can contribute

Effective couplings

For each gauge group

$$
f_{k}\left(g_{1}^{2}, \ldots, g_{r}^{2}\right)=g_{k}^{2}+g_{k}^{2}[\underbrace{\left(\mathcal{Z}_{g_{k}}^{\mathcal{N}=2}\right)^{2}}_{\substack{\text { propagator of } \\ k^{\text {th }}-\text { group }}}-\underbrace{\left(\mathcal{Z}_{g_{1}=\cdots=g_{r}}^{\mathcal{N}=4}\right)^{2}}_{\text {orbifold point }}]
$$

Effective couplings

For each gauge group

$$
f_{k}\left(g_{1}^{2}, \ldots, g_{r}^{2}\right)=g_{k}^{2}+g_{k}^{2}[\underbrace{\left(\mathcal{Z}_{\mathcal{A}(k)}^{\mathcal{N}=2}\right)^{-1}}_{\substack{\text { propagator of } \\ k^{\text {th }}-\text { group }}}-\underbrace{\left(\mathcal{Z}_{\mathcal{A}}^{\mathcal{N}=4}\right)^{-1}}_{\text {orbifold point }}]
$$

Wilson Loops

From Localization

Circular Wilson Loop in $N=4$ SYM

Circular Wilson loop in $\mathcal{N}=4$

$$
W^{N=4}(g)=\frac{l_{1}(4 \pi g)}{2 \pi g}=\left\{\begin{array}{l}
1+2 \pi^{2} g^{2}+\frac{4 \pi^{4} g^{4}}{3}+\frac{4 \pi^{6} g^{6}}{9}+O\left(g^{8}\right) \\
\frac{e^{4 \pi g}}{\sqrt{32 \pi^{4} g^{3}}}\left(1+O\left(g^{-1}\right)\right)
\end{array}\right.
$$

[Erickson, Semenoff, Zarembo, 2000]

Circular Wilson Loop in $N=4$ SYM

Circular Wilson loop in $\mathcal{N}=4$

$$
W^{N=4}(g)=\frac{I_{1}(4 \pi g)}{2 \pi g}=\left\{\begin{array}{l}
1+2 \pi^{2} g^{2}+\frac{4 \pi^{4} g^{4}}{3}+\frac{4 \pi^{6} g^{6}}{9}+O\left(g^{8}\right) \\
\frac{e^{4 \pi g}}{\sqrt{32 \pi^{4} g^{3}}}\left(1+O\left(g^{-1}\right)\right)
\end{array}\right.
$$

[Erickson, Semenoff, Zarembo, 2000]

Wilson loops in $N=2$ gauge theories

Purely gluonic observable

$$
W_{k}^{\mathcal{N}=2}=\left\langle\frac{1}{N_{c}} \operatorname{tr}_{\square} \operatorname{Pexp} \oint_{C} d s\left(i A_{\mu}^{(k)}(x) \dot{x}^{\mu}+\phi^{(k)}(x)|\dot{x}|\right)\right\rangle
$$

- \square is fundamental representation of $\operatorname{SU}\left(N_{c}\right)$
- C is the circular loop located at the equator of S^{4}
- The adjoint scalar $\phi^{(k)}$ and the gauge field $A_{\mu}^{(k)}$ are in the vector multiplet of the k-th gauge group.

Wilson loops in $N=2$ gauge theories

Purely gluonic observable

$$
W_{k}^{\mathcal{N}=2}=\left\langle\frac{1}{N_{c}} \operatorname{tr}_{\square} \operatorname{Pexp} \oint_{C} d s\left(i A_{\mu}^{(k)}(x) \dot{x}^{\mu}+\phi^{(k)}(x)|\dot{x}|\right)\right\rangle
$$

- \square is fundamental representation of $\operatorname{SU}\left(N_{c}\right)$
- C is the circular loop located at the equator of S^{4}
- The adjoint scalar $\phi^{(k)}$ and the gauge field $A_{\mu}^{(k)}$ are in the vector multiplet of the k-th gauge group.

$$
\begin{gathered}
W_{k}^{\mathcal{N}=2}\left(g_{1}, \ldots, g_{r}\right)=W^{N=4}\left(f_{k}\left(g_{1}, \ldots, g_{r}\right)\right) \\
f_{k}\left(g_{1}, \ldots, g_{r}\right)=g_{k}^{2}+\cdots
\end{gathered}
$$

the effective coupling constant of the k-th gauge group

Partition function from localization

Expectation value

$$
\left\langle\phi^{(k)}\right\rangle=\operatorname{diag}\left(a_{1}^{(k)}, \ldots, a_{N_{c}}^{(k)}\right)
$$

Partition function from localization

Expectation value

$$
\left\langle\phi^{(k)}\right\rangle=\operatorname{diag}\left(a_{1}^{(k)}, \ldots, a_{N_{c}}^{(k)}\right)
$$

Partition function on S^{4}

$$
Z=\int \prod_{k=1}^{r} d a^{(k)} \prod_{i<j=1}^{N_{c}}\left(a_{i}^{(k)}-a_{j}^{(k)}\right)^{2} e^{-\frac{N_{c}}{2 g_{k}^{2}} \sum_{i=1}^{N_{c}}\left(a_{i}^{(k)}\right)^{2}} Z_{1-\text { loop }\left|Z_{i n s t}\right|^{2 \text { planar limit }} \text {. }}
$$

Perturbative Part

Vector multiplet: $\quad Z_{1-\text {-loop }}^{\text {vect }}=\prod_{i<j=1}^{N_{c}} H^{2}\left(a_{i}-a_{j}\right)$

Perturbative Part

Vector multiplet: $\quad Z_{1-\text {-loop }}^{\text {vect }}=\prod_{i<j=1}^{N_{c}} H^{2}\left(a_{i}-a_{j}\right)$

Bifundamental:

$$
Z_{1-\text { loop }}^{\text {hyper }}=\prod_{i=1}^{N_{c}} \prod_{j=1}^{N_{c}} H\left(a_{i}^{(1)}-a_{j}^{(2)}\right)^{-1}
$$

Perturbative Part

Vector multiplet:

$$
Z_{1-\text { loop }}^{\text {vect }}=\prod_{i<j=1}^{N_{c}} H^{2}\left(a_{i}-a_{j}\right)
$$

Bifundamental:

$$
Z_{1-\text { loop }}^{\text {hyper }}=\prod_{i=1}^{N_{c}} \prod_{j=1}^{N_{c}} H\left(a_{i}^{(1)}-a_{j}^{(2)}\right)^{-1}
$$

$$
H(x)=G(1+i x) G(1-i x) e^{-(1+\gamma) x^{2}}=\prod_{n=1}^{\infty}\left(1+\frac{x^{2}}{n^{2}}\right)^{n} e^{-\frac{x^{2}}{n}}
$$

Perturbative Part

Vector multiplet:

$$
\begin{aligned}
& Z_{1-\text {-loop }}^{\text {vect }}=\prod_{i<j=1}^{N_{c}} H^{2}\left(a_{i}-a_{j}\right) \\
& Z_{1-\text { loop }}^{\text {hyper }}=\prod_{i=1}^{N_{c}} \prod_{j=1}^{N_{c}} H\left(a_{i}^{(1)}-a_{j}^{(2)}\right)^{-1}
\end{aligned}
$$

Bifundamental:

$$
H(x)=G(1+i x) G(1-i x) e^{-(1+\gamma) x^{2}}=\prod_{n=1}^{\infty}\left(1+\frac{x^{2}}{n^{2}}\right)^{n} e^{-\frac{x^{2}}{n}}
$$

The full one loop part

$$
Z_{1-\text { loop }}=\prod_{k, l=1}^{r} \prod_{i, j=1}^{N_{c}} H^{\frac{c_{k l}}{2}}\left(a_{i}^{(k)}-a_{j}^{(l)}\right)
$$

Saddle point approximation

Effective action

$$
Z=\int \prod_{k=1}^{r} d^{N_{c}-1} a^{(k)} e^{-N_{c} \mathcal{S}_{\text {eff }}} \Longrightarrow \frac{\partial \mathcal{S}_{\mathrm{eff}}}{\partial a_{i}^{(k)}}=0
$$

Densities

$$
\rho_{k}(x)=\frac{1}{N_{c}} \sum_{i=1}^{N_{c}} \delta\left(x-a_{i}^{(k)}\right) \Rightarrow \int_{-\mu_{k}}^{\mu_{k}} \rho_{k}(x) d x=1
$$

Integral equations

$$
\begin{gathered}
\frac{x}{2 g_{k}^{2}}=f_{-\mu_{k}}^{\mu_{k}} \frac{\rho_{k}(y)}{x-y}-\frac{1}{2} \sum_{l=1}^{r} \mathbf{c}_{k l} \int_{-\mu_{l}}^{\mu_{l}} \rho_{l}(y) K(x-y) d y \\
K(x)=-\frac{H^{\prime}(x)}{H(x)}=-2 \sum_{n=1}^{\infty}(-1)^{n} \zeta(2 n+1) x^{2 n+1}
\end{gathered}
$$

Integral equations

$$
\begin{gathered}
\frac{x}{2 g_{k}^{2}}=f_{-\mu_{k}}^{\mu_{k}} \frac{\rho_{k}(y)}{x-y}-\frac{1}{2} \sum_{l=1}^{r} \mathbf{c}_{k l} \int_{-\mu_{l}}^{\mu_{l}} \rho_{l}(y) K(x-y) d y \\
K(x)=-\frac{H^{\prime}(x)}{H(x)}=-2 \sum_{n=1}^{\infty}(-1)^{n} \zeta(2 n+1) x^{2 n+1}
\end{gathered}
$$

Wilson loop expectation values

$$
W_{k}^{\mathcal{N}=2}=\left\langle\frac{1}{N_{c}} \sum_{i=1}^{N_{c}} e^{2 \pi a_{i}^{(k)}}\right\rangle=\int_{-\mu_{k}}^{\mu_{k}} \rho_{k}(x) e^{2 \pi x} d x
$$

Weak coupling result

For the simplest quiver \hat{A}_{1}

$$
\begin{aligned}
& W^{\mathcal{N}=2}(g, \check{g})=1+2 \pi^{2} g^{2}+\frac{4}{3} \pi^{4} g^{4}+\pi^{6}\left[\frac{4}{9} g^{6}-24 g^{4}\left(\check{g}^{2}-g^{2}\right) \frac{\zeta(3)}{\pi^{4}}\right] \\
& +\pi^{8}\left[\frac{4}{45} g^{8}+\left(\check{g}^{2}-g^{2}\right)\left(32 g^{6} \frac{\zeta(3)}{\pi^{4}}-80 g^{4}\left(3 \check{g}^{2}+g^{2}\right) \frac{\zeta(5)}{\pi^{6}}\right)\right] \\
& +\pi^{10}\left[\frac{8}{675} g^{10}+\left(\check{g}^{2}-g^{2}\right)\left(16 g^{8} \frac{\zeta(3)}{\pi^{4}}-80 g^{6}\left(13 g^{2}+4 \check{g}^{2}\right) \frac{\zeta(5)}{3 \pi^{6}}\right.\right. \\
& \left.\left.-288 g^{4}\left(2 g^{4}-g^{2} \check{g}^{2}+\check{g}^{4}\right) \frac{\zeta(3)^{2}}{\pi^{8}}+280 g^{4}\left(8 g^{4}+5 g^{2} \check{g}^{2}+\check{g}^{4}\right) \frac{\zeta(7)}{\pi^{8}}\right)\right]+\cdots
\end{aligned}
$$

Weak coupling result

For the simplest quiver \hat{A}_{1}

$$
\begin{aligned}
& W^{N=2}(g, \check{g})=1+2 \pi^{2} g^{2}+\frac{4}{3} \pi^{4} g^{4}+\pi^{6}\left[\frac{4}{9} g^{6}-24 g^{4}\left(\check{g}^{2}-g^{2}\right) \frac{\zeta(3)}{\pi^{4}}\right] \\
& +\pi^{8}\left[\frac{4}{45} g^{8}+\left(\check{g}^{2}-g^{2}\right)\left(32 g^{6} \frac{\zeta(3)}{\pi^{4}}-80 g^{4}\left(3 \check{g}^{2}+g^{2}\right) \frac{\zeta(5)}{\pi^{6}}\right)\right] \\
& +\pi^{10}\left[\frac{8}{675} g^{10}+\left(\check{g}^{2}-g^{2}\right)\left(16 g^{8} \frac{\zeta(3)}{\pi^{4}}-80 g^{6}\left(13 g^{2}+4 \check{g}^{2}\right) \frac{\zeta(5)}{3 \pi^{6}}\right.\right.
\end{aligned}
$$

$$
\left.\left.-288 g^{4}\left(2 g^{4}-g^{2} \check{g}^{2}+\check{g}^{4}\right) \frac{\zeta(3)^{2}}{\pi^{8}}+280 g^{4}\left(8 g^{4}+5 g^{2} \check{g}^{2}+\check{g}^{4}\right) \frac{\zeta(7)}{\pi^{8}}\right)\right]+\cdots
$$

Weak coupling result

For the simplest quiver \hat{A}_{1}

$$
\begin{aligned}
& W^{N=2}(g, \check{g})=1+2 \pi^{2} g^{2}+\frac{4}{3} \pi^{4} g^{4}+\pi^{6}\left[\frac{4}{9} g^{6}-24 g^{4}\left(\check{g}^{2}-g^{2}\right) \frac{\zeta(3)}{\pi^{4}}\right] \\
& +\pi^{8}\left[\frac{4}{45} g^{8}+\left(\check{g}^{2}-g^{2}\right)\left(32 g^{6} \frac{\zeta(3)}{\pi^{4}}-80 g^{4}\left(3 \check{g}^{2}+g^{2}\right) \frac{\zeta(5)}{\pi^{6}}\right)\right] \\
& +\pi^{10}\left[\frac{8}{675} g^{10}+\left(\check{g}^{2}-g^{2}\right)\left(16 g^{8} \frac{\zeta(3)}{\pi^{4}}-80 g^{6}\left(13 g^{2}+4 \check{g}^{2}\right) \frac{\zeta(5)}{3 \pi^{6}}\right.\right. \\
& \left.\left.-288 g^{4}\left(2 g^{4}-g^{2} \check{g}^{2}+\check{g}^{4}\right) \frac{\zeta(3)^{2}}{\pi^{8}}+280 g^{4}\left(8 g^{4}+5 g^{2} \check{g}^{2}+\check{g}^{4}\right) \frac{\zeta(7)}{\pi^{8}}\right)\right]+\cdots
\end{aligned}
$$

Effective couplings

$$
W^{N=2}(g, \check{g})=W^{N=4}(f(g, \check{g}))
$$

$$
\begin{aligned}
\Rightarrow f(g, \check{g})= & g^{2}+2\left(\check{g}^{2}-g^{2}\right)\left[6 \zeta(3) g^{4}-20 \zeta(5) g^{4}\left(\check{g}^{2}+3 g^{2}\right)\right. \\
& +g^{4}\left(70 \zeta(7)\left(\check{g}^{4}+5 \check{g}^{2} g^{2}+8 g^{4}\right)-2 \zeta(2)(20 \zeta(5)) g^{4}\right. \\
& \left.\left.-2(6 \zeta(3))^{2}\left(\check{g}^{4}-\check{g}^{2} g^{2}+2 g^{4}\right)\right)\right]+\cdots
\end{aligned}
$$

\mathbb{Z}_{2} symmetry: $\check{f}(g, \check{g})=f(\check{g}, g)$

Feynman diagram interpretation

First correction

First $\zeta(3)$ correction computed in [Pomoni, Sieg, 2011]

$$
\begin{aligned}
f(g, \check{g})= & g^{2}+\underline{2\left(\check{g}^{2}-g^{2}\right)}\left[\underline{6 \zeta(3) g^{4}}-20 \zeta(5) g^{4}\left(\check{g}^{2}+3 g^{2}\right)\right. \\
& +g^{4}\left(70 \zeta(7)\left(\check{g}^{4}+5 \check{g}^{2} g^{2}+8 g^{4}\right)-2 \zeta(2)(20 \zeta(5)) g^{4}\right. \\
& \left.\left.-2(6 \zeta(3))^{2}\left(\check{g}^{4}-\check{g}^{2} g^{2}+2 g^{4}\right)\right)\right]+\cdots
\end{aligned}
$$

First correction

First $\zeta(3)$ correction computed in [Pomoni, Sieg, 2011]

$$
\begin{aligned}
f(g, \check{g})= & g^{2}+\underline{2\left(\check{g}^{2}-g^{2}\right)}\left[\underline{6 \zeta(3) g^{4}}-20 \zeta(5) g^{4}\left(\check{g}^{2}+3 g^{2}\right)\right. \\
& +g^{4}\left(70 \zeta(7)\left(\check{g}^{4}+5 \check{g}^{2} g^{2}+8 g^{4}\right)-2 \zeta(2)(20 \zeta(5)) g^{4}\right. \\
& \left.\left.-2(6 \zeta(3))^{2}\left(\check{g}^{4}-\check{g}^{2} g^{2}+2 g^{4}\right)\right)\right]+\cdots
\end{aligned}
$$

First correction

First $\zeta(3)$ correction computed in [Pomoni, Sieg, 2011]

$$
\begin{aligned}
& f(g, \check{g})=g^{2}+\underline{2\left(\check{g}^{2}-g^{2}\right)\left[\underline{6 \zeta(3) g^{4}}-20 \zeta(5) g^{4}\left(\check{g}^{2}+3 g^{2}\right), ~(g)(2)\right.} \\
& +g^{4}\left(70 \zeta(7)\left(\check{g}^{4}+5 \check{g}^{2} g^{2}+8 g^{4}\right)-2 \zeta(2)(20 \zeta(5)) g^{4}\right. \\
& \left.\left.-2(6 \zeta(3))^{2}\left(\check{g}^{4}-\check{g}^{2} g^{2}+2 g^{4}\right)\right)\right]+\cdots
\end{aligned}
$$

Second correction

$$
\begin{aligned}
f(g, \check{g})= & g^{2}+\underline{2\left(\check{g}^{2}-g^{2}\right)}\left[\left[6 \zeta(3) g^{4}-20 \xi(5) g^{4} \check{g}^{2}+3 g^{2}\right)\right. \\
& +g^{4}\left(70 \zeta(7)\left(\breve{g}^{4}+5 \check{g}^{2} g^{2}+8 g^{4}\right)-2 \zeta(2)(20 \zeta(5)) g^{4}\right. \\
& \left.\left.-2(6 \zeta(3))^{2}\left(\check{g}^{4}-\breve{g}^{2} g^{2}+2 g^{4}\right)\right)\right]+\cdots
\end{aligned}
$$

Second correction

$$
\begin{aligned}
f(g, \check{g})= & g^{2}+\underline{2\left(\check{g}^{2}-g^{2}\right)}\left[6 \zeta(3) g^{4} \underline{-20 \zeta(5) g^{4}\left(\check{g}^{2}+3 g^{2}\right)}\right. \\
& +g^{4}\left(70 \zeta(7)\left(\check{g}^{4}+5 \check{g}^{2} g^{2}+8 g^{4}\right)-2 \zeta(2)(20 \zeta(5)) g^{4}\right. \\
& \left.\left.-2(6 \zeta(3))^{2}\left(\check{g}^{4}-\check{g}^{2} g^{2}+2 g^{4}\right)\right)\right]+\cdots
\end{aligned}
$$

Second correction

$$
\underbrace{-20 \zeta(5)\left(\check{g}^{4} g^{4}+2 \check{g}^{2} g^{6}\right)}_{N=2}+\underbrace{20 \zeta(5)\left(3 g^{8}\right)}_{N=4}=-20 \xi(5) g^{4}\left(\dot{g}^{2}-g^{2}\right)\left(\tilde{g}^{2}+3 g^{2}\right)
$$

$$
\begin{aligned}
& f(g, \check{g})=g^{2}+2\left(\check{g}^{2}-g^{2}\right)\left[6 \zeta(3) g^{4}-20 \zeta(5) g^{4}\left(g^{2}+3 g^{2}\right)\right. \\
& +g^{4}\left(70 \zeta(7)\left(\tilde{g}^{4}+5 g^{2} g^{2}+8 g^{4}\right)-2 \zeta(2)(20 \zeta(5)) g^{4}\right. \\
& \left.\left.-2(6 \zeta(3))^{2}\left(\tilde{g}^{4}-\ddot{g}^{2} g^{2}+2 g^{4}\right)\right)\right]+\cdots
\end{aligned}
$$

Less than maximum transcendentality corrections

Quiver with $r>2 \Longrightarrow$ next to nearest neighbor gauge groups

Less than maximum transcendentality corrections

Quiver with $r>2 \Longrightarrow$ next to nearest neighbor gauge groups

$$
\begin{aligned}
f_{0}= & \cdots+(6 \zeta(3))^{2} g_{0}^{4}\left[8 g_{0}^{6}-2 g_{-1}^{6}-2 g_{1}^{6}+\underline{g_{1}^{4} g_{2}^{2}+g_{-1}^{4} g_{-2}^{2}}\right. \\
& \left.-6 g_{0}^{4}\left(g_{-1}^{2}+g_{1}^{2}\right)+2 g_{0}^{2}\left(g_{-1}^{4}+g_{-1}^{2} g_{1}^{2}+g_{1}^{4}\right)\right]+\cdots
\end{aligned}
$$

Strong coupling

Large couplings $g_{k} \rightarrow \infty \Longrightarrow W_{k}^{\mathcal{N}=2} \sim e^{2 \pi \mu_{k}}$

Strong coupling

$$
\text { Large couplings } g_{k} \rightarrow \infty \Longrightarrow W_{k}^{\mathcal{N}=2} \sim e^{2 \pi \mu_{k}}
$$

$$
1=\frac{1}{4 r} \sum_{l=1}^{r} \frac{\mu_{k}^{2}}{g_{k}^{2}} \quad \text { and } \quad \mu_{1}=\cdots=\mu_{r}
$$

Strong coupling

$$
\text { Large couplings } g_{k} \rightarrow \infty \Longrightarrow W_{k}^{\mathcal{N}=2} \sim e^{2 \pi \mu_{k}}
$$

$$
1=\frac{1}{4 r} \sum_{l=1}^{r} \frac{\mu_{k}^{2}}{g_{k}^{2}} \quad \text { and } \quad \mu_{1}=\cdots=\mu_{r}
$$

Effective coulings

$$
\frac{1}{f_{k}}=\frac{1}{r}\left(\frac{1}{g_{1}^{2}}+\cdots+\frac{1}{g_{r}^{2}}\right)
$$

Agrees with an AdS/CFT computation
[Lawrence, Nekrasov, Vafa, 1998] [Gadde, Pomoni, Rastelli, 2009]
[Gadde, Liendo, Rastelli, Yan, 2012]

Outlook

Anomalous dimensions

Twist-two descendent of Konishi

$$
\begin{aligned}
& \Delta(g, \check{g})=4+12 g^{2}-48 g^{4}+48 g^{4}\left[7 g^{2}-3\left(g^{2}-\check{g}^{2}\right) \zeta(3)\right] \\
& +96 g^{4}\left[-26 g^{4}+6 \zeta(3) g^{4}-15 \zeta(5) g^{4}+\left(g^{2}-\check{g}^{2}\right)\left(12 g^{2} \zeta(3)\right.\right. \\
& \left.\left.+5\left(3 g^{2}+\check{g}^{2}\right) \zeta(5)\right)\right]+16 g^{4}\left[948 g^{6}+432 g^{6} \zeta(3)\right. \\
& -324 g^{6} \zeta(3)^{2}-540 g^{6} \zeta(5)+1890 g^{6} \zeta(7) \\
& -3\left(g^{2}-\check{g}^{2}\right)\left[\left(8 g^{4}+5 g^{2} \check{g}^{2}+\check{g}^{4}\right) 35 \zeta(7)\right. \\
& -g^{2}\left(4 \check{g}^{2}+g^{2}(12-\zeta(2))\right) 20 \zeta(5) \\
& \left.\left.-\left(2 g^{4}-g^{2} \check{g}^{2}+\check{g}^{4}\right)(6 \zeta(3))^{2}+42 g^{4}(6 \zeta(3))\right]\right]+\cdots
\end{aligned}
$$

Outside the sector

Bifundamental hypermultiplet in the ϕ vacuum
$\cdots \phi \phi Q \check{\phi} \check{\phi} \cdots$

Outside the sector

Bifundamental hypermultiplet in the ϕ vacuum
$\cdots \phi \phi Q \check{\phi} \check{\phi} \cdots$

$$
E_{\text {bif }}(p)=\sqrt{1+4(\mathbf{g}-\check{\mathbf{g}})^{2}+16 \mathbf{g} \check{g} \sin ^{2}\left(\frac{p}{2}\right)}
$$

[Gadde, Rastelli, 2010]

Outside the sector

Bifundamental hypermultiplet in the ϕ vacuum
$\cdots \phi \phi Q \check{\phi} \check{\phi} \cdots$

$$
E_{\text {bif }}(p)=\sqrt{1+4(\mathbf{g}-\check{\mathbf{g}})^{2}+16 \mathbf{g} \check{g} \sin ^{2}\left(\frac{p}{2}\right)}
$$

[Gadde, Rastelli, 2010]

$$
\mathbf{g}=f(g, \check{g})^{\frac{1}{2}} \quad \check{\mathbf{g}}=\check{f}(g, \check{g})^{\frac{1}{2}}=f(\check{g}, g)^{\frac{1}{2}}
$$

Future

- An honest Feynman diagram computation is ongoing

Future

- An honest Feynman diagram computation is ongoing
- Mass terms for the hypermultiplets
\Longrightarrow asymptotically conformal quiver theories
\Longrightarrow No additional UV divergences

Future

- An honest Feynman diagram computation is ongoing
- Mass terms for the hypermultiplets
\Longrightarrow asymptotically conformal quiver theories
\Longrightarrow No additional UV divergences
- Check in other observables: Cusp anomalous dimension, scattering amplitudes, Wilson loops, ...
[Leoni, Mauri, Santambrogio, 2014]

Thank you

The SU($2,1 \mid 2)$ sector of $N=2$ SCFT's

Why the sector is closed to all loops?

- For $g=0$:
all the fields $\phi, \lambda_{+}^{I}, \mathcal{D}_{+\dot{\alpha}}$ obey $\Delta=2 j-r$
while all the rest of the fields: $\quad Q, \tilde{Q}, \psi, \tilde{\psi}, \bar{\phi}, \lambda_{-}^{I}, \bar{\lambda}_{I \dot{\alpha}}, \mathcal{D}_{-\dot{\alpha}}$
violate (only in one direction) the equality: $\Delta>2 j-r$ by at least $1 / 2$
- In perturbation theory $g \ll 1$ the radiative corrections in
$\Delta(\lambda), j(\lambda)$ and $r(\lambda)$ will never be bigger that $1 / 2$!
The λ expansion is believed to converge ('t Hooft).
This sector is closed for any finite value of λ in the planar limit !

Weak coupling expansion

$$
g_{k}=\kappa_{k} g, \quad \kappa_{k} \text { fixed }
$$

Densities widths

$$
\mu_{k}=g_{k}\left(1+\sum_{i=1}^{P+1} \mathbf{A}_{k ; i} g_{k}^{i}\right)
$$

Moments of the densities

$$
\int_{-\mu_{k}}^{\mu_{k}} \rho_{k}(x) x^{2 i} d x=g_{k}^{i}\left(C_{i}+\sum_{j=1}^{P+1-i} \mathbf{B}_{k ; 2 i ; j} g_{k}^{j}\right)
$$

