The Exact Effective Couplings of $4D \mathcal{N} = 2$ gauge theories

Vladimir Mitev

Institute of Mathematics Institute of Physics Humboldt Universität zu Berlin

IGST Hamburg 2014

Based on [V.M., Elli Pomoni, arXiv:1406.3629] and work in progress

18th July 2014

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 9 0 0 0

 $\mathcal{N}=4$ SYM is on the way of being solved

Vladimir Mitev 18th July 2014 2 / 38

$\mathcal{N}=4$ SYM is on the way of being solved

 The spectral problem is solved in principle see talk by N. Gromov

2 / 38

$\mathcal{N}=4$ SYM is on the way of being solved

- The spectral problem is solved in principle see talk by N. Gromov
- Progress on three-point functions see talks by Z. Bajnok and S. Komatsu

2 / 38

$\mathcal{N}=4$ SYM is on the way of being solved

- The spectral problem is solved in principle see talk by N. Gromov
- Progress on three-point functions see talks by Z. Bajnok and S. Komatsu
- Amplitudes, Wilson loops, Scattering amplitudes etc.....
 see talks by B. Basso, A. Sever, T. Łukowski, M. Sprenger

2 / 38

$\mathcal{N}=4$ SYM is on the way of being solved

- The spectral problem is solved in principle see talk by N. Gromov
- Progress on three-point functions see talks by Z. Bajnok and S. Komatsu
- Amplitudes, Wilson loops, Scattering amplitudes etc..... see talks by B. Basso, A. Sever, T. Łukowski, M. Sprenger

What can we say about less supersymmetric theories?

Techniques

Which techniques were used?

Vladimir Mitev

3 / 38

Techniques

Which techniques were used?

- Dual holographic description
- Integrability (in the planar limit)
- Localization (for any N_c)

3 / 38

Techniques

Which techniques were used?

- Dual holographic description
- Integrability (in the planar limit)
- Localization (for any N_c)

What is the reason for integrability?

- Planarity?
- Conformality?
- Supersymmetry?
- Transformation properties of the fields?

3 / 38

The claim

Vladimir Mitev 18th July 2014 4 / 38

Pick your favorite N = 2 SCFT and take one vector multiplet

Vladimir Mitev

5 / 38

Pick your favorite N = 2 SCFT and take one vector multiplet

The SU(2,1|2) sector:

$$\phi, \lambda_+^I, \mathcal{F}_{++}$$
 in vector multiplet

Vladimir Mitev

Pick your favorite N = 2 SCFT and take one vector multiplet

The SU(2,1|2) sector: $\left(\mathcal{D}_{+\dot{\alpha}}\right)^{n}\left\{\phi,\lambda_{+}^{\mathcal{I}},\mathcal{F}_{++}\right\}$ in vector multiplet

Vladimir Mitev 18th July 2014 5 / 38

Pick your favorite N = 2 SCFT and take one vector multiplet

The SU(2,1|2) sector:
$$\left(\mathcal{D}_{+\dot{\alpha}}\right)^n \left\{\phi, \lambda_+^I, \mathcal{F}_{++}\right\}$$
 in vector multiplet is closed to all loops

[Pomoni, 2013]

Pick your favorite $\mathcal{N} = 2$ SCFT and take one vector multiplet

The SU(2,1|2) sector: $(\mathcal{D}_{+\dot{\alpha}})^n \{\phi, \lambda_+^I, \mathcal{F}_{++}\}$ in vector multiplet is closed to all loops

[Pomoni, 2013]

The purely gluonic sector in every $\mathcal{N}=2$ SCFT is integrable

[Pomoni, 2013]

5 / 38

see also [Pomoni, Sieg, 2011], [Gadde, Liendo, Rastelli, Yan, 2012]

Compute the N = 4 SYM equivalent and replace

$$g^2 = \frac{g_{YM}^2 N_c}{(4\pi)^2} = \frac{\lambda}{(4\pi)^2}$$

6 / 38

Compute the N = 4 SYM equivalent and replace

$$g^2 = rac{g_{YM}^2 N_c}{(4\pi)^2} = rac{\lambda}{(4\pi)^2} o f(g^2, \dots,)$$

6 / 38

Compute the N = 4 SYM equivalent and replace

$$g^2 = \frac{g_{\text{YM}}^2 N_c}{(4\pi)^2} = \frac{\lambda}{(4\pi)^2} \rightarrow \underbrace{f(g^2, \dots,)}_{\text{Effective coupling}}$$

6 / 38

Compute the N = 4 SYM equivalent and replace

$$g^2 = rac{g_{
m YM}^2 N_c}{(4\pi)^2} = rac{\lambda}{(4\pi)^2}
ightarrow \underbrace{f(g^2,\ldots,)}_{ ext{Effective couplings}}$$

Similar to the situation in ABJM, [see the talks of A. Cavaglia and N. Gromov]

Vladimir Mitev 18th July 2014 6 / 38

Compute the N = 4 SYM equivalent and replace

$$g^2 = rac{g_{
m YM}^2 N_c}{(4\pi)^2} = rac{\lambda}{(4\pi)^2}
ightarrow rac{f(g^2,\ldots,)}{ ext{Effective couplings}}$$

Similar to the situation in ABJM, [see the talks of A. Cavaglia and N. Gromov]

Example: anomalous dimensions

$$\gamma^{\mathcal{N}=2}(g^2,\ldots)=\gamma^{\mathcal{N}=4}(f(g^2,\ldots))$$

Vladimir Mitev 18th July 2014 6 / 38

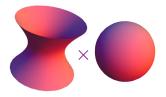
Orbifolds of N = 4 SYM are well known [Kachru, Silverstein, 1998], [Lawrence, Nekrasov, Vafa, 1998]

18th July 2014

7 / 38

Vladimir Mitev

Orbifolds of N = 4 SYM are well known [Kachru, Silverstein, 1998], [Lawrence, Nekrasov, Vafa, 1998]

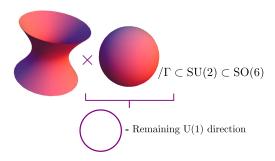


Vladimir Mitev 18th July 2014 7 / 38

Orbifolds of N = 4 SYM are well known [Kachru, Silverstein, 1998], [Lawrence, Nekrasov, Vafa, 1998]

Vladimir Mitev 18th July 2014 7 / 38

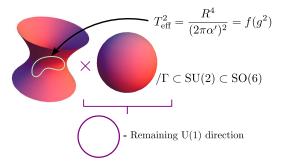
Orbifolds of N = 4 SYM are well known [Kachru, Silverstein, 1998], [Lawrence, Nekrasov, Vafa, 1998]



Vladimir Mitev 18th July 2014 7 / 38

Orbifolds of N = 4 SYM are well known [Kachru, Silverstein, 1998], [Lawrence, Nekrasov, Vafa, 1998]

Effective couplings = effective string tension

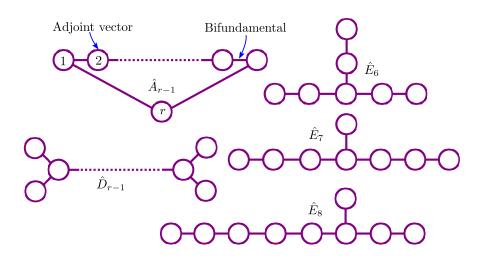


 \hat{A}_{r-1} quiver gauge theories are dual to $AdS_5 \times S^5/\mathbb{Z}_r$

Vladimir Mitev 18th July 2014

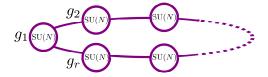
7 / 38

ADE classification of superconformal gauge theories



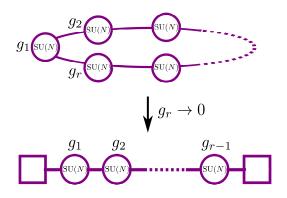
8 / 38

\hat{A}_{r-1} : the cyclic quiver



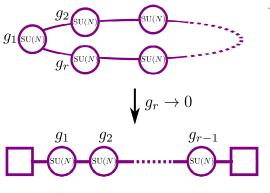
9/38

\hat{A}_{r-1} : the cyclic quiver



9/38

\hat{A}_{r-1} : the cyclic quiver



Interpolating theory

$$g(SU(N))$$
 $SU(N)$ \check{g}

$$\oint \check{g} \to 0$$

$$\mathcal{N} = 2 \text{ SCQCD}$$

9 / 38

The diagrammatic argument

10 / 38

Background field formalism

Want to keep as much of the manifest local gauge invariance as possible

Background field

$$A_{\mu} = \underbrace{\mathcal{A}_{\mu}}_{egin{subarray}{c} ext{classical} \ ext{background} \end{array}} + \underbrace{\mathbb{A}_{\mu}}_{egin{subarray}{c} ext{quantum} \ ext{fluctuations}}$$

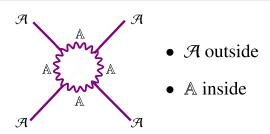
Vladimir Mitev 18th July 2014 11 / 38

Background field formalism

Want to keep as much of the manifest local gauge invariance as possible

Background field

$${\it A}_{\mu} = \underbrace{{\it \mathcal{A}}_{\mu}}_{ {\it classical background}} + \underbrace{{\it \mathcal{A}}_{\mu}}_{ {\it quantum fluctuations}}$$



11 / 38

Simplifications

Renormalization factors

$$egin{aligned} \mathcal{A}_{ ext{bare}}^{\mu} &= \sqrt{\mathcal{Z}_{\mathcal{A}}} \mathcal{A}_{ ext{ren}}^{\mu} & \mathbb{A}_{ ext{bare}}^{\mu} &= \sqrt{\mathcal{Z}_{\mathbb{A}}} \mathbb{A}_{ ext{ren}}^{\mu} \ \mathcal{G}_{ ext{bare}} &= \mathcal{Z}_{\mathcal{E}} \mathcal{G}_{ ext{ren}} \end{aligned}$$

We have the relations

$$\mathcal{Z}_g \, \sqrt{\mathcal{Z}_{\mathcal{A}}} = 1$$
 and $\mathcal{Z}_{\mathbb{A}} = \mathcal{Z}_{\xi}$

Vladimir Mitev 18th July 2014 12 / 38

Simplifications

Renormalization factors

$$egin{aligned} \mathcal{A}_{\mathrm{bare}}^{\mu} &= \sqrt{\mathcal{Z}_{\mathcal{A}}} \mathcal{A}_{\mathrm{ren}}^{\mu} & \mathbb{A}_{\mathrm{bare}}^{\mu} &= \sqrt{\mathcal{Z}_{\mathbb{A}}} \mathbb{A}_{\mathrm{ren}}^{\mu} \ & g_{\mathrm{bare}} &= \mathcal{Z}_{\mathcal{E}} \xi_{\mathrm{ren}} \end{aligned}$$

We have the relations

$$\mathcal{Z}_{q}\sqrt{\mathcal{Z}_{\mathscr{R}}}=1$$
 and $\mathcal{Z}_{\mathbb{A}}=\mathcal{Z}_{\mathcal{E}}$

ullet The renormalization factors $\mathcal{Z}_{\mathbb{A}}$ cancel for each individual diagram

12 / 38

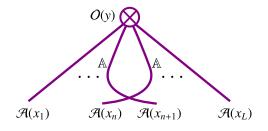
Cancellations

Compute $\langle O(y)\mathcal{A}(x_1)\cdots\mathcal{A}(x_L)\rangle$ for $O\sim \operatorname{tr}\left(\phi^L\right)$.

13 / 38

Cancellations

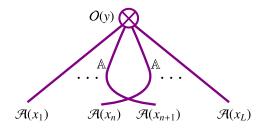
Compute $\langle O(y)\mathcal{A}(x_1)\cdots\mathcal{A}(x_L)\rangle$ for $O\sim \operatorname{tr}(\phi^L)$.



13 / 38

Cancellations

Compute $\langle O(y)\mathcal{A}(x_1)\cdots\mathcal{A}(x_L)\rangle$ for $O\sim \operatorname{tr}(\phi^L)$.

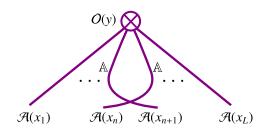


$$O_{i}^{ ext{ren}}\left(\mathbb{A}_{ ext{ren}}\,,\,\mathcal{A}_{ ext{ren}}
ight) = \sum_{j}\mathcal{Z}_{ij}O_{j}^{ ext{bare}}\left(\mathcal{Z}_{\mathbb{A}}^{1/2}\mathbb{A}\,,\,\mathcal{Z}_{\mathcal{A}}^{1/2}\mathcal{A}
ight)$$

13 / 38

Cancellations

Compute $\langle O(y)\mathcal{A}(x_1)\cdots\mathcal{A}(x_L)\rangle$ for $O\sim \operatorname{tr}\left(\phi^L\right)$.



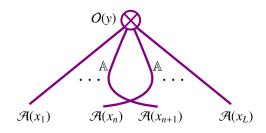
$$O_{i}^{\mathrm{ren}}\left(\mathbb{A}_{\mathrm{ren}}\,,\,\mathcal{A}_{\mathrm{ren}}
ight)=\sum_{j}\mathcal{Z}_{ij}O_{j}^{\mathrm{bare}}\left(\mathcal{Z}_{\mathbb{A}}^{1/2}\mathbb{A}\,,\,\mathcal{Z}_{\mathcal{A}}^{1/2}\mathcal{A}
ight)$$

- $\langle \mathbb{A} \mathbb{A} \mathcal{H} \mathbb{A} \rangle$ renormalizes as $\mathbb{Z}_{\mathbb{A}} \mathbb{Z}_{\mathbb{A}} \langle \mathbb{A} \mathbb{A} \mathcal{H} \mathbb{A} \rangle$
- ullet The ${\mathbb A}$ propagators as ${\mathcal Z}_{{\mathbb A}}^{-1}$
- ullet The O^{ren} has two more $\mathcal{Z}_{\mathbb{A}}^{1/2}$

Vladimir Mitev

Cancellations

Compute $\langle O(y)\mathcal{A}(x_1)\cdots\mathcal{A}(x_L)\rangle$ for $O\sim \operatorname{tr}(\phi^L)$.



$$O_{i}^{ ext{ren}}\left(\mathbb{A}_{ ext{ren}}\,,\,\mathcal{A}_{ ext{ren}}
ight) = \sum_{j}\mathcal{Z}_{ij}O_{j}^{ ext{bare}}\left(\mathcal{Z}_{\mathbb{A}}^{1/2}\mathbb{A}\,,\,\mathcal{Z}_{\mathcal{A}}^{1/2}\mathcal{A}
ight)$$

- ⟨AAAA⟩ renormalizes as
 ZAZA⟨AAAA)
- ullet The ${\mathbb A}$ propagators as ${\mathcal Z}_{{\mathbb A}}^{-1}$
- ullet The O^{ren} has two more $\mathcal{Z}_{\mathbb{A}}^{1/2}$

- All the Z_A cancel
- The final result depends only on $\mathcal{Z}_{\mathcal{A}}=\mathcal{Z}_{q}^{-2}$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□
8□
9
0

13 / 38

Regularization prescription for $\mathcal{N}=2$ theories

Subtract from a given $\mathcal{N}=2$ diagram the $\mathcal{N}=4$ diagram with the same external states

14 / 38

Regularization prescription for N=2 theories

Subtract from a given $\mathcal{N}=2$ diagram the $\mathcal{N}=4$ diagram with the same external states

Example: the divergent bubble

The difference is zero since the gluonic tree level terms in both the $\mathcal{N}=2$ and the $\mathcal{N}=4$ Lagrangians are identical

Regularization prescription for N=2 theories

Subtract from a given $\mathcal{N}=2$ diagram the $\mathcal{N}=4$ diagram with the same external states

Example: First different diagram

The diagram is finite, the difference non-zero

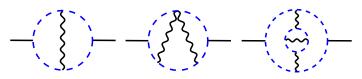
Regularization prescription for $\mathcal{N}=2$ theories

Subtract from a given $\mathcal{N}=2$ diagram the $\mathcal{N}=4$ diagram with the same external states

Diagrams different from the $\mathcal{N}=4$ ones \Rightarrow make hypermultiplet loops and then let fields from the other vector multiplets propagate inside

[Pomoni, Sieg, 2011], [Pomoni, 2013]

14 / 38



 Individual UV-divergent Feynman diagrams for the renormalization of operators in the SU(2,1|2) sector are identical in both theories

- Individual UV-divergent Feynman diagrams for the renormalization of operators in the SU(2,1|2) sector are identical in both theories
- Diagrams that are different from their N = 4 counterparts are finite
 ⇒ relative finite renormalization

- Individual UV-divergent Feynman diagrams for the renormalization of operators in the SU(2,1|2) sector are identical in both theories
- Diagrams that are different from their N = 4 counterparts are finite
 ⇒ relative finite renormalization
- Difference is always finite

- Individual UV-divergent Feynman diagrams for the renormalization of operators in the SU(2,1|2) sector are identical in both theories
- Diagrams that are different from their N = 4 counterparts are finite
 ⇒ relative finite renormalization
- Difference is always finite

Basic building block: Fan Integrals

$$= 2 \left(\frac{2n-1}{n} \right) \zeta(2n-1) \frac{1}{p^2}$$

New vertices

New vertices appear in the $\mathcal{N}=2$ effective action

New vertices

New vertices appear in the $\mathcal{N}=2$ effective action

However: for operators in the SU(2,1|2) sector, the non-renormalization theorem of [Fiamberti, Santambrogio, Sieg, Zanon, 2008], [Sieg, 2010]

None of these new vertices can contribute to the anomalous dimensions

New vertices

New vertices appear in the $\mathcal{N}=2$ effective action

However: for operators in the SU(2,1|2) sector, the non-renormalization theorem of [Fiamberti, Santambrogio, Sieg, Zanon, 2008], [Sieg, 2010]

None of these new vertices can contribute to the anomalous dimensions

Only renormalized tree level vertices can contribute

Effective couplings

For each gauge group

$$f_k(g_1^2,\ldots,g_r^2) = g_k^2 + g_k^2 \left[\underbrace{(\mathcal{Z}_{g_k}^{\mathcal{N}=2})^2}_{ ext{propagator of}} - \underbrace{(\mathcal{Z}_{g_1=\cdots=g_r}^{\mathcal{N}=4})^2}_{ ext{orbifold point}} \right]$$

Effective couplings

For each gauge group

$$f_k(g_1^2, \dots, g_r^2) = g_k^2 + g_k^2 \left[\underbrace{(\mathcal{Z}_{\mathcal{A}^{(k)}}^{N=2})^{-1}}_{\text{propagator of}} - \underbrace{(\mathcal{Z}_{\mathcal{A}}^{N=4})^{-1}}_{\text{orbifold point}} \right]$$

Wilson Loops From Localization

18 / 38

Circular Wilson Loop in $\mathcal{N}=4$ SYM

Circular Wilson loop in $\mathcal{N}=4$

$$W^{\mathcal{N}=4}(g) = rac{I_1(4\pi g)}{2\pi g} = \left\{egin{array}{l} 1 + 2\pi^2 g^2 + rac{4\pi^4 g^4}{3} + rac{4\pi^6 g^6}{9} + O(g^8) \ rac{e^{4\pi g}}{\sqrt{32\pi^4 g^3}} \Big(1 + O(g^{-1})\Big) \end{array}
ight.$$

[Erickson, Semenoff, Zarembo, 2000]

19 / 38

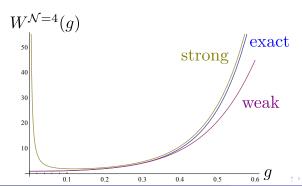
Circular Wilson Loop in N = 4 SYM

Circular Wilson loop in $\mathcal{N}=4$

$$W^{\mathcal{N}=4}(g) = rac{I_1(4\pi g)}{2\pi g} = \left\{egin{array}{l} 1 + 2\pi^2 g^2 + rac{4\pi^4 g^4}{3} + rac{4\pi^6 g^6}{9} + O(g^8) \ rac{e^{4\pi g}}{\sqrt{32\pi^4 g^3}} \Big(1 + O(g^{-1})\Big) \end{array}
ight.$$

[Erickson, Semenoff, Zarembo, 2000]

19 / 38



Wilson loops in $\mathcal{N}=2$ gauge theories

Purely gluonic observable

$$W_k^{\mathcal{N}=2} = \left\langle \frac{1}{N_c} \operatorname{tr}_{\square} \operatorname{Pexp} \oint_C ds \left(i A_{\mu}^{(k)}(x) \dot{x}^{\mu} + \phi^{(k)}(x) |\dot{x}| \right) \right\rangle$$

- \square is fundamental representation of $SU(N_c)$
- C is the circular loop located at the equator of S⁴
- The adjoint scalar $\phi^{(k)}$ and the gauge field $A_{\mu}^{(k)}$ are in the vector multiplet of the k-th gauge group.

ロト 4回 ト 4 恵 ト 4 恵 ト - 恵 - 夕久(で

20 / 38

Wilson loops in $\mathcal{N}=2$ gauge theories

Purely gluonic observable

$$W_k^{\mathcal{N}=2} = \left\langle \frac{1}{N_c} \operatorname{tr}_{\square} \operatorname{Pexp} \oint_{C} ds \left(i A_{\mu}^{(k)}(x) \dot{x}^{\mu} + \phi^{(k)}(x) |\dot{x}| \right) \right\rangle$$

- \square is fundamental representation of SU(N_c)
- C is the circular loop located at the equator of S⁴
- The adjoint scalar $\phi^{(k)}$ and the gauge field $A_{\mu}^{(k)}$ are in the vector multiplet of the k-th gauge group.

$$W_k^{N=2}(g_1,\ldots,g_r)=W^{N=4}(f_k(g_1,\ldots,g_r))$$

$$f_k(g_1,\ldots,g_r)=g_k^2+\cdots$$

the effective coupling constant of the k-th gauge group

Vladimir Mitev

Partition function from localization

Expectation value

$$\left\langle \phi^{(k)} \right
angle = \operatorname{diag} \left(a_1^{(k)}, \dots, a_{N_c}^{(k)} \right)$$

21 / 38

Vladimir Mitev

Partition function from localization

Expectation value

$$\left\langle \phi^{(k)} \right
angle = \operatorname{diag} \left(a_1^{(k)}, \dots, a_{N_c}^{(k)} \right)$$

Partition function on S4

$$Z = \int \prod_{k=1}^{r} da^{(k)} \prod_{i < i-1}^{N_c} \left(a_i^{(k)} - a_j^{(k)} \right)^2 e^{-\frac{N_c}{2g_k^2} \sum_{i=1}^{N_c} \left(a_i^{(k)} \right)^2} Z_{\text{1-loop}} Z_{\text{inst}} Z_{\text{planar limit}}$$

Vector multiplet:
$$Z_{\text{1-loop}}^{\text{vect}} = \prod_{i < j=1}^{N_c} H^2(a_i - a_j)$$

Vector multiplet:
$$Z_{\text{1-loop}}^{\text{vect}} = \prod_{i < j=1}^{N_c} H^2(a_i - a_j)$$

Bifundamental:
$$Z_{\text{1-loop}}^{\text{hyper}} = \prod_{i=1}^{N_c} \prod_{j=1}^{N_c} H(a_i^{(1)} - a_j^{(2)})^{-1}$$

Vector multiplet:
$$Z_{1-\text{loop}}^{\text{vect}} = \prod_{i < j=1}^{N_c} H^2(a_i - a_j)$$

Bifundamental:
$$Z_{1-\text{loop}}^{\text{hyper}} = \prod_{i=1}^{N_c} \prod_{j=1}^{N_c} H(a_i^{(1)} - a_j^{(2)})^{-1}$$

$$H(x) = G(1+ix)G(1-ix)e^{-(1+\gamma)x^2} = \prod_{n=1}^{\infty} \left(1 + \frac{x^2}{n^2}\right)^n e^{-\frac{x^2}{n}}$$

Vector multiplet:
$$Z_{1-\text{loop}}^{\text{vect}} = \prod_{i< j=1}^{N_c} H^2(a_i - a_j)$$

Bifundamental:
$$Z_{1-\text{loop}}^{\text{hyper}} = \prod_{i=1}^{N_c} \prod_{j=1}^{N_c} H(a_i^{(1)} - a_j^{(2)})^{-1}$$

$$H(x) = G(1+ix)G(1-ix)e^{-(1+\gamma)x^2} = \prod_{n=1}^{\infty} \left(1 + \frac{x^2}{n^2}\right)^n e^{-\frac{x^2}{n}}$$

The full one loop part

$$Z_{\text{1-loop}} = \prod_{k,l=1}^{r} \prod_{i,j=1}^{N_c} H^{\frac{c_{kl}}{2}} \left(a_i^{(k)} - a_j^{(l)} \right)$$

Vladimir Mitev 18th July 2014

22 / 38

Saddle point approximation

Effective action

$$Z = \int \prod_{k=1}^{r} d^{N_c - 1} a^{(k)} e^{-N_c S_{\text{eff}}} \Longrightarrow \frac{\partial S_{\text{eff}}}{\partial a_i^{(k)}} = 0$$

Densities

$$\rho_k(x) = \frac{1}{N_c} \sum_{i=1}^{N_c} \delta\left(x - a_i^{(k)}\right) \Rightarrow \int_{-\mu_k}^{\mu_k} \rho_k(x) dx = 1$$

23 / 38

Integral equations

$$\frac{x}{2g_k^2} = \int_{-\mu_k}^{\mu_k} \frac{\rho_k(y)}{x - y} - \frac{1}{2} \sum_{l=1}^r \mathbf{c}_{kl} \int_{-\mu_l}^{\mu_l} \rho_l(y) K(x - y) dy$$

$$K(x) = -\frac{H'(x)}{H(x)} = -2\sum_{n=1}^{\infty} (-1)^n \zeta(2n+1) x^{2n+1}$$

Integral equations

$$\frac{x}{2g_k^2} = \int_{-\mu_k}^{\mu_k} \frac{\rho_k(y)}{x - y} - \frac{1}{2} \sum_{l=1}^r \mathbf{c}_{kl} \int_{-\mu_l}^{\mu_l} \rho_l(y) K(x - y) dy$$

$$K(x) = -\frac{H'(x)}{H(x)} = -2\sum_{n=1}^{\infty} (-1)^n \zeta(2n+1) x^{2n+1}$$

Wilson loop expectation values

$$W_k^{N=2} = \left\langle \frac{1}{N_c} \sum_{i=1}^{N_c} e^{2\pi a_i^{(k)}} \right\rangle = \int_{-\mu_k}^{\mu_k} \rho_k(x) e^{2\pi x} dx.$$

Vladimir Mitev

Weak coupling result

For the simplest quiver \hat{A}_1

$$\begin{split} W^{\mathcal{N}=2}(g, \check{g}) &= 1 + 2\pi^2 g^2 + \frac{4}{3}\pi^4 g^4 + \pi^6 \Big[\frac{4}{9} g^6 - 24 g^4 (\check{g}^2 - g^2) \frac{\zeta(3)}{\pi^4} \Big] \\ &+ \pi^8 \Big[\frac{4}{45} g^8 + (\check{g}^2 - g^2) \Big(32 g^6 \frac{\zeta(3)}{\pi^4} - 80 g^4 (3 \check{g}^2 + g^2) \frac{\zeta(5)}{\pi^6} \Big) \Big] \\ &+ \pi^{10} \Big[\frac{8}{675} g^{10} + (\check{g}^2 - g^2) \Big(16 g^8 \frac{\zeta(3)}{\pi^4} - 80 g^6 \Big(13 g^2 + 4 \check{g}^2 \Big) \frac{\zeta(5)}{3\pi^6} \\ &- 288 g^4 \Big(2g^4 - g^2 \check{g}^2 + \check{g}^4 \Big) \frac{\zeta(3)^2}{\pi^8} + 280 g^4 \Big(8g^4 + 5g^2 \check{g}^2 + \check{g}^4 \Big) \frac{\zeta(7)}{\pi^8} \Big) \Big] + \cdots \end{split}$$

25 / 38

For the simplest quiver \hat{A}_1

$$\begin{split} W^{N=2}(g, \check{g}) &= 1 + 2\pi^2 g^2 + \frac{4}{3}\pi^4 g^4 + \pi^6 \left[\frac{4}{9} g^6 - 24g^4 (\check{g}^2 - g^2) \frac{\zeta(3)}{\pi^4} \right] \\ &+ \pi^8 \left[\frac{4}{45} g^8 + (\check{g}^2 - g^2) \left(32g^6 \frac{\zeta(3)}{\pi^4} - 80g^4 (3\check{g}^2 + g^2) \frac{\zeta(5)}{\pi^6} \right) \right] \\ &+ \pi^{10} \left[\frac{8}{675} g^{10} + (\check{g}^2 - g^2) \left(16g^8 \frac{\zeta(3)}{\pi^4} - 80g^6 \left(13g^2 + 4\check{g}^2 \right) \frac{\zeta(5)}{3\pi^6} \right) \right] \\ &- 288g^4 \left(2g^4 - g^2 \check{g}^2 + \check{g}^4 \right) \frac{\zeta(3)^2}{\pi^8} + 280g^4 \left(8g^4 + 5g^2 \check{g}^2 + \check{g}^4 \right) \frac{\zeta(7)}{\pi^8} \right) \right] + \cdots \end{split}$$

(ロト 4 🗇 ト 4 분 ト 4 분 ト) 본 : 约 Q (C)

25 / 38

Weak coupling result

For the simplest quiver \hat{A}_1

$$W^{N=2}(g, \check{g}) = 1 + 2\pi^{2}g^{2} + \frac{4}{3}\pi^{4}g^{4} + \pi^{6} \left[\frac{4}{9}g^{6} - 24g^{4}(\check{g}^{2} - g^{2})\frac{\zeta(3)}{\pi^{4}} \right]$$

$$+ \pi^{8} \left[\frac{4}{45}g^{8} + (\check{g}^{2} - g^{2})\left(32g^{6}\frac{\zeta(3)}{\pi^{4}} - 80g^{4}(3\check{g}^{2} + g^{2})\frac{\zeta(5)}{\pi^{6}}\right) \right]$$

$$+ \pi^{10} \left[\frac{8}{675}g^{10} + (\check{g}^{2} - g^{2})\left(16g^{8}\frac{\zeta(3)}{\pi^{4}} - 80g^{6}\left(13g^{2} + 4\check{g}^{2}\right)\frac{\zeta(5)}{3\pi^{6}} \right) \right]$$

$$- 288g^{4} \left(2g^{4} - g^{2}\check{g}^{2} + \check{g}^{4}\right)\frac{\zeta(3)^{2}}{\pi^{8}} + 280g^{4}\left(8g^{4} + 5g^{2}\check{g}^{2} + \check{g}^{4}\right)\frac{\zeta(7)}{\pi^{8}}\right) \right] + \cdots$$

Effective couplings

$$W^{\mathcal{N}=2}(g,\check{g})=W^{\mathcal{N}=4}(f(g,\check{g}))$$

$$\Rightarrow f(g, \check{g}) = g^{2} + 2(\check{g}^{2} - g^{2}) \left[6\zeta(3)g^{4} - 20\zeta(5)g^{4}(\check{g}^{2} + 3g^{2}) + g^{4} \left(70\zeta(7) \left(\check{g}^{4} + 5\check{g}^{2}g^{2} + 8g^{4} \right) - 2\zeta(2)(20\zeta(5))g^{4} - 2(6\zeta(3))^{2} \left(\check{g}^{4} - \check{g}^{2}g^{2} + 2g^{4} \right) \right) \right] + \cdots$$

 \mathbb{Z}_2 symmetry: $\check{f}(g,\check{g}) = f(\check{g},g)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ ● の Q (*)

Feynman diagram interpretation

27 / 38

First correction

First $\zeta(3)$ correction computed in [Pomoni, Sieg, 2011]

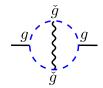
$$f(g, \check{g}) = g^{2} + 2(\check{g}^{2} - g^{2}) \Big[6\zeta(3)g^{4} - 20\zeta(5)g^{4} (\check{g}^{2} + 3g^{2}) + g^{4} \Big(70\zeta(7) \Big(\check{g}^{4} + 5\check{g}^{2}g^{2} + 8g^{4} \Big) - 2\zeta(2)(20\zeta(5))g^{4} - 2(6\zeta(3))^{2} \Big(\check{g}^{4} - \check{g}^{2}g^{2} + 2g^{4} \Big) \Big) \Big] + \cdots$$

28 / 38

First correction

First $\zeta(3)$ correction computed in [Pomoni, Sieg, 2011]

$$f(g, \check{g}) = g^{2} + \frac{2(\check{g}^{2} - g^{2})}{\left[6\zeta(3)g^{4} - 20\zeta(5)g^{4}(\check{g}^{2} + 3g^{2})\right]}$$
$$+g^{4}\left(70\zeta(7)(\check{g}^{4} + 5\check{g}^{2}g^{2} + 8g^{4}) - 2\zeta(2)(20\zeta(5))g^{4}\right)$$
$$-2(6\zeta(3))^{2}(\check{g}^{4} - \check{g}^{2}g^{2} + 2g^{4})$$



28 / 38

First correction

First $\zeta(3)$ correction computed in [Pomoni, Sieg, 2011]

$$f(g, \check{g}) = g^{2} + 2(\check{g}^{2} - g^{2}) \Big[\frac{6\zeta(3)g^{4}}{2} - 20\zeta(5)g^{4} (\check{g}^{2} + 3g^{2}) + g^{4} \Big(70\zeta(7) \Big(\check{g}^{4} + 5\check{g}^{2}g^{2} + 8g^{4} \Big) - 2\zeta(2)(20\zeta(5))g^{4} - 2(6\zeta(3))^{2} \Big(\check{g}^{4} - \check{g}^{2}g^{2} + 2g^{4} \Big) \Big) \Big] + \cdots$$

$$\frac{g'}{\tilde{g}} \Rightarrow \underbrace{12g^4 \check{g}^2 \zeta(3)}_{\mathcal{N}=2} - \underbrace{12g^6 \zeta(3)}_{\mathcal{N}=4} = 2(6\zeta(3))g^4(\check{g}^2 - g^2).$$

Vladimir Mitev 18th July 2014 28 / 38

Second correction

$$f(g, \check{g}) = g^{2} + 2(\check{g}^{2} - g^{2}) \Big[6\zeta(3)g^{4} - 20\zeta(5)g^{4}(\check{g}^{2} + 3g^{2}) \\ + g^{4} \Big(70\zeta(7) \Big(\check{g}^{4} + 5\check{g}^{2}g^{2} + 8g^{4} \Big) - 2\zeta(2)(20\zeta(5))g^{4} \\ - 2(6\zeta(3))^{2} \Big(\check{g}^{4} - \check{g}^{2}g^{2} + 2g^{4} \Big) \Big) \Big] + \cdots$$

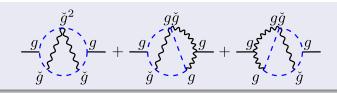
Vladimir Mitev 18th July 2014 29 / 38

Second correction

$$f(g, \check{g}) = g^{2} + \frac{2(\check{g}^{2} - g^{2})}{6\zeta(3)g^{4} - 20\zeta(5)g^{4}(\check{g}^{2} + 3g^{2})}$$

$$+ g^{4} \Big(70\zeta(7)\Big(\check{g}^{4} + 5\check{g}^{2}g^{2} + 8g^{4}\Big) - 2\zeta(2)(20\zeta(5))g^{4}$$

$$-2(6\zeta(3))^{2}\Big(\check{g}^{4} - \check{g}^{2}g^{2} + 2g^{4}\Big)\Big)\Big] + \cdots$$



Second correction

$$f(g, \check{g}) = g^{2} + 2(\check{g}^{2} - g^{2}) \Big[6\zeta(3)g^{4} - 20\zeta(5)g^{4}(\check{g}^{2} + 3g^{2}) + g^{4} \Big(70\zeta(7) \Big(\check{g}^{4} + 5\check{g}^{2}g^{2} + 8g^{4} \Big) - 2\zeta(2)(20\zeta(5))g^{4} - 2(6\zeta(3))^{2} \Big(\check{g}^{4} - \check{g}^{2}g^{2} + 2g^{4} \Big) \Big) \Big] + \cdots$$

$$\frac{g}{\check{g}} \left(\underbrace{\sum_{\check{g}}^{\check{g}^2}}_{\check{g}} + \underbrace{\frac{g}{\check{g}}}_{\check{g}} + \underbrace{\frac{g}{\check{g}}}_{\check{g}} + \underbrace{\frac{g}{\check{g}}}_{\check{g}} \right) \frac{g}{\check{g}}$$

$$\underbrace{-20\zeta(5)\big(\check{g}^4g^4+2\check{g}^2g^6\big)}_{\mathcal{N}=2} + \underbrace{20\zeta(5)\big(3g^8\big)}_{\mathcal{N}=4} = -20\zeta(5)g^4(\check{g}^2-g^2)(\check{g}^2+3g^2)$$

Vladimir Mitev 18th July 2014 29 / 38

Less than maximum transcendentality corrections

Quiver with $r > 2 \Longrightarrow$ next to nearest neighbor gauge groups

Nested diagram
$$\underbrace{ \begin{array}{c} g_0 \\ g_2 \\ g_2 \\ g_1 \end{array} } \begin{array}{c} g_1 \\ g_0 \\ g_1 \end{array}$$

30 / 38

Less than maximum transcendentality corrections

Quiver with $r > 2 \Longrightarrow$ next to nearest neighbor gauge groups

Nested diagram
$$g_0$$
 g_2 g_2 g_2 g_2 g_3 g_4 g_5 g_6 g

$$f_0 = \cdots + (6\zeta(3))^2 g_0^4 \Big[8g_0^6 - 2g_{-1}^6 - 2g_1^6 + \underline{g_1^4 g_2^2 + g_{-1}^4 g_{-2}^2} \\ -6g_0^4 \left(g_{-1}^2 + g_1^2\right) + 2g_0^2 \left(g_{-1}^4 + g_{-1}^2 g_1^2 + g_1^4\right) \Big] + \cdots$$

30 / 38

Strong coupling

Large couplings $g_k \to \infty \implies W_k^{\mathcal{N}=2} \sim \mathrm{e}^{2\pi\mu_k}$

31 / 38

Strong coupling

Large couplings
$$g_k \to \infty \implies W_k^{\mathcal{N}=2} \sim e^{2\pi\mu_k}$$

$$1 = \frac{1}{4r} \sum_{l=1}^{r} \frac{\mu_k^2}{g_k^2}$$
 and $\mu_1 = \dots = \mu_r$

Vladimir Mitev

31 / 38

Strong coupling

Large couplings
$$g_k \to \infty \implies W_k^{\mathcal{N}=2} \sim e^{2\pi\mu_k}$$

$$1 = \frac{1}{4r} \sum_{l=1}^{r} \frac{\mu_k^2}{g_k^2}$$
 and $\mu_1 = \dots = \mu_r$

Effective coulings

$$\frac{1}{f_k} = \frac{1}{r} \left(\frac{1}{g_1^2} + \dots + \frac{1}{g_r^2} \right)$$

Agrees with an AdS/CFT computation

[Lawrence, Nekrasov, Vafa, 1998] [Gadde, Pomoni, Rastelli, 2009] [Gadde, Liendo, Rastelli, Yan, 2012]

Vladimir Mitev 18th July 2014 31 / 38

Outlook

Vladimir Mitev 18th July 2014 32 / 38

Twist-two descendent of Konishi

$$\begin{split} &\Delta(g, \check{g}) = 4 + 12g^2 - 48g^4 + 48g^4 \left[7g^2 - 3\left(g^2 - \check{g}^2\right)\zeta(3)\right] \\ &+ 96g^4 \left[-26g^4 + 6\zeta(3)g^4 - 15\zeta(5)g^4 + \left(g^2 - \check{g}^2\right)\left(12g^2\zeta(3)\right) \right] \\ &+ 5\left(3g^2 + \check{g}^2\right)\zeta(5)\right] + 16g^4 \left[948g^6 + 432g^6\zeta(3)\right] \\ &- 324g^6\zeta(3)^2 - 540g^6\zeta(5) + 1890g^6\zeta(7) \\ &- 3\left(g^2 - \check{g}^2\right)\left[\left(8g^4 + 5g^2\check{g}^2 + \check{g}^4\right)35\zeta(7)\right] \\ &- g^2\left(4\check{g}^2 + g^2\left(12 - \zeta(2)\right)\right)20\zeta(5) \\ &- \left(2g^4 - g^2\check{g}^2 + \check{g}^4\right)\left(6\zeta(3)\right)^2 + 42g^4\left(6\zeta(3)\right)\right] + \cdots \end{split}$$

| ロ ト 4 個 ト 4 差 ト 4 差 ト | 差 | め Q ()

33 / 38

Outside the sector

Bifundamental hypermultiplet in the ϕ vacuum

$$\cdots \phi \phi Q \check{\phi} \check{\phi} \cdots$$

Vladimir Mitev

34 / 38

Outside the sector

Bifundamental hypermultiplet in the ϕ vacuum

$$\cdots \phi \phi Q \check{\phi} \check{\phi} \cdots$$

$$E_{\text{bif}}(p) = \sqrt{1 + 4\left(\mathbf{g} - \check{\mathbf{g}}\right)^2 + 16\mathbf{g}\check{\mathbf{g}}\sin^2\left(\frac{p}{2}\right)}$$

[Gadde, Rastelli, 2010]

Vladimir Mitev 18th July 2014 34 / 38

Outside the sector

Bifundamental hypermultiplet in the ϕ vacuum

$$\cdots \phi \phi Q \check{\phi} \check{\phi} \cdots$$

$$E_{\mathrm{bif}}(p) = \sqrt{1 + 4\left(\mathbf{g} - \check{\mathbf{g}}\right)^2 + 16\mathbf{g}\check{\mathbf{g}}\sin^2\left(\frac{p}{2}\right)}$$

[Gadde, Rastelli, 2010]

$$\mathbf{g} = f(g, \check{g})^{\frac{1}{2}} \qquad \check{\mathbf{g}} = \check{f}(g, \check{g})^{\frac{1}{2}} = f(\check{g}, g)^{\frac{1}{2}}$$

Vladimir Mitev 18th July 2014 34 / 38

Future

• An honest Feynman diagram computation is ongoing

Vladimir Mitev 18th July 2014 35 / 38

Future

- An honest Feynman diagram computation is ongoing
- Mass terms for the hypermultiplets
 - ⇒ asymptotically conformal quiver theories
 - ⇒ No additional UV divergences

Vladimir Mitev 18th July 2014 35 / 38

Future

- An honest Feynman diagram computation is ongoing
- Mass terms for the hypermultiplets
 - ⇒ asymptotically conformal quiver theories
 - ⇒ No additional UV divergences
- Check in other observables: Cusp anomalous dimension, scattering amplitudes, Wilson loops, ...
 [Leoni, Mauri, Santambrogio, 2014]

1014012121 2 000

Vladimir Mitev 18th July 2014 35 / 38

Thank you

Vladimir Mitev 18th July 2014 36 / 38

The SU(2, 1|2) sector of $\mathcal{N} = 2$ SCFT's

Why the sector is closed to all loops?

• For g = 0:

all the fields
$$\left[\phi\,,\,\lambda_{+}^{I}\,,\,\mathcal{D}_{+\dot{lpha}}
ight]$$
 obey $\left[\Delta=2j-r
ight]$

while all the rest of the fields: Q, \tilde{Q} , ψ , $\tilde{\psi}$, $\bar{\phi}$, $\lambda_{-}^{\mathcal{I}}$, $\bar{\lambda}_{\mathcal{I}\dot{\alpha}}$, $\mathcal{D}_{-\dot{\alpha}}$

violate (only in one direction) the equality: $\Delta > 2j - r$ by at least 1/2

• In perturbation theory g << 1 the radiative corrections in $\Delta(\lambda)$, $j(\lambda)$ and $r(\lambda)$ will never be bigger that 1/2!

The λ expansion is believed to converge ('t Hooft) .

This sector is closed for any finite value of λ in the planar limit!

Weak coupling expansion

$$g_k = \kappa_k g$$
, κ_k fixed

Densities widths

$$\mu_k = g_k \left(1 + \sum_{i=1}^{P+1} \mathbf{A}_{k;i} g_k^i \right)$$

Moments of the densities

$$\int_{-\mu_k}^{\mu_k} \rho_k(x) x^{2i} dx = g_k^i \left(C_i + \sum_{j=1}^{P+1-i} \mathbf{B}_{k;2i;j} g_k^j \right)$$

□ト 4 回 ト 4 速 ト 4 速 ト ・ 重 ・ か 9 0 0 0 0

38 / 38