High-energy scattering in strongly coupled $\mathcal{N}=4$ SYM

Martin Sprenger

IGST 2014

based on 1207.4204, 1311.1512, 1405.3658 and 1407.xxxx with J. Bartels, J. Kotanski and V. Schomerus

Particles, Strings, and the Early Universe Collaborative Research Center SFB 676



- planar $\mathcal{N}=4$ integrable \leftrightarrow can compute observables for any coupling
- scattering amplitudes particularly interesting
 - functions of kinematical invariants
 - techniques for less symmetric theories
- enormous progress on weak coupling side
- how do amplitudes behave at strong coupling?
 - interpolation to intermediate coupling [$\rightarrow talk by A.Sever$]

simple results in high-energy limit at strong coupling:

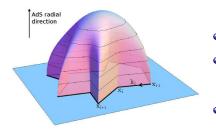
• MRL corresponds to IR limit of TBA

•
$$e^{R_6} \sim \left(-(1-u_1)\sqrt{\tilde{u}_2\tilde{u}_3}\right)^{\frac{\sqrt{\lambda}}{2\pi}e_2}$$

- $\bullet~$ 7-point amplitude calculated \rightarrow simple result
- correspondence: Regge cut contributions ↔ excitations of TBA

Scattering Amplitudes via AdS/CFT

[Alday/Maldacena, A/M/Gaiotto, A/M/Sever/Vieira], [Basso/Sever/Vieira]



•
$$A \sim e^{-\frac{\sqrt{\lambda}}{2\pi}\operatorname{Area}\left(+\frac{\sqrt{\lambda}}{48}\frac{(n-4)(n-5)}{n}\right)}$$

• $k_i = x_{i-1} - x_i$
 \rightarrow polygon depends only on $u = \frac{x_{ij}^2 x_{kl}^2}{x_{ik}^2 x_{jl}^2}$

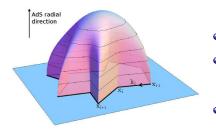
• $Y_{a,s}(\theta)$ generalized cross ratios \rightarrow for n gluons: 3n - 15 Y-functions

[Figure from 1002.2459]

$$\begin{split} \log Y_{a,s}\left(\theta\right) &= - \ m_s \ \cosh\theta \pm \ C_s \\ &+ \sum_{a',s'} \int d\theta' \ \mathcal{K}^{a,a'}_{s,s'} \ \left(\theta - \theta' + \ i\varphi_s - i\varphi_{s'} \ \right) \log\left(1 + Y_{a',s'}\left(\theta'\right)\right) \end{split}$$

Scattering Amplitudes via AdS/CFT

[Alday/Maldacena, A/M/Gaiotto, A/M/Sever/Vieira], [Basso/Sever/Vieira]



•
$$A \sim e^{-\frac{\sqrt{\lambda}}{2\pi}\operatorname{Area}\left(+\frac{\sqrt{\lambda}}{48}\frac{(n-4)(n-5)}{n}\right)}$$

• $k_i = x_{i-1} - x_i$
 \rightarrow polygon depends only on $u = \frac{x_{ij}^2 x_{kl}^2}{x_{ik}^2 x_{jl}^2}$

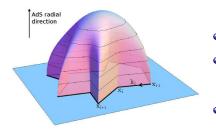
• $Y_{a,s}(\theta)$ generalized cross ratios \rightarrow for n gluons: 3n - 15 Y-functions

[Figure from 1002.2459]

$$\log Y_{a,s}(\theta) = - \frac{m_s}{m_s} \cosh \theta \pm \frac{C_s}{C_s} + \sum_{a',s'} \int d\theta' \ \mathcal{K}^{a,a'}_{s,s'} \left(\theta - \theta' + \frac{i\varphi_s - i\varphi_{s'}}{i\varphi_s - i\varphi_{s'}}\right) \log \left(1 + Y_{a',s'}(\theta')\right)$$

Scattering Amplitudes via AdS/CFT

[Alday/Maldacena, A/M/Gaiotto, A/M/Sever/Vieira], [Basso/Sever/Vieira]



•
$$A \sim e^{-\frac{\sqrt{\lambda}}{2\pi}\operatorname{Area}\left(+\frac{\sqrt{\lambda}}{48}\frac{(n-4)(n-5)}{n}\right)}$$

• $k_i = x_{i-1} - x_i$
 \rightarrow polygon depends only on $u = \frac{x_{ij}^2 x_{kl}^2}{x_{ik}^2 x_{jl}^2}$

• $Y_{a,s}(\theta)$ generalized cross ratios \rightarrow for n gluons: 3n - 15 Y-functions

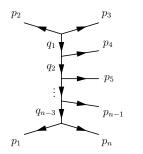
[Figure from 1002.2459]

$$\log Y_{a,s}(\theta) = - \frac{m_s}{m_s} \cosh \theta \pm \frac{C_s}{C_s} + \sum_{a',s'} \int d\theta' \frac{\mathcal{K}_{s,s'}^{a,a'}}{\mathcal{K}_{s,s'}^{a,a'}} \left(\theta - \theta' + \frac{i\varphi_s - i\varphi_{s'}}{i\varphi_s}\right) \log \left(1 + Y_{a',s'}(\theta')\right)$$

$$\begin{aligned} \mathsf{Area} &= \mathsf{A}_{\mathsf{div}}\left(x_{i}\right) + \mathsf{A}_{\mathsf{periods}}\left(m_{s},\varphi_{s}\right) + \Delta(u_{i}) \\ &+ \sum_{s} \int \frac{d\theta}{2\pi} \left|m_{s}\right| \cosh\theta \log\left[\left(1 + Y_{1,s}\right)\left(1 + Y_{3,s}\right)\left(1 + Y_{2,s}\right)^{\sqrt{2}}\right](\theta) \end{aligned}$$

- non-divergent piece: remainder function e^R
- Y-system easy to solve numerically
- BUT: not solvable analytically for arbitrary kinematics!

Multi-Regge limit



- for $2 \rightarrow n-2$ scattering: 3n-10 Mandelstam invariants
- Multi-Regge limit: rapidities of produced particles strongly ordered
 - ightarrow hierarchy for $s_{i\cdots j} := (p_i + \cdots + p_j)^2$

 $s \gg s_{3\cdots n-1}, s_{4\cdots n} \gg s_{3\cdots n-2}, \ldots, s_{5\cdots n} \gg \cdots \gg s_{34}, \ldots \gg -t_1, \ldots, -t_{n-3}$

- $\mathcal{N} = 4$ dual conformal \rightarrow choose 3n 15 cross ratios u_{as}
- kinematical analysis: $u_{1s} \rightarrow 1$, $u_{2s}, u_{3s} \rightarrow 0$ with $\tilde{u}_{2s} = \frac{u_{2s}}{1-u_{1s}} = \mathcal{O}(1)$, $\tilde{u}_{3s} = \frac{u_{3s}}{1-u_{1s}} = \mathcal{O}(1)$

[1207.4204]

•
$$u_{as} = \frac{Y_{2s}}{1+Y_{2s}}\Big|_{\theta=i(k\pi/4-\varphi_s)}$$

• demand that cross ratios show behavior predicted by MRL

Example: 6-point case

$$u_2 \to 0 \Rightarrow Y_2 \left(\theta = i \frac{\pi}{4}\right) \stackrel{!}{\to} 0$$

$$\log Y_2\left(\theta = i\frac{\pi}{4}\right) = -\sqrt{2}m\cos\left(\frac{\pi}{4} - \varphi\right) + \sum_{s'}\int d\theta' \mathcal{K}\left(\theta - \theta'\right)\log\underbrace{\left(1 + Y_{s'}\left(\theta'\right)\right)}_{\cong 1 + e^{-m_{s'}\theta'}}$$

[1207.4204]

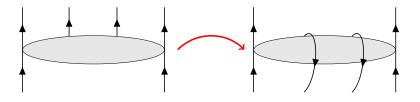
- MRL realized for choice m_s large, $\varphi_s \to -(s-1)\frac{\pi}{4}$, $C_s \to \text{const.}$
- in this limit, integrals in Y-system can be neglected

$$\log Y_{a,s}\left(\theta\right) \cong -m_s \cosh \theta \pm C_s + \mathcal{O}(e^{-m})$$

- ullet \to MRL corresponds to IR limit of TBA
- but: in this limit R trivial
- need to generalize Regge limit \rightarrow Regge regions

Multi-Regge regions

- 2^{n-4} regions, corresponding to the signs of E_i
- different regions connected by analytic continuation in $s_i
 ightarrow s_i e^{ilpha}$



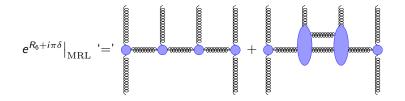
- for the above example $P_{6,--}$: $s_{34} \to e^{i\pi}s_{34}$ $s_{56} \to e^{i\pi}s_{56}$, $s_{345} \to e^{i\pi}s_{345}$, $s_{456} \to e^{i\pi}s_{456}$ $\Rightarrow u_1 \to e^{-2\pi i}u_1$, $u_2 \to u_2$, $u_3 \to u_3$
- probe analytic structure of amplitude

MRL at weak coupling - 6-points

[Bartels/Lipatov/Sabio Vera, Lipatov/Prygarin, Fadin/Lipatov]

- *R* contains cuts \Rightarrow MRL depends on Regge region:
 - R_{6,++} vanishes in MRL
 - Regge cut appears in Regge region $R_{6,--}$

$$e^{R_{6}+i\pi\delta}\Big|_{\rm MRL} = \cos\omega_{ab} + i\frac{\lambda}{2}\sum_{n}\int\frac{d\nu}{\nu^{2}+\frac{n^{2}}{4}}|w|^{2i\nu}\,\Phi_{\rm Reg}(\nu,n)\left(-(1-u_{1})\sqrt{\tilde{u}_{2}\tilde{u}_{3}}\right)^{-\omega(\nu,n)}$$



• universal building blocks: BFKL eigenvalue $\omega(\nu, n)$, impact factor $\Phi_{\text{Reg}}(\nu, n)$

Multi-Regge regions in the Y-system

- continuation in $u_{as} \sim$ continuation in $m, C, \varphi \rightarrow$ [Dorey/Tateo]
- (numerical) inversion of $u_{as} = \frac{Y_{2s}}{1+Y_{2s}}\Big|_{\theta=i(k\pi/4-\varphi_s)}$ to find paths for parameters
- solutions of $Y_{as}(\theta) = -1$ can cross real axis

$$\begin{split} \log Y_{a,s}\left(\theta\right) &= - \ m_{s}\cosh\theta \pm C_{s} \\ &+ \sum_{a',s'} \int d\theta' \mathcal{K}_{s,s'}^{a,a'} \left(\theta - \theta' + i\varphi_{s} - i\varphi_{s'}\right) \log\left(1 + Y_{a',s'}\left(\theta'\right)\right) \end{split}$$

crossing leads to contributions to R

$$R' = \int \frac{d\theta}{2\pi} |m_s| \cosh \theta \log \left[(1 + Y_{a,s}(\theta)) \right] \pm i |m_s| \sinh (\theta_0) + \dots$$

endpoint explicitly enters R

Multi-Regge regions in the Y-system

- continuation in $u_{as} \sim$ continuation in $m, C, \varphi \rightarrow$ [Dorey/Tateo]
- (numerical) inversion of $u_{as} = \frac{Y_{2s}}{1+Y_{2s}}\Big|_{\theta=i(k\pi/4-\varphi_s)}$ to find paths for parameters
- solutions of $Y_{as}(\theta) = -1$ can cross real axis

$$\log Y_{a,s}(\theta) = -m_s \cosh \theta \pm C_s + \sum \log \mathcal{S}_{s,s'}^{a,a'}(\theta - \theta_0 + i\varphi_s - i\varphi_{s'}) \\ + \sum_{a',s'} \int d\theta' \mathcal{K}_{s,s'}^{a,a'}(\theta - \theta' + i\varphi_s - i\varphi_{s'}) \log (1 + Y_{a',s'}(\theta'))$$

crossing leads to contributions to R

$$R' = \int \frac{d\theta}{2\pi} |m_s| \cosh \theta \log \left[(1 + Y_{a,s}(\theta)) \right] \pm i |m_s| \sinh (\theta_0) + \dots$$

endpoint explicitly enters R

Multi-Regge regions in the Y-system

- continuation in $u_{as} \sim$ continuation in $m, C, \varphi \rightarrow$ [Dorey/Tateo]
- (numerical) inversion of $u_{as} = \frac{Y_{2s}}{1+Y_{2s}}\Big|_{\theta=i(k\pi/4-\varphi_s)}$ to find paths for parameters
- solutions of $Y_{as}(\theta) = -1$ can cross real axis

$$\log Y_{a,s}(\theta) = -m_s \cosh \theta \pm C_s + \sum \log \mathcal{S}_{s,s'}^{a,a'}(\theta - \theta_0 + i\varphi_s - i\varphi_{s'})$$

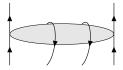
• crossing leads to contributions to R

$$R' = \int \frac{d\theta}{2\pi} |m_s| \cosh \theta \log \left[(1 + Y_{a,s}(\theta)) \right] \pm i |m_s| \sinh (\theta_0) + \dots$$

• endpoint explicitly enters R

Example: 6-point case

[Bartels/Kotanski/Schomerus, 1311.1512]



$$u_1
ightarrow e^{-2\pi i} u_1, \ u_2
ightarrow u_2, \ u_3
ightarrow u_3$$

Solutions of $Y_3(\theta) = -1$ along continuation

• endpoints of crossed solutions can be determined analytically

Endpoint condition

$$-1 = Y_{3}'(\theta_{+}) = e^{-m'\cosh(\theta_{+}) + C'} \cdot \frac{\mathcal{S}_{3}(\theta_{+}, \theta_{-})}{\mathcal{S}_{3}(\theta_{+}, \theta_{+})}$$

• for every Regge region get set of BAE which determines remainder function

numerical input just provides discrete information on crossing

• Remainder function has Regge behavior:

$$e^{R_6+i\pi\delta}\sim \left(-(1-u_1)\sqrt{ ilde{u}_2 ilde{u}_3}
ight)^{rac{\sqrt{\lambda}}{2\pi}e_2}$$

•
$$e_2 = -\sqrt{2} + \frac{1}{2}\log(3 + 2\sqrt{2}) \sim -.533 < 0$$

• $\delta = \frac{1}{4}\gamma_K \log\sqrt{\tilde{u}_2\tilde{u}_3}$

• weak coupling:

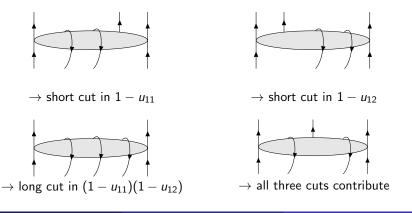
$$e^{R_{6}+i\pi\delta}\big|_{\mathrm{MRL}}=i\frac{\lambda}{2}\sum_{n}\int\frac{d\nu}{\nu^{2}+\frac{n^{2}}{4}}|w|^{2i\nu}\,\Phi_{\mathrm{Reg}}(\nu,n)\left(-(1-u_{1})\sqrt{\tilde{u}_{2}\tilde{u}_{3}}\right)^{-\omega(\nu,n)}+\ldots$$

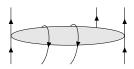
- dominant saddle point at strong coupling? [\rightarrow talk by A.Sever]
- $\bullet\,$ cut contribution @ weak coupling \leftrightarrow crossing solution @ strong coupling

7-point amplitude, predictions from weak coupling

[Bartels/Kormilitzin/Lipatov]

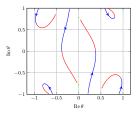
- 7-point cut from two reggeized gluons, as in 6-point case
- predictions obtained from analysis of Regge factorization of BDS ansatz





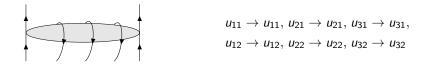
$$\begin{array}{l} u_{11} \rightarrow e^{-2i\pi} u_{11}, \, u_{21} \rightarrow u_{21}, & u_{31} \rightarrow u_{31}, \\ \\ u_{12} \rightarrow u_{12}, & u_{22} \rightarrow e^{-i\pi} u_{22}, \, u_{32} \rightarrow e^{i\pi} u_{32} \end{array}$$

- one pair of crossing solutions
- analogously for mirrored path
- calculation different, we still find:

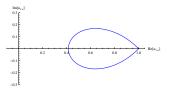


Crossing solutions of $Y_{32}(\theta) = -1$

$$R_{7,--+}(u_{as}) = R_6(u_{11}, u_{21}, u_{31})$$
$$R_{7,+--}(u_{as}) = R_6(u_{12}, u_{22}, u_{32})$$



- for 7 points, we get dependent cross ratio \tilde{u}
- from kinematics for above path: ${ ilde u} o e^{-2\pi i} { ilde u}$
- in conflict with Gram relation: $\tilde{u} \cong \frac{u_{11}+u_{12}-1}{u_{11}u_{12}}$



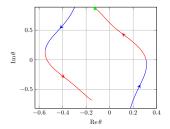
Deformed path for u_{1a}

• deform path s.th. winding numbers of cross ratios are preserved

•
$$u_{11} \to e^{2i\pi} \left(1 - \sqrt{1 - e^{-2i\pi}} \right) u_{11}, \ u_{12} \to e^{2i\pi} \left(1 - \sqrt{1 - e^{-2i\pi}} \right) u_{12}$$

$$u_{11} \to e^{2i\pi} \left(1 - \sqrt{1 - e^{-2i\pi}} \right) u_{11}, u_{21} \to u_{21}, u_{31} \to u_{31}, \\ u_{12} \to e^{2i\pi} \left(1 - \sqrt{1 - e^{-2i\pi}} \right) u_{12}, u_{22} \to u_{22}, u_{32} \to u_{32}$$

- two pairs of crossing solutions
- both approach same endpoints $\rightarrow \theta_{\pm} = \pm i \frac{\pi}{4}$

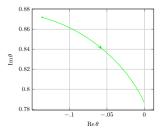


Crossing solutions of $Y_{31}(\theta) = -1$

$$R_{7,---}(u_{as}) = R_6(u_{11}, u_{21}, u_{31}) + R_6(u_{12}, u_{22}, u_{32})$$

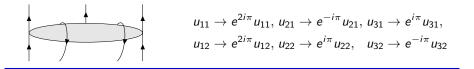
$$u_{11} \to e^{2i\pi} \left(1 - \sqrt{1 - e^{-2i\pi}} \right) u_{11}, u_{21} \to u_{21}, u_{31} \to u_{31}, \\ u_{12} \to e^{2i\pi} \left(1 - \sqrt{1 - e^{-2i\pi}} \right) u_{12}, u_{22} \to u_{22}, u_{32} \to u_{32}$$

- two pairs of crossing solutions
- both approach same endpoints $\rightarrow \theta_{\pm} = \pm i \frac{\pi}{4}$

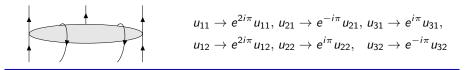


Convergence against endpoint

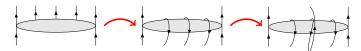
$$R_{7,---}(u_{as}) = R_6(u_{11}, u_{21}, u_{31}) + R_6(u_{12}, u_{22}, u_{32})$$



- for this path $ilde{u}
 ightarrow e^{-2i\pi} ilde{u}$, no deformation needed
- no evidence for crossing solutions $\Rightarrow R_{7,-+-}(u_{as})$ trivial up to phase
- o comparison with weak coupling prediction: possible cancellation?
- path too naive?



- for this path ${ ilde u} o e^{-2i\pi} { ilde u}$, no deformation needed
- no evidence for crossing solutions $\Rightarrow R_{7,-+-}(u_{as})$ trivial up to phase
- o comparison with weak coupling prediction: possible cancellation?
- path too naive?



19 / 20

Summary and Outlook

- studied scattering amplitudes in strongly coupled $\mathcal{N}=4$ SYM
- identified MRL and showed that Y-system equations simplify in MRL
- calculated 6-point and 7-point remainder function
 → consistency with weak coupling predictions
- correspondence: Regge cut contributions ↔ crossing solutions

next steps:

- understand R_{7,-+-}: path too naive?
- weak coupling prediction:
 3 Reggeon contribution for 8 points
- make contact with weak coupling results

