

Top quark pair charge asymmetry using the ATLAS detector at the LHC

Alexander Khanov Oklahoma State University for the ATLAS Collaboration QCD@LHC, Suzdal, Russia 8/27/14

Top quark

- Top: heaviest quark, mass at the EW scale
 - top production and decays provide important tests of QCD in nonperturbative mode
 - deviation from SM prediction = indication of new physics
- Top quarks are produced in abundance at the LHC
 - a lot of opportunities to study their properties

Top quark pair charge asymmetry

- Top-anti top pairs are produced (mainly) through gg→tt (dominant channel at the LHC) and qq̄→tt
 - gg→tt: no asymmetry (no chosen direction)
 - qq→tt: tops (anti tops) tend to move along the direction of original quark (anti quark)
- If we know the initial quark direction, the asymmetry can be generally defined as

$$A = \frac{N(\cos \theta > 0) - N(\cos \theta < 0)}{N(\cos \theta > 0) + N(\cos \theta < 0)}$$

- Charge asymmetry is a small effect
 - not present at LO
 - present at NLO due to (1) interference between ISR and FSR, and (2) interference between Born and box diagrams (+ due to gq→ttq production)

q

Charge asymmetry: how to measure

- Top quarks decay in ~100% to bW
 - $W \rightarrow lv$: lepton charge = top/anti top
 - $W \rightarrow u\bar{d}/c\bar{s}$: can't discriminate between top and anti top
- Useful channels to look at: $tt \rightarrow dileptons$ and $tt \rightarrow l+jets$
- How to get top quark direction?
 - reconstruct it from event kinematics: "Lepton + Jets" not trivial in dilepton case
 - use the lepton direction: the effect is diluted but lepton asymmetry measurement benefits from precise lepton reconstruction and is sensitive to top polarization effects
- Also, what to do with the initial parton direction?

Top charge asymmetry at the Tevatron

- At Vs=1.96 TeV, top pairs are mostly produced through $q\bar{q}$ annihilation
- Direction of original (anti)quark is close to direction of (anti)proton beam, can naturally define forward-backward asymmetry A_{FB} as

$$A_{FB} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$
$$\Delta y = y(t) - y(\bar{t})$$

 Both CDF and D0 performed the measurement and got results deviating from SM by ~2σ which generated a lot of excitement (later results indicated that the effect is not that pronounced)

5

Top charge asymmetry at the LHC

- Good: top pairs produced in abundance
- Not so good:
 - no initial asymmetry (pp, not pp̄)
 - − dominated by $gg \rightarrow t\bar{t}$, not $q\bar{q} \rightarrow t\bar{t}$
- Still possible to measure asymmetry!
 - initial quarks: valence, larger momentum fractions
 - initial anti quarks: sea, smaller momentum fractions
 - (anti)tops are emitted in the direction of initial (anti)quarks
 - anti tops are more central

$$A_{C} = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}$$
$$\Delta|y| = |y(t)| - |y(\bar{t})|$$

Top charge asymmetry in I+jets

- Data: 4.7 fb⁻¹ (7 TeV)
- Selection:
 - one isolated lepton (e, E_T>25 GeV; μ, p_T>20 GeV)
 - ≥ 4 jets (p_T>25 GeV)
 - − ≥1 b-tagged jet (b-tagging efficiency 70%, light jet rejection 150)

 $\Delta |\mathbf{y}|$

 Dominant background: W+jets, data driven estimate N(W⁺) > N(W⁻)

Channel	μ + jets pretag	μ + jets tag	e + jets pretag	e + jets tag
$t\bar{t}$	34900 ± 2200	30100 ± 1900	21400 ± 1300	18500 ± 1100
W+jets	28200 ± 3100	4800 ± 900	13200 ± 1600	2300 ± 900
Multi-jets	5500 ± 1100	1800 ± 400	3800 ± 1900	800 ± 400
Single top	2460 ± 120	1970 ± 100	1530 ± 80	1220 ± 60
Z+jets	3000 ± 1900	480 ± 230	3000 ± 1400	460 ± 220
Diboson	380 ± 180	80 ± 40	230 ± 110	47 ± 22
Total background	40000 ± 4000	9200 ± 1000	21700 ± 2900	4800 ± 1000
Signal + background	74000 ± 4000	39300 ± 2100	43100 ± 3100	23300 ± 1600
Observed	70845	37568	40972	21929

JHEP 1402 107

Top charge asymmetry in I+jets (2)

- Reconstruction: kinematic likelihood method
 - inputs: 4-vectors of jets, lepton, and missing transverse energy (due to escaping neutrino)
 - constraints: top and W masses
 - fraction of correct $\Delta |\mathbf{y}|$ sign: 75%
- Unfolding: Fully Bayesian Unfolding
 - estimate parton level distributions from measured spectra
 - used priors: flat (m(tt), |y(tt)|) and curvature (inclusive, p_T(tt))
 - reported value and stat. uncertainty of A_c are mean and RMS of posterior probability density distribution

Choudalakis, arXiv 1201:4612

Results in I+jets channel

- Inclusive asymmetry: A_c =0.006±0.010
 - consistent with SM prediction 0.0123±0.0005, computed at NLO with electroweak corrections without m(tt) cut
- Uncertainty is dominated by statistics

Bernreuther & Si, PRD 86(2012)034026

 the largest systematic uncertainties are due to lepton and jet energy scale/resolution (~0.003)

Source of systematic uncertainty	$\delta A_{ m C}$			
	Inclusive	$m_{t\bar{t}} > 600 \text{ GeV}$	$\beta_{z,t\bar{t}} > 0.6$	
Lepton reconstruction/identification	< 0.001	0.001	< 0.001	
Lepton energy scale and resolution	0.003	0.003	0.003	
Jet energy scale and resolution	0.003	0.003	0.005	
Missing transverse momentum and pile–up modelling	0.002	0.002	0.004	
Multi-jets background normalisation	< 0.001	0.001	0.001	
b-tagging/mis-tag efficiency	< 0.001	0.001	0.001	
Signal modelling	< 0.001	< 0.001	< 0.001	
Parton shower/hadronisation	< 0.001	< 0.001	< 0.001	
Monte Carlo statistics	0.002	< 0.001	< 0.001	
PDF	0.001	< 0.001	< 0.001	
W+jets normalisation and shape	0.002	< 0.001	< 0.001	
Statistical uncertainty	0.010	0.021	0.017	

Results in I+jets channel (2)

- Differential asymmetries
 - In bins of transverse momentum, rapidity, and invariant mass of tt
 - all measurements statistically limited, consistent with SM within uncertainties

Interpretation

Compare LHC and Tevatron measurements with SM and BSM predictions

Aguilar-Saavedra & Perez-Victoria, PRD 84(2011)115013, JHEP 1109 097

Top charge asymmetry in dileptons

- Data: 4.7 fb⁻¹ (7 TeV)
- Selection:
 - 2 oppositely charged isolated leptons (e, E_T >25 GeV; μ , p_T >20 GeV)
 - ee/μμ: |m(ll)-m(Z)|>10 GeV, MET>60 GeV
 - eμ: H_T>130 GeV
 - ≥ 2 jets (p_T>25 GeV)

Channel	ee	еµ	μμ
tī	590 ± 60	4400 ± 500	1640 ± 170
$Z \rightarrow ee/\mu\mu$	19 ± 7	-	83 ± 29
$Z \rightarrow \tau \tau$	19 ± 7	180 ± 60	67 ± 23
Single top	30 ± 2	230 ± 20	82 ± 7
Dibosons	9 ± 1	70 ± 4	23 ± 2
Multijets/W+jets	70 ± 36	250 ± 130	32 ± 17
Total	740 ± 70	5100 ± 500	1930 ± 170
Data A.	Khanov OCD	0@LHC'14	2010
	,	0	

ATLAS-CONF-2012-057

Top charge asymmetry in dileptons (2)

- Reconstruction: compute a probability distribution using LO matrix element
 - constraints: t and W vertices (=16), top and W masses (= 4), transverse momentum balance (=2)
 - unknowns: top and W 4-vectors (=16), neutrino momenta (=6)
 - inputs (4-vectors of objects) are varied according to their widths/resolutions and equations solved for each trial point/each jet/lepton permutation
 - the final observable = weighted average over all solutions
- Unfolding: sampling
 - perform MC simulations with various generated asymmetries
 - measured asymmetries for the different truth injected asymmetries are fitted using a straight line

Results in dilepton channel

- Top pair charge asymmetry:
 A_c(tt)=0.057±0.024(stat.)±0.015(syst.)
- Lepton pair charge asymmetry:
 A_c(II)=0.023±0.012(stat.)±0.008(syst.)
- Consistent with SM

Conclusions

- The top quark charge asymmetry measurements performed by ATLAS experiment have been presented for the single lepton and dilepton channel
- A lepton-based asymmetry measurement in the dilepton channel has also been presented
- All the presented measurements are compatible with the SM predictions