



# Top quark pair production cross section using the ATLAS detector at the LHC

## Naoki Kimura (Aristotle University of Thessaloniki) On behalf of the ATLAS Collaboration





QCD@LHC2014 August 25-29, 2014, Suzdal, Russia



## ATLAS Experiment

#### Proton-proton collision at $\sqrt{s}$ = 7 and 8 TeV

### Integrated luminosity 2011 (7 TeV): 5 fb<sup>-1</sup> 2012 (8 TeV): 21 fb<sup>-1</sup>





Mean Number of Interactions per Crossing

# Table of contents

- Inclusive top quark pair production cross section measurement
- Simultaneous measurements of  $tt^-$ , W+W-, and  $Z/\gamma * \rightarrow \tau \tau$  cross section
- Different cross section measurement
- Top mass measurement
- Summary

# Inclusive top quark pair production cross section measurement

## **Physics motivation**

- Precision test of the perturbative QCD
- Top quark events contain a variety of physics processes
- Important background to Higgs and BSM processes
- Sensitive to new physics



# Top quark production

- $\checkmark\,$  Gluon-gluon fusion dominant at the LHC
- ✓ Theoretical prediction on the Cross-Section

#### **NNLO+NNLL**

| PRL.110(2013)252004 |
|---------------------|
|---------------------|

| Collider   | $\sigma_{\rm tot} \ [{\rm pb}]$ | scales [pb]                  | pdf [pb]                     |
|------------|---------------------------------|------------------------------|------------------------------|
| Tevatron   | 7.164                           | +0.110(1.5%)<br>-0.200(2.8%) | +0.169(2.4%)<br>-0.122(1.7%) |
| LHC 7 TeV  | 172.0                           | +4.4(2.6%)<br>-5.8(3.4\%)    | +4.7(2.7%)<br>-4.8(2.8\%)    |
| LHC 8 TeV  | 245.8                           | +6.2(2.5%)<br>-8.4(3.4%)     | +6.2(2.5%)<br>-6.4(2.6%)     |
| LHC 14 TeV | 953.6                           | +22.7(2.4%)<br>-33.9(3.6%)   | +16.2(1.7%)<br>-17.8(1.9%)   |

### ✓ Top Quark Decay

decay nearly 100% to Wb



# Top quark pair production cross-section

#### (arXiv:1406.5375) Dilepton Channel (7 TeV 4.6 fb<sup>-1</sup> and 8 TeV 20.3 fb<sup>-1</sup>)

Very clean signal, small decay branching ratio 2%, 2lepton 2 neutrino 2b-jet

**Event Selection:** 

- Exact 2 high  $P_T$  opposite sign of e  $\mu$
- Exact 1 b-tagged jet or 2 b-tagged jet event.

## Main Background :

Wt Single top

## Analysis Method :

Simultaneous estimation of cross section and the efficiency of reconstruct and b-tag jets to reduced jet and b-tag uncertainties.

$$N_1 = L\sigma_{t\bar{t}} \epsilon_{e\mu} 2\epsilon_b (1 - C_b \epsilon_b) + N_1^{\text{bkg}}$$
$$N_2 = L\sigma_{t\bar{t}} \epsilon_{e\mu} C_b \epsilon_b^2 + N_2^{\text{bkg}}$$



## Top quark pair production cross-section (arXiv:1406.5375) Dilepton Channel (7 TeV 4.6 fb<sup>-1</sup> and 8 TeV 20.3 fb<sup>-1</sup>)

| Uncertainty $\sqrt{s}$                                              | $\Delta \sigma_{t\bar{t}}/\sigma_{TeV}$     |                                            |                          |
|---------------------------------------------------------------------|---------------------------------------------|--------------------------------------------|--------------------------|
| Data statistics                                                     | 1.69                                        | 0.71                                       | -                        |
| $t\bar{t}$ modelling and QCD scale<br>Parton distribution functions | $1.46 \\ 1.04$                              | $1.26 \\ 1.13$                             | -                        |
| Background modelling                                                | 0.83                                        | 0.83                                       |                          |
| Lepton efficiencies $Jets and b-tagging$                            | $\begin{array}{c} 0.87 \\ 0.58 \end{array}$ | $\begin{array}{c} 0.88\\ 0.82 \end{array}$ |                          |
| Misidentified leptons                                               | 0.41                                        | 0.34                                       | Nost precise measurement |
| Analysis systematics $(\sigma_{t\bar{t}})$                          | 2.27                                        | 2.26                                       | _                        |
| Integrated luminosity<br>LHC beam energy                            | $\begin{array}{c} 1.98 \\ 1.79 \end{array}$ | $3.10 \\ 1.72$                             |                          |
| Total uncertainty                                                   | 3.89                                        | 4.27                                       | -                        |

#### **Measured Cross-Section**

# $\sigma_{t\bar{t}} = 182.9 \pm 3.1 \pm 4.2 \pm 3.6 \pm 3.3 \,\mathrm{pb} \,(\sqrt{s} = 7 \,\mathrm{TeV}) \qquad \sigma_{t\bar{t}} = 242.4 \pm 1.7 \pm 5.5 \pm 7.5 \pm 4.2 \,\mathrm{pb} \,(\sqrt{s} = 8 \,\mathrm{TeV}) \qquad \sigma_{t\bar{t}} = 5.5 \pm 1.7 \pm 5.5 \pm 1.5 \pm 1.2 \,\mathrm{pb} \,(\sqrt{s} = 8 \,\mathrm{TeV})$

#### Theoretical prediction

#### Good agreement with prediction.

#### Top quark pair production cross-section (ATLAS-CONF-2012-149) Lepton + jets Channel at 8 TeV (5.8 fb<sup>-1</sup>)

Good statistics, Good sensitivity, BR = 34.4%,

#### **Event Selection:**

- One high  $P_{T}$  lepton  $P_{T} > 40$  GeV electron,  $P_{T} > 40$  GeV muon
- At least 3 good jets ( $P_T > 25 \text{ GeV}$ )
- At least 1 b-tagged jet
- Missing E<sub>T</sub> > 35 (e), 25 (mu)

#### Main Background W + jets

## Analysis Method :

Cross section is determined from a fit to a distribution of the multivariate likelihood distribution. (aplanarity and lepton eta)

## Systematic :

 $\sigma_{t\bar{t}} = 241 \pm 2 \text{ (stat.)} \pm 31 \text{ (syst.)} \pm 9 \text{ (lumi.) pb}$ 

MC modeling, Jet/MET uncertainty

#### Good agreement with prediction.

**Measured Cross-Section** 



 $\sigma_{t\bar{t}} =$  245.8  $^+$  <sup>6.2</sup>  $^+$  <sup>6.2</sup>

Theoretical prediction

8

# Top pair production Cross Section Summary at 7 TeV and 8 TeV

Good agreement with the NNLO+NNLL calculation in All channels. The analyses are limited by systematics.

Precision of ~ 4%.





# Summary of ttbar cross section



# Simultaneous measurements of $tt^-$ , $W_+W_-$ , and $Z/\gamma_* \rightarrow \tau\tau$ cross section

## Simultaneous measurements of $tt^-$ , W+W-, and $Z/\gamma_* \rightarrow \tau\tau \ cross \ section$ 7 TeV (ArXiv:1407.0573)

The first simultaneous measurement of the tt,  $W^+W^-$  and  $Z/\Upsilon^*$ 

- Opposite high  $p_T e \mu$  events.
- Missing ET and Jet multiplicity distinguish tt,  $W^+W^-$  and  $Z/\Upsilon^*$  process



# Simultaneous measurements of $tt^-$ , $W_+W_-$ , and $Z/\gamma_* \rightarrow \tau\tau$ cross section

Measured cross sections are consistent with the dedicated ATLAS cross section measurement.

| Process                    | Source             | $\sigma_X^{ m tot}$ | Uncertainties |       |       |      |       | $\int \mathcal{L} dt$ |
|----------------------------|--------------------|---------------------|---------------|-------|-------|------|-------|-----------------------|
|                            |                    | [pb]                | Stat.         | Syst. | Lumi. | Beam | Total | $[\mathrm{fb}^{-1}]$  |
| $t\bar{t}$                 | Simultaneous       | 181                 | 3             | 10    | 3     | 3    | 11    | 4.6                   |
|                            | Dedicated          | 183                 | 3             | 4     | 4     | 3    | 7     | 4.6                   |
|                            | NNLO QCD           | 177                 |               |       |       |      | 11    |                       |
| WW                         | Simultaneous       | 53.3                | 2.7           | 7.7   | 1.0   | 0.5  | 8.5   | 4.6                   |
|                            | Dedicated          | 51.9                | 2.0           | 3.9   | 2.0   |      | 4.9   | 4.6                   |
|                            | NLO QCD            | 49.2                |               |       |       |      | 2.3   |                       |
| $Z/\gamma^* \to \tau \tau$ | Simultaneous       | 1174                | 24            | 80    | 21    | 9    | 87    | 4.6                   |
|                            | Dedicated $(e\mu)$ | 1170                | 150           | 90    | 40    |      | 170   | 0.036                 |
|                            | NNLO QCD           | 1070                |               |       |       |      | 54    |                       |

## Simultaneous measurements of *tt*<sup>-</sup>, $W_+W_-$ , and $Z/\gamma_* \rightarrow \tau \tau$ cross section ABM11-NLO

Fiducial cross section (MCFM NLO)

 $\sigma_X^{\text{fid}} = \frac{N_X^{\text{fid}}}{C_{\text{fid}}}$ 

C: Ratio of event passing the

event selection in the fiducial

NLO predictions underestimate tt and  $Z/\Upsilon^*$  irrespective of the PDF set



- Δ CT10-NLO
- $\diamond$ HERAPDF15-NLO
- 승 NNPDF23-NLO
  - ATLAS Best Fit
- ATLAS 68% C.L.





# Simultaneous measurements of $tt^-$ , $W_+W_-$ , and $Z/\gamma_* \rightarrow \tau\tau$ cross section

Total cross section (NLO and NNLO)

- $\sigma_X^{\text{tot}} = \frac{N_X^{\text{tot}}}{\mathcal{A} \cdot \mathcal{C} \cdot B(X \to e\mu + Y) \cdot \mathcal{L}}$ A: Kinematic and geometric acceptance B: Branching fraction
- NNLO and corresponding PDF sets have good overlap.

15



# Differential Cross-Section measurement

# **Differential cross-section** Lepton + jets Channel (4.7 fb<sup>-1</sup>) (arXiv:1407.0371)

The large dataset allows for differential cross-section measurement in various variables.

- Unfolded data compared to MC, NLO QCD and PDF sets ٠
  - $\triangleright p_{\mathrm{T}}^{\mathrm{t}}$  Transverse momentum of top quark
    - ✓ Higher order corrections and NP signal in high PT tail
  - $> m_{
    m t \bar t}$  Mass of ttbar system
  - $\checkmark$  Exotic resonance  $> p_{T}^{t\bar{t}}$  Transverse momentum of ttbar system
    - ✓ Extra radiation
  - $\succ y_{t \overline{t}}$  Rapidity of ttbar system
    - ✓ PDF
- Standard lepton + jets final state selection ٠
- Data is unfolded by inverting migration matrix from MC. •
- Dominant systematics are MC generator, ISR/FSR, JES, b-tag efficiency ٠
- Absolute cross section agree with the theoretical calculation. •
- Generally good agreement ٠

# Differential cross-section Lepton + jets Channel (4.7 fb<sup>-1</sup>) (arXiv:1407.0371)

7 TeV

- Observed softer top  $p_T$  spectrum than prediction.
- More central observed than most predictions.
- Some of the prediction agree with uncertainties withdata.



# Differential cross-section Lepton + jets Channel (4.7 fb<sup>-1</sup>) (arXiv:1407.0371)

• m<sub>tt</sub> is systematically softer then NLO+NLL



## Cross-section as a function of jet multiplicity and jet transverse momentum Lepton + jets Channel (4.7 fb<sup>-1</sup>) (arXiv:1407.0891) 7 TeV

Spectrum was corrected to particle level within optimized fiducial.

- The MC@NLO+HERWIG MC is found to predict too few events at higher jet multiplicities.
- The POWHEG with hdamp setting describes the data quite well.



## **Top quark Mass Measurement**

## Top quark Mass Measurement Physics motivation

- Top quark mass is one of the SM parameters
- Good test of the SM
- Sensitive to new physics

### Top Quark Mass world average:

(ATLAS-CONF-2014-008, CDF-NOTE-11071, CMS-PAS-TOP-13-014, D0-NOTE-6416)



## Top mass: Lepton + jets channel 7 TeV 4.7 fb<sup>-1</sup> data (ATLAS-CONF-2013-046)

• Analysis :

3-D template mtheod  $(m_t, m_w, R_{lb})$ 

$$R_{\rm lb}^{\rm reco,2b} = \frac{p_{\rm T}^{b_{\rm had}} + p_{\rm T}^{b_{\rm lep}}}{p_{\rm T}^{W_{\rm jet_1}} + p_{\rm T}^{W_{\rm jet_2}}},$$
$$R_{\rm lb}^{\rm reco,1b} = \frac{p_{\rm T}^{b_{\rm tag}}}{(p_{\rm T}^{W_{\rm jet_1}} + p_{\rm T}^{W_{\rm jet_2}})/2}$$

- ✓ M<sub>w</sub> used to constrain the global jet scale factor (JSF).
- R<sub>lb</sub> used to constrain the relative bjet to light-jet energy scale factor (bJSF).
- Systematic uncertainties:

JES, ISR/FSR, b-tag efficiency and mistag rate

 $m_{\text{top}} = 172.31 \pm 0.75 \text{ (stat + JSF + bJSF)} \pm 1.35 \text{ (syst) GeV}$ 



# Top mass: Di-lepton channel

√s=7 TeV data

5 GeV

events /

400

300

200

100

## 7 TeV 4.7 fb<sup>-1</sup> data

#### (ATLAS-CONF-2013-077)

**ATLAS** Preliminary

- Event selection: 2 b-tagged jets less than 3 % background (single top)
- Analysis :
- 1-D template method (m  $_{lb}$  as estimator for m<sub>t</sub>). mlb : average invariant mass of b-jet lepton systems
- Systematic uncertainties: 40 JES, bJES, b-tag efficiency and mistag rate

 $m_{\rm top} = 173.09 \pm 0.64 \,(\text{stat}) \pm 1.50 \,(\text{syst}) \,\,\text{GeV}$ 



## Summary

# ATLAS has performed a complete set of top quark production cross section analysis

- Observed production cross sections are consistent with the theoretical predictions in all channels.
- Uncertainty of cross section is limited by systematic uncertainties.

#### First simultaneous extraction of the cross-sections for the tt, $W^+W^-$ and $Z/\Upsilon^*$

- Measurements are consistent with the dedicated ATLAS cross section measurements.
- NNLO and corresponding PDF sets describe the data well.
- The measurement can be useful to constrain PDFs and uncertainty.

#### Differential cross-section was measured at 7 TeV data.

- Generally observed and prediction have good agreement.
- Observed softer than prediction slightly in high top  $p_T$  and ttbar mass region.
- The information from these analyses is used to constrain PDFs and modeling uncertainties on ttbar production.

#### Top mass measurement were performed

- Top mass was measured at better than 1% uncertainty.
- Physics beyond the SM is not observed.

All detail and other analysis : https://twiki.cern.ch/twiki/bin/view/AtlasPublic

# backup

## Top quark pair production cross-section **Lepton + jets Channel** (0.70 fb<sup>-1</sup>) (ATLAS-CONF-2011-121) 7 TeV

Good statistics, Good sensitivity, BR = 34.4%, 1lepton 1neutrino 2b-jet 2jet

Events

Ratio Data/Fit

2000

1600

1200

800

400

1.5

1.0

0.5

#### Event Selection:

- One high  $P_T$  lepton
- $P_T > 25$  GeV electron,  $P_T > 20$  GeV muon
- At least 3 good jets (P<sub>T</sub> >25 GeV)
- Missing E<sub>T</sub> > 35 (e), 25 (mu)
  - Main Background : W + Jets

## Analysis Method :

Extract cross section from maximum likelihood fit of discriminant

Systematic :

#### Signal MC Generator, JES, ISR/FSR

#### **Measured Cross-Section**

 $\sigma_{t\bar{t}} = 179.0 \pm 3.9 \text{ (stat)} \pm 9.0 \text{ (syst)} \pm 6.6 \text{ (lumi) pb}$ 

Theoretical prediction

$$_{t\bar{t}} = 172.0^{+}_{-5.8} + 4.7_{-5.8}$$

Good agreement with prediction. Uncertainty is dominated by systematic uncertainty.



27

## Top quark pair production cross-section All-Hadronic Channel (4.7 fb<sup>-1</sup>) (ATLAS-CONF-2012-031) **7 TeV**

Highest BR = 44%, Huge QCD background, 2b-jet 4jet

### Event Selection:

- No isolated good lepton
- At least 6 good jets  $5^{th}$  Jet P<sub>T</sub> >55 GeV,  $6^{th}$  jet Jet P<sub>T</sub> >30 GeV
- At least 2 b-tagged  $P_T > 55$  GeV jets
- Low Missing E<sub>T</sub> Significance

## Main Background :

QCD

## Analysis Method :

Unbinned likelihood fit to top Mass distribution after additional event cleaning.

Systematic :

JES, B-tagging efficiency, ISR/FSR

#### **Measured Cross-Section**

 $\sigma(pp \rightarrow t\bar{t}) = 168 \pm 12 \text{ (stat.)} \stackrel{+60}{_{-57}} \text{ (syst.)} \pm 7 \text{ (lum.) pb}$ Theoretical prediction  $\sigma_{t\bar{t}} = 172.0 \stackrel{+}{_{-58}} \stackrel{+4.4}{_{-48}} \stackrel{+4.7}{_{-58}}$ 

#### Good agreement with prediction. Uncertainty is dominated by systematic uncertainty.



28

## Top quark pair production cross-section **7 TeV** Hadronic τ + Lepton Channel (2.05 fb<sup>-1</sup>) (arXiv:1205.2067v1)



**Event Selection** : One good high  $P_T$  lepton and hadronic tau candidate, At lease 2 good jets, missing ET, btagged-jet **Main Background** : other top event

Analysis Method : Extract cross section from BDT discriminant.

Systematic : b-tag efficiency, tau ID Measured Cross-Section

 $\sigma_{t\bar{t}} = 186 \pm 13 \text{ (stat.)} \pm 20 \text{ (syst.)} \pm 7 \text{ (lumi.)} \text{ pb}$ 

## Hadronic τ + Jet Channel (1.67 fb-1)(Eur.Phys.J. C, 73 3 (2013) 2328)



**Event Selection** : No good high  $P_T$  lepton, At lease 5 high- $P_T$  jets with at least 2-btagged jets and one hadronic tau candidate. High Missing  $E_T$  significance

Main Background : Multi Jet event

**Analysis Method** : 1D fit to the distribution of the number of track associated to hadronic tau candidate.

Systematic : Modeling (ISR/FSR, generator), b-tag efficiency

Measured Cross-Section  $\sigma_{t\bar{t}} = 194 \pm 18 \text{ (stat.)} \pm 46 \text{ (syst.) pb.}$ Theoretical prediction

$$\sigma_{t\bar{t}} = 172.0^{+4.4+4.7}_{-5.8-4.8}$$

Good agreement with prediction. Uncertainty is dominated by systematic uncertainty.