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     SM processes. 
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ONE WORD ABOUT ONE LOOP



Done.



Done.

  Multi-leg NLO calculations matched with parton showers are now a commodity.





From David Kosower’s summary talk at LoopFest 2014



From Simon Badger’s talk at ICHEP 2014



One NLO example
 Higgs decays to WW* have a large branching ratio but no mass peak and large backgrounds.

 A precise estimate requires computing  p p ➞ l ν l ν b b  at NLO with massive b quarks.

 This is now done by two groups including off-shell effects and full interference.

Dilepton mass spectrum with MG5_aMC@NLO
from Rikkert Frederix 1311.4893.

Dilepton mass spectrum with OpenLoops
from Cascioli et al. 1312.0546



A BIRD’S EYE VIEW OVER TWO LOOPS



From Claude Duhr’s talk at ICHEP 2014

NNLO revolutions
 Two-loop calculations are not yet a commodity: they are largely custom-made and expensive.

 A major stumbling block has been the subtraction of infrared and collinear singularities.

 Progress has been slow but is rapidly speeding up: automation is on the way.
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The NNLO subtraction problem
  A well-known problem: infrared and collinear divergences cancel between final states with

     different particle content and different phase spaces.

  The cancellation must be performed locally in phase space to allow for generic observables.

  “Simple” subtraction counterterms must be constructed in each phase space.

  A surprisingly hard problem, on the table for more than a decade.

Different final-state 
multiplicities conspire to cancel 

infrared an collinear poles

Comparing subtraction algorithms, from James Currie’s talk at LoopFest

  Several solutions are now available.

  Analytical vs. numerical approaches.

  Dedicated vs. general algorithms.

  Several groups at work.

  No silver bullet yet.



Top pair production

Numerical results and comparison with LHC data for the NNLO top pair production cross section,
from M.  Czakon, P.  Fiendler and A.  Mitov,  1303.6254

  The first complete QCD calculation of a NNLO cross section involving four colored 
     partons. Full complexity of color exchange comes into play.  A major achievement.

  Highly relevant for phenomenology: the heaviest particle lies closest to the new physics.

  The subtraction of IR and collinear poles is performed purely numerically (STRIPPER).

  The structure of singularities is slightly simplified with respect to the massless case.

  Partial analytic results are available (R. Bonciani et al. 1309.4450): a challenging calculation 
     with interesting analytical features.



Dijet cross sections

Single inclusive NNLO jet cross section at LHC 8
for fixed pT and y, anti-kT algorithm with R = 0.7.
Gluon jets only. From J. Currie et al. 1407.5558. 

Variations between LO, NLO and NNLO at 
central rapidities 

Scale variations of the LO, NLO and NNLO jet cross sections, 
gluons only. From J. Currie’s talk at LoopFest 2014.

  A multi-million dollar calculation, spanning a decade.

  Some partonic channel completed: gluon-gluon full 
     color, q-qbar leading color.

  Some partonic channels on the way: quark-gluon is 
     phenomenologically important.

  Analytic subtraction of singularities using `antennas’
     lead to highly complex calculations.

  Important for a range of phenomenological issues: 
     parton distributions, αs, high-energy probes. Jets  
     enter in essentially all LHC cross sections.



A good NNLO harvest
  Preliminary results for differential distributions in Higgs + one jet production 

     (Boughezal, Caola, Melnikov, Petriello, Schultze;   Chen, Gehrmann, Glover, Jaquier).
✦  Note: the two groups use different subtraction techniques.

  Differential distributions for t-channel single top production in the `structure 
     function’ approximation (Brucherseifer, Caola, Melnikov).

✦  Non-factorizable contribution is color-subleading. 

  Differential distributions for ZZ production (using qT subtraction)   
     (Cascioli et nine al.).

✦  The method is generalizable to all EW di-boson final states.

  Preliminary results for γ* γ* production presented by Lazopoulos at LoopFest
✦  A stepping stone to a general code for electroweak final states.

  Very recent! Differential distributions for associated ZH production (Ferrera,
      Grazzini, Tramontano, 1407.4747).

  Even more recent!  Virtual corrections to NNLO HH production (effectively a
     2.5 loop calculation) (Grigo, Melnikov, Steinhauser, 1408.2422).

  All master integrals required for pp->VV’ two-loop amplitudes now known 
     (Caola, Henn, Melnikov, Smirnov, 1404.5590).

  Progress towards the construction of a general basis for two-loop master 
     integrals (Mastrolia et al.;  Badger, Frellesvig, Zhang, 1407.3133)



BREAKING GROUND AT  THREE LOOPS



“Drell-Yan” at N3LO

  After the landmark calculation of three-loop DIS structure functions by Moch, Vermaseren  
      and Vogt a decade ago, the next great PQCD challenge is the computation of a cross 
     section without an OPE at three loops. The “Drell-Yan’’ process is the best candidate.

  At LHC,  “Drell-Yan” means vector boson production and Higgs production via gluon 
     fusion. The phenomenological impact is evident, especially given the large corrections
     to Higgs production at one and two loops.

  Approximate three-loop results using threshold and Regge limits exist (Moch, Vogt, 2005; 
     LM, Laenen, 2005;  Ball, Bonvini, Forte, Marzani, Ridolfi, 2013).

  The full calculation is now being tackled step by step (Anastasiou, Duhr, Dulat, Herzog, 
     Mistiberger 1311.1425;  Kilgore 1312.1296;  Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, 
     Mistiberger 1403.4616).

  The leading term in the threshold expansion is now known

  The three-loop soft-virtual contribution is fully predicted by threshold resummation 
     except for δ(1 - z) contributions which are the new result.

  The “Drell-Yan” timeline:  1979 - 1991 - 2002 - 2015?

b� = b�(z) , z =
Q2

ŝ
, b�(z) = b�SV + b�0 + (1� z) b�1 +O⇥

(1� z)2
⇤



“Drell-Yan” at N3LO

From Claude Duhr’s talk at ICHEP 2014

  A massive calculation with many ingredients, and O(103) master integrals to evaluate.



“Drell-Yan” at N3LO

From Claude Duhr’s talk at Loops&Legs 2014

  A massive calculation even in the soft-virtual approximation, with 50 master integrals.



“Drell-Yan” at N3LO

From Claude Duhr’s talk at Loops&Legs 2014

  The three-loop soft-virtual approximation to Higgs production in gluon fusion.
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 Not predicted
by resummation



  A large class of integrals arising from Feynman diagrams (but not all!) can be expressed  
     as “iterated integrals”, yielding functions in the class of polylogarithms.  At one loop

  At higher orders one ancounters more general examples, such as Harmonic 
     Polylogarithms or Goncharov Polylogarithms

  Notice that all these integrals are of a “d log” form: at each step one integrates over
     the logarithm of a simple (here linear) function of the integration variables.

  The parameters an are the locations of singular points and have physical meaning.
  Iterated integrals are organized by a powerful underlying algebraic structure, described    

     by the “Symbol” map or by a Hopf algebra with a notion of  “Co-product” (Duhr).
  In particular each such function can be assigned a “weight” w, equal to the number of

     iterations. For example Li2(z) has weight w = 2, and ζ(n) has weight w = n.
  These structures were uncovered in the context of studies of N=4 Super Yang-Mills

     theory amplitudes, where they have played a pivotal role.
  We now see powerful new applications to ordinary QCD (Henn, Smirnov, Von Manteuffel)

Iterated integrals

log z = �
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  Iterated integrals are the centerpiece of a recent breakthrough (J. Henn, 1304.1806) in the 
     calculation of master integrals for general gauge theory amplitudes.

  Consider the standard method of evaluation for multi-loop scattering amplitudes.
• Reduce the integrals arising from Feynman diagrams to a set of master integrals.
• Use IBP and Lorentz invariance identities to derive a system of differential 

           equations coupling all master integrals.
• Solve for the master integrals using simple configurations for boundary conditions. 

  For master integrals fi(xn), and with ε = 2 - d/2, the system takes the form

  There is a large, not previously exploited freedom to choose the basis of MI’s at will.
  Using iterated integrals,  J. Henn suggested that an appropriate choice of basis involving 

     uniform weight functions, can lead to a striking double simplification.

  The system is now easily solved order by order in ε in terms of iterated integrals.
  A key role is played by the alphabet of functions αk , which encode the kinematic 

     singularities of the amplitude.
  The existence of such a basis of master integrals is not proved in general.
  Whenever this basis of uniform weight functions exists the evaluation of MI’s is

     remarkably simplified. 

A basis of pure functions
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A wealth of applications

Towards the three-loop QCD cusp anomalous dimension:
Grozin, Henn, Korchemsky, Marquard, 1406.7828. All integrals for virtual two-loop double vector boson production:

Caola, Henn, Melnikov, Smirnov, 1404.5590.

All planar two-loop and finite three-loop integrals for light-by-light scattering
Henn, Smirnov, Smirnov 1312.2588 ;  Caron-Huot, Henn, 1404.2922.



SOFT GLUONS TO ALL LOOPS



The virtues of large logs

 Multi-scale problems in renormalizable quantum field theories have perturbative 
    corrections of the form                            , which may spoil the reliability of the 
    perturbative expansion. However, they carry important physical information!

• Renormalization and factorization logs:

• High-energy logs:

• Sudakov logs:

 Sudakov logs are universal: they originate from infrared and collinear singularities:
    they exponentiate and can be resummed

• For inclusive observables: analytic resummation to high logarithmic accuracy.

• For exclusive final states: parton shower event generators, (N)LL accuracy.

 Resummation probes the all-order structure of perturbation theory.

• Power-suppressed corrections to QCD cross sections can be studied.

• Links to the strong coupling regime can be established for SUSY gauge theories.
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The perturbative exponent

d⇤(�s, N) =
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A classic way to organize Sudakov logarithms is in terms of the Mellin (Laplace) transform 
of the momentum space cross section (Catani et al. 93),

This displays the main features of Sudakov resummation

  Predictive: a k-loop calculation determines gk and thus a whole tower of logarithms to    
                    all orders in perturbation theory.

  Effective:  ● the range of applicability of perturbation theory is extended 
                      (finite order: αs log2N small.  NLL resummed: αs small);
                  ● the renormalization scale dependence is naturally reduced. 

  Theoretically interesting: resummation ambiguities related to the Landau pole give 
                                        access to non-perturbative power-suppressed corrections.

  Well understood: ● NLL Sudakov resummations exist for most inclusive observables at 
                                  hadron colliders, NNLL and approximate N3LL in simple cases.
                              ● Different `schools’ (USA, Italian, SCET ...) compete, complacency is                
                                  not an option, active and lively debate.



Color singlet hard scattering
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A well-established formalism exists for distributions in processes that are electroweak at 
tree level (Gardi, Grunberg 07).  For an observable r vanishing in the two-jet limit 

The Mellin (Laplace) transform,

exhibits log N singularities that can be organized in exponential form

where the exponent of the `Sudakov factor’ is in turn a Mellin transform

and the general form of the kernel is 

where A is the cusp anomalous dimension, and B and D have distinct physical characters.



66 < Q < 116 GeV

CDF

Impact of resummation

Z-boson qT spectrum at Tevatron  (Kulesza et al. 03)

CDF data on $Z$ production compared with QCD predictions at fixed order (dotted), with 
joint resummation (dashed), and with the inclusion of power corrections (solid).



66 < Q < 116 GeV

CDF

Impact of resummation

Z-boson qT spectrum at Tevatron  (Kulesza et al. 03)

CDF data on $Z$ production compared with QCD predictions  at fixed  order (dotted), with 
(joint) resummation (dashed), and with the inclusion of power corrections (solid).

Note shift in the distribution 
due to non-perturbative 

corrections extrapolated from 
all-order resummed result



Complex observables

Jet veto efficiency in Higgs and Z production  (Banfi et al., 03/12)

Comparison of NNLO fixed order results and matched resummed NLL-NNLO results for Higgs production with 
a jet veto (left) and Z production with a jet veto (right).  Subsequent improvements include NNLL accuracy (also in 

SCET,  by Becher, Neubert, Rothen, 1307.0025), and exact treatment of quark masses (1308.4634).
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Jet veto efficiency in Higgs and Z production  (Banfi et al., 03/12)

Note the sharp 
reduction of the  

theoretical uncertaitnty
upon resummation



Complex observables

Comparison of NNLO fixed order results and matched resummed NLL-NNLO results for Higgs production with 
a jet veto (left) and Z production with a jet veto (right).  Subsequent improvements include NNLL accuracy (also in 

SCET,  by Becher, Neubert, Rothen, 1307.0025), and exact treatment of quark masses (1308.4634).

Jet veto efficiency in Higgs and Z production  (Banfi et al., 03/12)

Note the sharp 
reduction of the  

theoretical uncertaitnty
upon resummation ...

... which does not 
always take place!



TOOLS FOR LARGE LOGS



Soft-collinear factorization

Leading integration regions in loop momentum space 
for soft-collinear factorization 

  Sudakov logarithms are remainders of infrared
     and collinear divergences.
 

  Divergences arise in scattering amplitudes
     from leading regions in loop momentum space.

  Power-counting arguments show that soft 
     gluons decouple from the hard subgraph.

  Ward identities decouple soft gluons from jets 
     and restrict color transfer to the hard part.

  Jet functions J represent color singlet
     evolution of external hard partons.

  The soft function S is a matrix mixing
     the available color representations.

  In the planar limit soft exchanges are confined
     to wedges: S is proportional to the identity.

  Beyond the planar limit S is determined by an   
     anomalous dimension matrix ΓS.

  The matrix ΓS  correlates color exchange with 
     kinematic dependence.



Color flow
In order to understand the matrix structure of the soft function it is sufficient to consider
the simple case of quark-antiquark scattering.

       At tree level

For this process only two color structures are possible.  A basis in the space of available 
color tensors is 
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0

Tree-level diagrams and color flows for quark-antiquark scattering

The matrix element  is a vector in this space, and the Born cross section is

A virtual soft gluon will reshuffle color and mix the components of this vector

QED : Mdiv = SdivMBorn ; QCD : [Mdiv]J = [Sdiv]JL [MBorn]L



Sudakov factorization: pictorial

A pictorial representation of  Sudakov factorization for fixed-angle scattering amplitudes



Soft Matrices
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The soft function  S  obeys a matrix RG evolution equation

  ΓS is singular due to overlapping UV and collinear poles.

S is a pure counterterm.  In dimensional regularization, using   αs(μ2 = 0, ε < 0) = 0 ,

The soft function  S  is a matrix, mixing the available color tensors. It is defined by a 
correlator of  Wilson lines.

(cL){�k} SLK

�
⇥i · ⇥j ,�s(µ2), ⇤

⇥
=

⇤

{⇤k}

⌅0|
n⌅

i=1

⇧
�⇥i(⇥, 0)�k,⇤k

⌃
|0⇧ (cK){⇤k} ,

The determination of the soft anomalous dimension matrix  ΓS  is the keystone of the 
resummation program for multiparton amplitudes and cross sections.

 It governs the interplay of color exchange with kinematics in multiparton processes.
 It is the only source of multiparton correlations for singular contributions.
 Collinear effects are `color singlet’ and can be extracted from two-parton scatterings.
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  All soft and collinear singularities can be collected in a multiplicative operator Z

  Z contains both soft singularities from S, and collinear ones from the jet functions. It 
    must satisfy its own matrix RG equation

The matrix Γ has a surprisingly simple dipole structure. It reads

Note that all singularities are generated by integration over the scale of the coupling.

The Dipole Formula
For massless partons, the soft anomalous dimension matrix obeys an exact equation 
based on a `conformal anomaly’, which correlates color exchange with kinematics. 

The simplest solution to this equation is a sum over color dipoles (Becher, Neubert;
Gardi, LM, 09).  It gives an ansatz for the all-order singularity structure of all multiparton 
fixed-angle massless scattering amplitudes: the dipole formula. 
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The Dipole Formula
For massless partons, the soft anomalous dimension matrix obeys an exact equation 
based on a `conformal anomaly’, which correlates color exchange with kinematics. 

The simplest solution to this equation is a sum over color dipoles (Becher, Neubert;
Gardi, LM, 09).  It gives an ansatz for the all-order singularity structure of all multiparton 
fixed-angle massless scattering amplitudes: the dipole formula. 



  All known results for IR divergences of massless gauge theory amplitudes are recovered.

  The absence of multiparton correlations implies remarkable diagrammatic cancellations.

  The color matrix structure is fixed at one loop: path-ordering is not needed.

  All divergences are determined by a handful of anomalous dimensions.

  The cusp anomalous dimension plays a very special role: a universal IR coupling.

Can this be the definitive answer for IR divergences in massless non-abelian gauge theories?

  There are precisely two sources of possible corrections.
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Infrared exponentiation

Sn ⌘ h0|�1 ⌦ . . .⌦ �n |0i = exp (!n)

All correlators of  Wilson lines, regardless of shape, resum in exponential form.   

Diagrammatic rules exist to compute directly the logarithm of the correlators. 

! 2,QED =

! 2,QCD =

Only connected photon 
subdiagrams contribute to 
the logarithm.

Only gluon subdiagrams 
which are two-eikonal 
irreducible contribute to 
the logarithm. They have
modified color factors.

For eikonal form factors, these diagrams are called webs (Gatheral; Frenkel, Taylor; Sterman).



The concept of web generalizes non-trivially to the case of multiple Wilson lines.  
(Gardi, Smillie, White, et al).

A web is a set of diagrams which differ only by the order of the gluon attachments on each 
Wilson line. They are weighted by modified color factors.

Writing each diagram as the product of its natural color factor and a kinematic factor

a web W can be expressed as a sum of diagrams in terms of a web mixing matrix R

The non-abelian exponentiation theorem holds: each web has the color factor of a fully 
connected gluon subdiagram (Gardi, Smillie, White).

Multiparticle webs

W =
X

D

eC(D)F(D) =
X

D,D0

C(D0)R(D0, D)F(D)

D = C(D)F(D)



Computing webs

bSren (�ij ,↵s, ✏,m) =

bSbare (�ij ,↵s, ✏,m)Z (�ij ,↵s, ✏)

⌘ exp (!) exp (⇣) = exp
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2
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Bare Wilson-line correlators vanish beyond tree level in dimensional regularization: they
are given by scale-less integrals. We require renormalized correlators, which depend on the
Minkowsky angles between the Wilson lines.

To compute the counterterm Z we make use of an auxiliary, IR-regularized correlator

Sren (�ij ,↵s, ✏) = Sbare (�ij ,↵s, ✏)Z (�ij ,↵s, ✏) = Z (�ij ,↵s, ✏) , �ij =
2�i · �jq
�2
i �

2
j

The expression of Z in terms of the anomalous dimension Γ follows from RG arguments

Combining informations one can get Γ directly from the logarithm of the regularized S

Z = exp
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Computing regularized webs is a game of combinatorics and renormalization theory.
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Three-loop progress
The computation of the three-loop multi-particle soft anomalous dimension is under way.

A Multiple Gluon Exchange Web A Tripole Web

A Quadrupole Web

Gardi 1310.5268
Falcioni et al. 1407.3477.

Falcioni et al. ,
in progress.

Almelid, Duhr and Gardi,
in progress.



  A systematic study of soft-gluon dynamics beyond the eikonal
    approximation is under way (Laenen et al. 08, 10; Bonocore et al, in prep.).

•  A class of factorizable contributions exponentiate via NE webs

•  “Feynman rules” for the NE exponent, including “seagull” vertices.

•  Non-factorizable contribution can be studied using Low’s theorem.

  Hadronic cross sections near partonic threshold receive non-singular logarithmic  
     corrections αsp logk(1 - z), or αs

p logkN/N, which may be relevant for phenomenology.
     Can they also be organized and resummed? (Kraemer et al.;  Vogt et al.;  Grunberg, ...)

• For two-parton processes, O(N0) contributions exponentiate (Laenen, LM, 03).
• Phenomenological evidence indicates that also `sub-eikonal’ logs partly exponentiate.

• An ansatz summarizes the resummable for Drell-Yan (and DIS) (Laenen et al., 06).
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USING LARGE LOGS



Higgs production

N3LL resummed cross section for Higgs 
production via gluon fusion at LHC

NNLL resummed pT distribution for Higgs 
production via gluon fusion at LHC

 The total cross section for gg->H is known to 
    N3LL and NNLO+, with NLO EW corrections.

• One of the best-known observables in the SM.

• A combined analysis (Ahrens et al. 11) gives
        a 3% (th) + 8% (pdf) + 1% (mq) uncertainty.

• Debate on theoretical and pdf uncertainty,  
        initiated in Baglio et al. 11. For consensus see
        https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections

 The pT distribution for gg->H is known to 
    NNLL and NNLO (M. Grazzini et al. 07, 10
     Ahrens et al. 11, Boughezal et al. 13).

• Resummation reduces scale uncertainty.

• Subtle polarization effects (Catani, Grazzini, 10).

• `Collinear anomaly’ in SCET (Becher, Neubert).

• Impact of revised three-loop coefficient 
        likely very small.

• Threshold corrections at large pT recently
        computed (Becher et al. 14).

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections


  First studies of event shapes with exact NNLO information and (well) approximated    
     N3LL resummation have appeared (Becher, Schwartz, 08; Schwartz, Cien;  Abbate et al. 10). 

  The studies deploy neat tricks (Padé approximants, numerical determination of 
     2-loop soft coefficients) and great care (hadronization, b-mass, QED corrections).

  Perturbative agreement between SCET and standard resummation (Gehrmann et al., 11).

  Significant differences remain in the final results for the strong coupling.

  Many possible sources of discrepancy, the main suspect remains hadronization/MC.

  The problem is still not fully understood: do we really know αs to percent accuracy?

Event shapes

�s(M2
Z) = 0.1172 ± 0.0022 thrust (BS)

�s(M2
Z) = 0.1220 ± 0.0031 jetmass (SC)

�s(M2
Z) = 0.1135 ± 0.0010 thrust (AFHMS)

Comparing the αs fit quality for thrust and heavy jet mass at N3LL (SC)
Joint fit of αs and hadronization parameter 

Ω1 from N3LL thrust (AFHMS)
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We are ready for the challenges of LHC Run Two.



THANK  YOU!


