Parton distributions overview

Sven-Olaf Moch

Universität Hamburg & DESY, Zeuthen

Workshop QCD@LHC2014, Suzdal, Aug 25, 2014

Sven-Olaf Moch

Parton distributions overview - p.1

Plan

- Cross sections in perturbative QCD
- Non-perturbative input parameters
 - parton distributions
 - strong coupling $\alpha_s(M_Z)$
 - heavy quark masses
- Constraints from new measurements
 - LHC: W^{\pm} and Z-boson production
 - Nomad, Chorus: charm production data in neutrino-nucleon DIS

QCD factorization

$$\sigma_{pp \to X} = \sum_{ij} f_i(\mu^2) \otimes f_j(\mu^2) \otimes \hat{\sigma}_{ij \to X} \left(\alpha_s(\mu^2), Q^2, \mu^2, m_X^2 \right)$$

- Hard parton cross section $\hat{\sigma}_{ij \to X}$ calculable in perturbation theory
 - known to NLO, NNLO, $\dots (\mathcal{O}(\text{few}\%)$ theory uncertainty)
- Non-perturbative parameters: parton distribution functions f_i , strong coupling α_s , particle masses m_X
 - known from global fits to exp. data, lattice computations, ...

Higgs production in gg-fusion

Effective theory

- Hard scattering cross section $\hat{\sigma}_{ij \rightarrow H+X}$ dominated by gluon-gluon fusion
 - typically treated in effective theory in limit $m_t \to \infty$; Lagrangian $\mathcal{L} = -\frac{1}{4} \frac{H}{v} C_H G^{\mu\nu a} G^a_{\mu\nu}$
- QCD corrections significant
 - NNLO corrections still large
 Harlander, Kilgore '02; Anastasiou, Melnikov '02; Ravindran, Smith, van Neerven '03
 - improvement with soft N³LO corrections S.M., Vogt '05; Laenen, Magnea '05: in *x*-space '+'-distributions $\alpha_s^k \ln^{2k-1}(1-x)/(1-x)$
 - NNLL resummation Catani, de Florian, Grazzini, Nason '03; Ahrens et al. '10; [...]; Ahmed, Mahakhud, Rana, Ravindran '14
 - soft-virtual corrections completed recently: $\delta(1 x)$ -term at N³LO Anastasiou et al.'14

Perturbation theory at work

- Apparent convergence of perturbative expansion
 - improvement with soft-virtual N³LO corrections (all powers of $\ln^k N$) supplemented by $\ln^k N/N$ corrections from physical kernels de Florian, Mazzitelli, S.M., Vogt to appear
- Perturbative stability under renormalization scale variation
 - point of minimal sensitivity around $\mu = m_H/2$
 - overall theoretical uncertainty $\Delta\sigma(H)$ less than 5%

Dependence on parton distributions

• NNLO cross section $\sigma(gg \rightarrow H + X)$ at LHC with uncertainties:

	LHC7	LHC8	LHC14
ABM11	$13.23 \begin{array}{c} +1.35 \\ -1.31 \end{array} \begin{array}{c} +0.30 \\ -0.30 \end{array}$	$16.99 {}^{+1.69}_{-1.63} {}^{+0.37}_{-0.37}$	$44.68 \begin{array}{c} +4.02 \\ -3.78 \end{array} \begin{array}{c} +0.85 \\ -0.85 \end{array}$
ABM12	$13.28 \begin{array}{c} ^{+1.35}_{-1.32} \begin{array}{c} ^{+0.31}_{-0.31} \end{array}$	$17.05 \ {}^{+1.68}_{-1.64} \ {}^{+0.39}_{-0.39}$	$44.81 {}^{+4.01}_{-3.80} {}^{+0.94}_{-0.94}$
HiggsXSWG	$15.13 \substack{+1.07 \ +1.15 \ -1.18 \ -1.07}$	$19.27 \stackrel{+1.39}{_{-1.50}} \stackrel{+1.45}{_{-1.33}}$	$49.85 \begin{array}{c} +6.08 \\ -4.19 \end{array} \begin{array}{c} +3.69 \\ -3.09 \end{array}$

 $\sigma(H) + \Delta\sigma(\text{scale}) + \Delta\sigma(\text{PDF} + \alpha_{s})$

- Comparison for PDF sets at NNLO
 - ABM11, ABM12 Alekhin, Blümlein, S.M. '13 and HiggsXSWG (used by ATLAS and CMS, relying on MSTW08 Martin, Stirling, Thorne, Watt '09 and with soft gluon resummation)
- Largest differences in predictions from PDFs and value of α_s
 - ABM central values significantly lower by some 11 14%
 - even more dramatic for Tevatron Baglio, Djouadi '10; Baglio, Djouadi, Ferrag, Godbole '11
- PDF and α_s differences significantly larger than residual theory uncertainty due to incomplete N³LO QCD corrections

Non-perturbative parameters

Input for collider phenomenology

- Non-perturbative parameters are universal
- Determination from comparision to experimental data
 - masses of heavy quarks m_c, m_b, m_t
 - parton distribution functions $f_i(x, \mu^2)$
 - strong coupling constant $\alpha_s(M_Z)$

Interplay with perturbation theory

- Accuracy of determination driven by precision of theory predictions
- Non-perturbative parameters sensitive to
 - radiative corrections at higher orders
 - renormalization and factorization scales μ_R , μ_F
 - chosen scheme (e.g. $(\overline{MS} \text{ scheme})$

•

Parton luminosity at LHC

- LHC run at $\sqrt{s} = 7/8$ TeV
 - parton kinematics well covered by HERA and fixed target experiments
- Parton kinematics at effective $\langle x \rangle = M/\sqrt{S}$
 - 100 GeV physics: small-x, sea partons
 - TeV scales: large-x

Parton distribution fits

Global PDF fits

- PDF sets currently available
 - ABM12 Alekhin, Blümlein, S.M. '13
 - CT10 Gao et al. '13
 - HERAPDF (v1.5) H1 & ZEUS Coll. '11
 - JR09 Jimenez-Delgado, Reya '09
 - MSTW Martin, Stirling, Thorne, Watt '09
 - NNPDF (NN23) Ball et al. '12

Iterative cycle of PDF fits

- i) check of compatibility of new data set with available world data
- ii) study of potential constraints due to addition of new data set to fit
- iii) perform high precision measurement of the non-perturbative parameters
 - parton distributions
 - strong coupling $\alpha_s(M_Z)$
 - heavy quark masses

LHC measurements

General remarks

- QCD corrections important
 - require theory predictions to NNLO accuracy
- PDF fits with 3-flavors for DIS, 5-flavors for LHC data (matching from 3 to 5-flavors)
 - QCD evolution over large range

Benchmark processes

- Complete NNLO QCD corrections available for
 - W[±]- and Z-boson production
 Hamberg, van Neerven, Matsuura '91; Harlander, Kilgore '02
 - top-quark hadro-production Czakon, Fiedler, Mitov '13
- Jet data from Tevatron and LHC
 - QCD corrections only NLO known
 - possible impact of jet definition and algorithm
 - ongoing effort towards NNLO (corrections expected to be as big as $\mathcal{O}(15-20\%)$) Gehrmann-De Ridder, Gehrmann, Glover, Pires '13

Example: ABM PDFs

Data considered in the fit

- Analysis of world data for deep-inelastic scattering and fixed-target data for Drell-Yan process
 - inclusive DIS data HERA, BCDMS, NMC, SLAC
 - semi-inclusive DIS charm production data (HERA)
 - Drell-Yan data (fixed target) E-605, E-866
 - neutrino-nucleon DIS data (di-muon production) CCFR/NuTeV
 - LHC data for W^{\pm} and Z-boson production

Theory considerations

- Consistent theory description for consistent data sets
 - Iow scale DIS data with account of higher twist
- Determination of PDFs and strong coupling constant α_s to NNLO QCD
- Consistent scheme for treatment of heavy quarks
 - fixed-flavor number scheme for $n_f = 3, 4, 5$
 - $\overline{\mathrm{MS}}$ -scheme for quark masses and α_s
- Full account of error correlations

ABM PDF ansatz

- PDFs parameterization at scale $Q_0 = 3$ GeV in scheme with $n_f = 3$ Alekhin, Blümlein, S.M. '12
 - ansatz for valence-/sea-quarks, gluon with polynomial P(x)
 - strange quark is taken in charge-symmetric form
 - 24 parameters in polynomials P(x)
 - 4 additional fit parameters: $\alpha_s^{(n_f=3)}(\mu = 3 \text{ GeV}), m_c, m_b$ and deuteron correction
 - simultaneous fit of higher twist parameters (twist-4)

$$\begin{aligned} xq_v(x,Q_0^2) &= \frac{2\delta_{qu} + \delta_{qd}}{N_q^v} x^{a_q} (1-x)^{b_q} x^{P_{qv}(x)} \\ xu_s(x,Q_0^2) &= x\bar{u}_s(x,Q_0^2) &= A_{us} x^{a_{us}} (1-x)^{b_{us}} x^{a_{us}} P_{us}(x) \\ x\Delta(x,Q_0^2) &= xd_s(x,Q_0^2) - xu_s(x,Q_0^2) &= A_{\Delta} x^{a_{\Delta}} (1-x)^{b_{\Delta}} x^{P_{\Delta}(x)} \\ xs(x,Q_0^2) &= x\bar{s}(x,Q_0^2) &= A_s x^{a_s} (1-x)^{b_s} , \\ xg(x,Q_0^2) &= A_g x^{a_g} (1-x)^{b_g} x^{a_g} P_g(x) \end{aligned}$$

 Ansatz provides sufficient flexibility; no additional terms required to improve the quality of fit

Parton distributions tuned to LHC data

1 σ band for ABM12 PDFs (NNLO, 4-flavors) at $\mu = 2 \text{ GeV}$ Alekhin, Blümlein, S.M.'13 comparison with: JR09 (solid lines), MSTW (dashed dots), NN23 (dashes) and CT10 (dots)

Some interesting observations to be made ...

Quality of fit

Statistical tests

- Goodness-of-fit estimator
 - χ^2 values compared to number of data points (typically a few thousand in global fit)

Covariance matrix

- Positive-definite covariance matrix
 - correlations for ABM11 PDF fit parameters (I)

Alekhin, Blümlein, S.M. '12

	a_u	b_u	$\gamma_{1,u}$	$\gamma_{2,u}$	a_d	b_d	A_d	b_Δ	A_u	a_{us}	b_{us}	a_G	b_G
a_u	1.0000	0.9256	0.9638	-0.2527	0.3382	0.2922	0.1143	-0.4267	0.4706	0.3117	0.1422	0.0982	0.1127
b_u		1.0000	0.9574	-0.5608	0.1933	0.1200	0.1058	-0.3666	0.3712	0.2674	0.1537	0.0453	0.1878
$\gamma_{1,u}$			1.0000	-0.4504	0.2328	0.2329	0.0906	-0.3379	0.4106	0.2876	0.0812	0.0491	0.1627
$\gamma_{2,u}$				1.0000	0.3007	0.3119	-0.0242	-0.0118	0.0587	0.0026	-0.0305	0.0949	-0.1876
a_d					1.0000	0.8349	-0.2010	-0.3371	0.3786	0.2592	0.1212	-0.0377	0.1305
b_d						1.0000	-0.2669	-0.0599	0.2768	0.1941	-0.0698	-0.0926	0.2088
A_d							1.0000	-0.2132	0.0549	0.0245	0.2498	-0.0523	0.0614
b_Δ								1.0000	-0.1308	-0.0729	-0.7208	-0.0124	-0.0225
A_u									1.0000	0.9240	-0.0723	0.3649	-0.1674
a_{us}										1.0000	-0.0144	0.2520	-0.1095
b_{us}											1.0000	-0.1274	0.1808
a_G												1.0000	-0.6477
b_G													1.0000

Quality of fit

Statistical tests

- Goodness-of-fit estimator
 - χ^2 values compared to number of data points (typically a few thousand in global fit)

Covariance matrix

- Positive-definite covariance matrix
 - correlations for ABM11 PDF fit parameters (II)

Alekhin, Blümlein, S.M. '12

	$\gamma_{1,G}$	$\alpha_s(3, 3 \text{ GeV})$	$\gamma_{1,\Delta}$	$\gamma_{1,us}$	$\gamma_{1,d}$	$\gamma_{2,d}$	A_s	b_s	a_s	a_{Δ}	m_c	m_b
a_u	-0.0727	-0.0611	0.3383	0.6154	0.2320	-0.0724	-0.0681	-0.0763	-0.0935	0.0026	0.0900	-0.0053
b_u	-0.1130	-0.1725	0.2992	0.4848	0.0849	0.0720	-0.0723	-0.0618	-0.0926	0.0049	0.0349	-0.0118
$\gamma_{1,u}$	-0.1106	-0.1338	0.2753	0.5638	0.1316	-0.0535	-0.0798	-0.0854	-0.1059	-0.0060	0.0817	0.0003
$\gamma_{2,u}$	0.1174	0.2195	-0.0210	0.0822	0.3712	-0.3310	0.0339	0.0143	0.0381	-0.0098	0.0430	-0.0004
a_d	-0.1631	-0.0208	0.0319	0.4974	0.9570	-0.4636	-0.0700	-0.0996	-0.0979	-0.2121	0.1066	-0.0150
b_d	-0.2198	-0.0913	-0.1775	0.4092	0.8985	-0.8498	-0.0533	-0.0669	-0.0806	-0.2252	0.0822	-0.0068
A_d	-0.0825	0.0188	0.8558	-0.0289	-0.2624	0.2852	-0.0075	-0.0189	-0.0180	0.9602	0.0420	0.0120
b_Δ	0.0530	-0.0801	-0.6666	-0.0904	-0.1981	-0.2532	-0.0022	0.0257	0.0048	-0.0260	-0.0166	-0.0056
A_u	0.2502	-0.0157	0.1265	0.7525	0.3047	-0.0668	-0.7064	-0.6670	-0.7267	0.0345	0.2137	0.0358
a_{us}	0.1845	-0.0216	0.0683	0.5714	0.2157	-0.0554	-0.8768	-0.8081	-0.8980	0.0145	0.0430	0.0074
b_{us}	-0.1619	-0.0715	0.5343	-0.3656	0.0293	0.2430	-0.0345	-0.0132	-0.0356	0.1527	-0.0899	-0.0058
a_G	0.8291	0.2306	-0.0260	0.3692	-0.0966	0.1496	0.0087	0.0007	0.0464	-0.0541	-0.0661	0.0417
b_G	-0.9184	-0.6145	0.0538	-0.2770	0.1990	-0.2552	0.0381	0.0616	-0.0468	0.0502	0.1847	0.0861

Quality of fit

Statistical tests

- Goodness-of-fit estimator
 - χ^2 values compared to number of data points (typically a few thousand in global fit)

Covariance matrix

- Positive-definite covariance matrix
 - correlations for ABM11 PDF fit parameters (III) Alekhin, Blümlein, S.M. '12

	$\gamma_{1,G}$	$\alpha_s(3, 3 \text{ GeV})$	$\gamma_{1,\Delta}$	$\gamma_{1,us}$	$\gamma_{1,d}$	$\gamma_{2,d}$	A_s	b_s	a_s	a_{Δ}	m _c	m_b
$\gamma_{1,G}$	1.0000	0.3546	-0.0876	0.2751	-0.2215	0.2410	-0.0539	-0.0634	0.0122	-0.0658	-0.1149	-0.0474
$\alpha_s(3, 3 \text{ GeV})$		1.0000	0.0601	0.1127	-0.0761	0.1534	-0.0176	-0.0121	0.0883	0.0022	-0.5641	-0.0526
$\gamma_{1,\Delta}$			1.0000	0.0699	-0.1081	0.3796	-0.0050	-0.0329	-0.0175	0.7098	0.0418	0.0113
γ _{1,us}				1.0000	0.4099	-0.1547	-0.2622	-0.3181	-0.2801	-0.0785	0.1870	0.0103
$\gamma_{1,d}$					1.0000	-0.6540	-0.0688	-0.0892	-0.0974	-0.2332	0.0999	-0.0093
$\gamma_{2,d}$						1.0000	0.0212	0.0128	0.0413	0.1876	-0.0396	-0.0049
A_s							1.0000	0.8584	0.9689	-0.0109	0.0596	0.0116
b_s								1.0000	0.8826	-0.0173	-0.0777	0.0003
a_s									1.0000	-0.0204	-0.0845	-0.0145
a_{Δ}										1.0000	0.0385	0.0085
m_c											1.0000	0.1451
m_b												1.0000

Testing higher twist

• Fit of SLAC data without higher twist contributions

Strong coupling constant

Essential facts

- $\alpha_s(M_Z)$ from e^+e^- data high
- $\alpha_s(M_Z)$ from DIS data low
- World average 1992 $\alpha_s(M_Z) = 0.117 \pm 0.004$

			Q			$\Delta \alpha_s($	M_{Z^0})	order of
	Process	Ref.	$[\mathrm{GeV}]$	$lpha_s(Q)$	$lpha_s(M_{{ m Z}^0})$	exp.	theor.	perturb.
1	$R_{ au} \; [ext{LEP}]$	[7-10]	1.78	$0.318 {}^{+ \ 0.048}_{- \ 0.039}$	$0.117 {}^{+ \ 0.006}_{- \ 0.005}$	+ 0.003 - 0.004	+ 0.005 - 0.004	NNLO
2	$R_{ au} \; [{ m world}]$	[2]	1.78	0.32 ± 0.04	$0.118 \stackrel{+ 0.004}{- 0.006}$	-	-	NNLO
						1 0 00 4		
3	DIS $[\nu]$	[3]	5.0	$0.193 \stackrel{+}{-} \stackrel{0.019}{_{-}}$	$0.111 \stackrel{+}{}_{-} \stackrel{0.008}{}_{-} \stackrel{0.008}{}_{-}$	+ 0.004 - 0.006	0.004	NLO
4	DIS $[\mu]$	[12]	7.1	0.180 ± 0.014	0.113 ± 0.005	0.003	0.004	NLO
	7/J. 00 1	F 4 1	10.0	0.165 ± 0.015	0.110 ± 0.007			NT O
5	$J/\Psi, 1$ decay	[4]	10.0	0.167 ± 0.011	0.113 ± 0.005	-	-	NLO
6	$e^+e^-[\sigma, \eta]$	[14]	34.0	0.163 ± 0.022	0.135 ± 0.015	_	_	NNLO
7	e ⁺ e ⁻ [shanes]	[15]	35.0	0.100 ± 0.022 0.14 ± 0.02	0.119 ± 0.010	_	_	NLO
'	e e [sirapes]	[10]	50.0	0.14 ± 0.02	0.115 ± 0.014			NLO
8	$p\bar{p} ightarrow b\bar{b}X$	[11]	20.0	$0.136 \stackrel{+ 0.025}{_{- 0.024}}$	$0.108 + 0.015 \\ 0.014$	0.006	+ 0.014	NLO
9	$p\bar{p} \rightarrow W \ iets$	[13]	80.6	0.123 ± 0.027	0.121 ± 0.026	0.018	0.020	NLO
0	PP III Jour	[10]	00.0			0.010	0.020	
10	$\Gamma(\mathrm{Z}^{0} \rightarrow \mathrm{had.})$	[5]	91.2	0.133 ± 0.012	0.133 ± 0.012	0.012	+ 0.003 - 0.001	NNLO
	· · · ·						0.0001	
11	${\rm Z}^{\scriptscriptstyle 0}$ ev. shapes							
	ALEPH	[7]	91.2	$0.119 \stackrel{+ 0.008}{- 0.010}$		-	-	NLO
	DELPHI	[8]	91.2	0.113 ± 0.007		0.002	0.007	NLO
	L3	[9]	91.2	0.118 ± 0.010		-	-	NLO
	OPAL	[10]	91.2	$0.122 \ {}^{+ \ 0.006}_{- \ 0.005}$		0.001	+ 0.006 - 0.005	NLO
	SLD	[6]	91.2	$0.120 \ {}^{+ \ 0.015}_{- \ 0.013}$		0.009	+ 0.012 - 0.009	NLO
	Average	[6-10]	91.2		0.119 ± 0.006	0.001	0.006	NLO
12	$\mathbf{Z}^{\scriptscriptstyle 0}$ ev. shapes							
	ALEPH	[7]	91.2	0.125 ± 0.005		0.002	0.004	resum.
	DELPHI	[8]	91.2	0.122 ± 0.006		0.002	0.006	resum.
	L3	[9]	91.2	0.126 ± 0.009		0.003	0.008	resum.
	OPAL	[10]	91.2	$0.122 {}^{+ \ 0.003}_{- \ 0.006}$		0.001	+ 0.003 - 0.006	resum.
	Average	[7-10]	91.2		0.123 ± 0.005	0.001	0.005	resum.

Table 1: Summary of measurements of α_s . For details see text.

$$\alpha_s \ 2014$$

Bethke in PDG 2012

World average for $\alpha_s(M_Z)$ based on arithmetic average of (pre-averaged) ٠ $\alpha_s(M_Z)$ values from different methods/processes

Measurements of α_s

• Values of $\alpha_s(M_Z)$ at NNLO from PDF fits (compilation from proceedings of MITP workshop arXiv:1405.4781)

Alekhin [2001]	0.1143 ± 0.013	DIS	Alekhin '01
BBG [2004]	$0.1134 \ {}^{+ \ 0.0019}_{- \ 0.0021}$	valence analysis, NNLO	Blümlein, Böttcher, Guffanti '06
GRS	0.112	valence analysis, NNLO	Glück, Reya, Schuck '06
ABKM	0.1135 ± 0.0014	HQ: FFNS $n_f=3$	Alekhin, Blümlein, Klein, S.M. '09
JR14	0.1136 ± 0.0004	dynamical approach	Jimenez-Delgado, Reya '14
JR14	0.1162 ± 0.0006	including NLO jets	Jimenez-Delgado, Reya '14
MSTW	0.1171 ± 0.0014		Martin, Stirling, Thorne, Watt '09
Thorne	0.1136	[DIS+DY, HT*] (2014	t) Thorne '14
$ABM11_J$	0.1134 - 0.1149	Tevatron jets (NLO)	incl. Alekhin, Blümlein, S.M. '11
	± 0.0012		
ABM13	0.1133 ± 0.0011		Alekhin, Blümlein, S.M. '13
ABM13	0.1132 ± 0.0011	(without jets)	Alekhin, Blümlein, S.M. '13
CTEQ	0.11590.1162		Gao et al. '13
CTEQ	0.1140	(without jets)	Gao et al. '13
NN21	0.1174 ± 0.0007		NNPDF '11

• Values of $\alpha_s(M_Z)$ at NNLO from related measurements and lattice

e^+e^- thrust	$0.1131 {}^{+\ 0.0028}_{-\ 0.0022}$	Gehrmann et al.	arXiv:1210.6945
e^+e^- thrust	0.1140 ± 0.0015	Abbate et al.	arXiv:1204.5746
CMS	0.1151 ± 0.0033	$tar{t}$	arXiv:1307.1907
NLO Jets ATLAS	$0.111 \ {}^{+\ 0.0017}_{-\ 0.0007}$		arXiv:1312.5694
NLO Jets CMS	0.1148 ± 0.0055		arXiv:1312.5694
3-jet rate	0.1175 ± 0.0025	Dissertori et al. 2009	arXiv:0910.4283
Z-decay	0.1189 ± 0.0026	BCK 2008/12 (N ³ LO)	arXiv:1201.5804
au decay	0.1212 ± 0.0019	BCK 2008	arXiv:0801.1821
au decay	0.1204 ± 0.0016	Pich 2011	arXiv:1110.0016
au-decay rate	0.325 ± 0.018 (at $m_{ au}$)	FOTP:	Jamin '13
au-decay rate	0.374 ± 0.025 (at $m_{ au}$)	CIPT:	Jamin '13
lattice	0.1205 ± 0.0010	PACS-CS 2009 (2+1 fl.)	arXiv:0906.3906
lattice	0.1184 ± 0.0006	HPQCD 2010	arXiv:1004.4285
lattice	0.1200 ± 0.0014	ETM 2012 (2+1+1 fl.)	arXiv:1201.5770
lattice	0.1156 ± 0.0022	2012 (2+1 fl.)	arXiv:1205.6155
lattice	$0.1130 \pm 0.0010(stat)$	RBC-UKQCD (prel., 20	14) UKQCD '14
world average	0.1184 ± 0.0007	(2012)	arXiv:1210.0325

α_s from DIS and PDFs

• Significant spread of $\alpha_s(M_Z)$ values from DIS determinations Alekhin, Blümlein, S.M. '13

α_s from DIS and PDFs

• Profile of χ^2 for different data sets in ABM11 PDF fit Alekhin, Blümlein, S.M. '12

Comparison of α_s determinations

- Differences in α_s values:
 - result from different physics models and analysis procedures
 - target mass corrections (powers of nucleon mass M_N^2/Q^2)
 - higher twist $F_2^{\text{ht}} = F_2 + ht^{(4)}(x)/Q^2 + ht^{(6)}(x)/Q^4 + \dots$
 - error correlations
- Effects for differences between ABM, MSTW and NN21 understood
 - variants of ABM with no higher twist etc. reproduce larger α_s values

	α_s at NNLO	target mass corr.	higher twist	error correl.
ABM11	0.1134 ± 0.0011	yes	yes	yes
NNPDF21	0.1166 ± 0.0008	yes	no	yes
MSTW	0.1171 ± 0.0014	no	no	no

Treatment of heavy-quarks

Light quarks

- Neglect "light quark" masses $m_u, m_d \ll \Lambda_{QCD}$ and $m_s < \Lambda_{QCD}$ in hard scattering process
 - scale-dependent u, d, s, g PDFs from mass singularities

Heavy quarks

- No mass singularities for $m_c, m_b, m_t \gg \Lambda_{QCD}$, no (evolving) PDFs
 - c and b PDFs for $Q \gg m_c, m_b$ generated perturbatively

matching of two distinct theories $\longrightarrow n_f$ light flavors + heavy quark of mass m at low scales $\longrightarrow n_f + 1$ light flavors at high scales

- Soft/collinear regions of phase space
 - massless partons

$$\frac{1}{(p+k)^2} = \frac{1}{2p \cdot k} = \frac{1}{2E_q E_g (1 - \cos \theta_{qg})}$$

$$p + k$$

- Soft/collinear regions of phase space
 - massless partons

$$\frac{1}{(p+k)^2} = \frac{1}{2p \cdot k} = \frac{1}{2E_q E_g (1 - \cos \theta_{qg})}$$

$$\alpha_s \int d^4 k \frac{1}{(p+k)^2} \longrightarrow \alpha_s \int dE_g \, d\theta_{qg} \, \frac{1}{2E_q E_g (1 - \cos \theta_{qg})}$$

$$\longrightarrow \alpha_s \frac{1}{\epsilon^2} \times (\dots) \quad \text{in dim. reg.} \quad D = 4 - 2\epsilon$$

- Soft/collinear regions of phase space •
 - massless partons

$$\frac{1}{(p+k)^2} = \frac{1}{2p \cdot k} = \frac{1}{2E_q E_g (1 - \cos \theta_{qg})}$$

$$p \neq k$$

$$\alpha_s \int d^4 k \frac{1}{(p+k)^2} \longrightarrow \alpha_s \int dE_g \, d\theta_{qg} \, \frac{1}{2E_q E_g (1 - \cos \theta_{qg})}$$

$$\longrightarrow \alpha_s \frac{1}{\epsilon^2} \times (\dots) \text{ in dim. reg. } D = 4 - 2\epsilon$$

Parton masses regulate collinear singularity

$$p \qquad \qquad \frac{1}{(p+k)^2 - m_q^2} = \frac{1}{2p \cdot k} = \frac{1}{2E_q E_g (1 - \beta \cos \theta_{qg})}$$

$$with \quad \beta = \left(1 - \frac{m_q^2}{E_q^2}\right)^{1/2} < 1$$

p

- Soft/collinear regions of phase space
 - massless partons

$$\frac{1}{(p+k)^2} = \frac{1}{2p \cdot k} = \frac{1}{2E_q E_g (1 - \cos \theta_{qg})}$$

$$p \neq k$$

$$\alpha_s \int d^4 k \frac{1}{(p+k)^2} \longrightarrow \alpha_s \int dE_g d\theta_{qg} \frac{1}{2E_q E_g (1 - \cos \theta_{qg})}$$

$$\longrightarrow \alpha_s \frac{1}{\epsilon^2} \times (\dots) \text{ in dim. reg. } D = 4 - 2\epsilon$$

Parton masses regulate collinear singularity

$$\frac{1}{(p+k)^2 - m_q^2} = \frac{1}{2p \cdot k} = \frac{1}{2E_q E_g (1 - \beta \cos \theta_{qg})}$$

$$with \quad \beta = \left(1 - \frac{m_q^2}{E_q^2}\right)^{1/2} < 1$$

$$\alpha_s \int d^4 k \frac{1}{(p+k)^2 - m_q^2} \longrightarrow \alpha_s \frac{1}{\epsilon} \ln(m_q^2) \times (\dots)$$

p

Treatment of heavy-quarks

Charm structure function

- F_2^c at HERA (assume no "intrinsic charm")
 - $Q \gg m_c$: Fixed flavor-number scheme FFNS u, d, s, g partons and massive charm coeff. fcts.
 - $Q \implies m_c$: Zero-mass variable flavor-number scheme ZM-VFNS terms $m_c/Q \rightarrow 0$, $n_f = 4$ PDFs (matching), $m_c = 0$ coeff. fcts.
 - $Q \gg m_c$: General-mass variable flavor-number scheme GM-VFNS terms $m_c/Q \neq 0$, but quasi-collinear logs $\ln(Q/m_c)$ large $n_f = 4$ PDFs, "interpolating" coeff. fcts. (matching prescriptions)

FFNS

- Perturbative QCD predictions for F_2^c and F_L^c (neutral current)
 - complete NLO predictions Laenen, Riemersma, Smith, van Neerven '92
 - approximate expressions to NNLO
 Laenen, S.M. '98; Alekhin, S.M. '08; Lo Presti, Kawamura, S.M., Vogt '10
 - asymptotic NNLO terms at large $Q^2 \gg m^2$ Bierenbaum, Blümlein, Klein '09; Behring, Bierenbaum, Blümlein, De Freitas, Klein, Wissbrock '14

VFNS

- Variable flavor number schemes —> matching of two distinct theories Aivazis, Collins, Olness, Tung '94; Thorne, Roberts '98; Buza, Matiounine, Smith, van Neerven '98
 - $\longrightarrow n_f$ light flavors + heavy quark of mass m at low scales
 - $\longrightarrow n_f + 1$ light flavors at high scales
- Important aspects of variable flavor number schemes
 - mass factorization to be carried out before resummation

 —> mass factorization involves both heavy and light component of structure function
 - matching conditions required through NNLO Chuvakin, Smith, van Neerven '00
- Details of implementation matter in global fits

VFNS implementation

- GM-VFNS implementation using BSMN Buza, Matiounine, Smith, van Neerven '98
- DIS structure function F_2^h for heavy-quark h
 - $F_2^{h,\mathrm{BMSN}}(N_f + 1, x, Q^2) =$
 - $= F_2^{h,\text{exact}}(N_f, x, Q^2) + F_2^{h,\text{ZMVFN}}(N_f + 1, x, Q^2) F_2^{h,\text{asymp}}(N_f, x, Q^2)$
 - $F_2^{h,\text{exact}}$: massive heavy-quark structure function ($m \neq 0$)
 - $F_2^{h,\text{ZMVFN}}$: DIS structure function with zero mass (m = 0)
 - $F_2^{h,\text{asymp}}$: asymptotic expansion of heavy-quark structure function (logarithms $\ln(Q^2/m^2)$)

Heavy quark mass

• Data on F_2^c at HERA has correlation of m_c , $\alpha_S(M_Z)$, gluon PDF

 $\sigma_{c\bar{c}} \sim \alpha_s \, m_c^2 \, g(x)$

- Comparison of measured data with predictions in various VFNS schemes
 - data shows very good sensitivity to value of m_c
 - fit of value of m_c strongly dependent on particular choice of VFNS H1 coll. arxiv:1211.1182

Heavy quark mass

- Significant impact on cross section predictions at LHC
 - e.g., W^+ -production

Quark masses in PDF fits

- Choice of value for heavy-quark masses part of uncertainty
- PDF fits assume pole mass scheme for heavy-quarks
 - numerical values systematically lower than those from PDG (2-loop conversion to pole mass)

[GeV]	PDG	ABKM	GJR	HERAPDF	MSTW	CT10	NNPDF21
m_c	$1.66 {}^{+0.09}_{-0.15}$	$1.5 \ ^{+0.25}_{-0.25}$	1.3	1.4 $^{+0.25}_{-0.05}$	1.3	1.3	1.41
m_b	$4.79~^{+0.19}_{-0.08}$	$4.5~^{+0.5}_{-0.5}$	4.2	$4.75_{-0.45}^{+0.25}$	4.75	4.75	4.75

PDG

- PDG quotes running masses: charm: $m_c(m_c) = 1.27^{+0.07}_{-0.11}$ GeV, bottom: $m_b(m_b) = 4.20^{+0.17}_{-0.07}$ GeV ABM
 - ABM uses running masses, e.g., ABM11: charm: $m_c(m_c) = 1.27^{+0.08}_{-0.08}$ GeV, bottom: $m_b(m_b) = 4.19^{+0.13}_{-0.13}$ GeV

Quark mass renormalization

Pole mass

Based on (unphysical) concept of top-quark being a free parton

- heavy-quark self-energy $\Sigma(p, m_q)$ receives contributions from regions of all loop momenta also from momenta of $\mathcal{O}(\Lambda_{QCD})$
- Ambiguity Δm_q in definition of pole mass up to corrections $\mathcal{O}(\Lambda_{QCD})$ Bigi, Shifman, Uraltsev, Vainshtein '94; Beneke, Braun '94; Smith, Willenbrock '97
 - lattice QCD bound: $\Delta m_q \ge 0.7 \cdot \Lambda_{QCD} \simeq 200 \text{ MeV}$ Bauer, Bali, Pineda '11

Short distance mass

- Short distance masses (\overline{MS} , 1S Hoang, Teubner '99, PS Beneke '98, ...) probe at scale of hard interaction: $m_{\text{pole}} = m_{\text{short distance}} + \delta m$
- \overline{MS} mass definition $m(\mu_R)$ realizes running mass (scale dependence)
- Conversion between m_{pole} and \overline{MS} mass $m(\mu_R)$ in perturbation theory Gray, Broadhurst, Gräfe, Schilcher '90; Chetyrkin, Steinhauser '99; Melnikov, v. Ritbergen '99

Running quark masses in DIS

Charm structure function

- Running quark masses in DIS
 - improved convergence
 - reduced scale dependence
- Comparison with pole mass scheme

Running quark masses in DIS

Charm structure function

- Running mass
- Direct determination of $m_c(m_c)$ with all correlations Alekhin, Blümlein, Daum, Lipka, S.M. '12 NLO $1.15 \pm 0.04 \text{ (exp.)} {}^{+0.04}_{-0.00}\text{(th.)}$ GeV

 $\begin{array}{l} {\sf NNLO}_{\rm approx} \\ 1.24 \pm 0.03 \; (exp.) \, {}^{+0.03}_{-0.02} (th.) \; {\sf GeV} \end{array}$

- PDG quotes running masses: $m_c(m_c) = 1.27^{+0.07}_{-0.11} \text{ GeV}$
- Implicit $\alpha_s(M_Z)$ dependence in $m_c(m_c)$ determination from QCD sum rules Dehnadi, Hoang, Mateu, Zebarjad '11

Charm mass from HERA

- Determination of $\overline{\mathrm{MS}}$ -mass $m_c(m_c)$ in DIS H1 coll. arxiv:1211.1182
- Very good description of data

Top mass from total cross section

Intrinsic limitation of sensitivity in total cross section

 $\left|\frac{\Delta\sigma_{t\bar{t}}}{\sigma_{t\bar{t}}}\right| \simeq 5 \times \left|\frac{\Delta m_t}{m_t}\right|$

- NNLO QCD corrections Czakon, Fiedler, Mitov '13
 - K-factor (NLO \rightarrow NNLO) of $\mathcal{O}(10\%)$
 - scale stability at NNLO of $\mathcal{O}(\pm 5\%)$

Total cross section with running mass

- Comparison pole mass vs. \overline{MS} mass Dowling, S.M. '13
 - good apparent convergence of perturbative expansion
 - small theoretical uncertainity form scale variation

Correlations are essential

- Correlation of m_t , $\alpha_S(M_Z)$ and gluon PDF in cross section $\sigma_{t\bar{t}} \sim \alpha_s^2 m_t^2 g(x) \otimes g(x)$
- Effective parton $\langle x
 angle \sim 2m_t/\sqrt{s} \sim 2.5\dots 5\cdot 10^{-2}$

Parton distributions overview - p.32

Top cross section data in ABM12 fit

- Fit with correlations
 - g(x) and $\alpha_s(M_Z)$ already well constrained by global fit (no changes)
 - for fit with $\chi^2/NDP = 5/5$ obtain value of $m_t(m_t) = 162.3 \pm 2.3$ GeV (equivalent to pole mass $m_t = 171.2 \pm 2.4$ GeV) Alekhin, Blümlein, S.M. '13
 - χ^2 -profile steeper for pole mass (bigger impact of top-quark data and greater sensitivity to theoretical uncertainty at NNLO)

Top cross section data in ABM12 fit

- Fit with correlations
 - g(x) and $\alpha_s(M_Z)$ already well constrained by global fit (no changes)
 - correlation of gluon PDF with value of m_t (illustration of bias in analysis Czakon, Mangano, Mitov, Rojo '13)

Quark flavour constraints from LHC data

- DYNNLO 1.3 provides better numerical stability for W-production in central region (\sim 200h) Catani, Cieri, Ferrera, de Florian, Grazzini '09
- FEWZ 3.1 more convenient/stable for estimation of PDF uncertainties (\sim 2d x 24 processors) Li, Petriello '12
- Central values computed with DYNNLO and the PDF errors with FEWZ

ABM PDFs with LHC data

Fit to LHC Drell-Yan data Alekhin, Bümlein, S.M. '13

Good overall agreement with data of CMS '10 and LHCb '12, '13

ABM PDFs with LHC data

Fit to LHC Drell-Yan data Alekhin, Bümlein, S.M. '13

 $d\sigma/d\eta_{\mu}$ (pb) $d\sigma/d\eta_{\mu}$ (pb) dσ/dη_{μμ} (pb) **NNLO ABM11 NNLO ABM12** $Z --> \mu^{+}\mu^{-}$ $W^{+} - -> \mu^{+} \nu$ $W \rightarrow \mu \nu$ **P**^μ_T>20 GeV **P**^μ_T>20 GeV **P**^μ_T>20 GeV $2 < \eta_u < 4.5$ $\eta_{\mu\mu}$ η_{μ} η_{μ}

LHCb (7 TeV, 37 1/pb)

Good overall agreement with data of CMS '10 and LHCb '12, '13

Benchmarking of ABM PDFs

Experiment	ATLAS '11	CMS '12	LHCb '12	LHCb '12
Final states	$W^+ \to l^+ \nu$	$W^+ \to e^+ \nu$	$W^+ \to \mu^+ \nu$	$Z \to e^+ e^-$
	$W^- ightarrow l^- u$	$W^- \to e^- \nu$	$W^- o \mu^- u$	
	$Z ightarrow l^+ l^-$			
Luminosity (1/pb)	35	840	37	940
NDP	30	11	10	9
χ^2 (ABM11)	35.7(7.7)	10.6(4.7)	13.1(4.5)	11.3(4.2)
χ^2 (ABM12)	35.6	9.3	14.4	13.4

- value of χ^2 for Drell-Yan data at the LHC with NNLO ABM11 PDFs (+ 1 σ standard deviation of χ^2 equal to $\sqrt{2NDP}$)
- Benchmarking in arXiv:1211.5142 reports wrong χ^2 values for PDF comparison to ABM11 (NLO theory with MCFM and K-factors, no PDF errors, shifted α_s)

Strange sea determination

Charged current DIS

Alekhin, Bümlein, Caminada, Lipka, Lohwasser, S.M. Petti, Placakyte '14

- CC DIS inclusive data (HERA), CC DIS di-muon production data (NOMAD) and CC DIS charmed-hadron production data (CHORUS)
- Theory description with exact NLO QCD corrections and asymptotic NNLO terms at large $Q^2 \gg m^2$ Buza van Neerven '97

Strange sea from new fixed target data

- Nomad data on ratio of di-muon sample to incl. CC DIS with statistics of 15000 events (much more than CCFR and NuTeV samples)
 - systematics, nuclear corrections, etc. cancel in ratio
 - pull down strange quarks at x > 0.1; sizable reduction of uncertainty
 - $m_c(m_c) = 1.23 \pm 0.03(\text{exp.})\text{GeV}$
- Chorus data pull strangeness up
 - statistical significance the effect is poor

W+charm production at LHC

• Cross check with LHC data for *W*+charm production

CMS

- CMS data above NuTeV/CCFR by 1σ
- Charge asymmetry in a good agreement with charge-symmetric strange sea

W+charm production at LHC

• Cross check with LHC data for *W*+charm production

ATLAS

- ATLAS data in good agreement with NuTeV/CCFR
- Highest bin in η_l deviates

Comparision with earlier determinations

- ABM update (NuTeV/CCFR+NOMAD+CHORUS) in good agreement with CMS results
- ATLAS strange-sea in enhanced, but correlated with *d*-quark sea suppression (disagreement with the FNAL-E-866 data)
- Upper margin of ABM analysis (CHORUS+CMS+ATLAS) is lower than ATLAS

Summary

Parton distributions at the LHC

- Precision determinations of non-perturbative parameters is essential
 - parton content of proton (PDFs)
 - coupling constants $\alpha_s(M_Z)$
 - masses $m_c, m_b, m_t, M_W, m_H, \ldots$
- Precision measurements require careful definition of observable
 - confronting LHC data requires continuous benchmarking
 - source of interesting observations
- Radiative corrections at higher orders in QCD and EW are mandatory
 - NNLO in QCD is conditio sine qua non
 - theory improvements driven by experimental precision
- Lots of challenging tasks in the future ...