Finite top-mass effects for Higgs production with a jet-veto at NNLO

Marius Wiesemann

University of Zürich

LHCPhenoNet Final Meeting, Berlin (Germany) 24-26 November, 2014

Outline

1. Motivation

2. Outline of the calculation

- Higgs+jet at NLO
- Higgs with jet veto at NNLO

3. Results: Top-mass effects on

- jet vetoed cross section
- Higgs+jet cross section
- Higgs/jet distributions

Motivation

Top-mass effects on Higgs+n-jets

Motivation

M. Wiesemann (University of Zürich)

Motivation: $H \rightarrow WW^* \rightarrow 4I$ channel

production:

- top decays to hard b-jets
- possibility 1: b-tagging
- possibility 2: Jet-veto (simpler)

Inclusive cross section

NNLO:

[Harlander, Kilgore '02] [Anastasiou, Melnikov '02] [Ravindran, Smith, v. Neerven '03]

NNLO+Resummation:

[Catani, de Florian, Grazzini, Nason '02] [Ahrens, Becher, Neubert, Zhang '08]

Electroweak corrections:

[Djouadi, Gambino '94] [Aglietti, Bonciani, Degrassi, Vicini '04] [Degrassi, Maltoni '04] [Actis, Passarino, Sturm, Uccirati '08]

Mixed EW/QCD corrections: [Anastasiou, Boughezal, Petriello '09]

• even: first steps towards N³LO:

[Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger '14 '14] [Ball, Bonvini, Forte, Marzani, Ridolfi '13 '14] [Florian, Mazzitelli, Moch, Vogt '14]

Differential cross section:

H+jet NLO: [de Florian, Grazzini, Kunszt '99]

jet-veto NNLO(+NNLL): [Catani, de Florian, Grazzini '01] [Berger, Marcantonini, Stewart, Tackmann, Waalewijn '11] [Banfi, Monni, Salam, Zanderighi '12] [Becher, Neubert '12]

Fully differential NNLO: [Anastasiou, Melnikov, Petriello '04] [Catani, Grazzini '07]

- *p_T* resummation at NNLL: [Bozzi, Catani, de Florian, Grazzini '03 '05]
- H+jet NNLO (gg channel):

[Chen, Gehrmann, Glover, Jaquier '14]

Inclusive cross section

NNLO:

[Harlander, Kilgore '02] [Anastasiou, Melnikov '02] [Ravindran, Smith, v. Neerven '03]

NNLO+Resummation:

[Catani, de Florian, Grazzini, Nason '02] [Ahrens, Becher, Neubert, Zhang '09

Electroweak corrections

ean [Djouadi, Gambino '94] [Aglietti, Bonciapi Degrassi, M Actis, Passar (08] Uccirati

- Mixed EW/Q CD corrections: [Anastasiou, Boughezal, Petriello '09]
- even: first steps towards N³LO:

[Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger '14 '14] [Ball, Bonvini, Forte, Marzani, Ridolfi '13 '14] [Florian, Mazzitelli, Moch, Vogt '14]

Differential cross section:

- H+jet NLO: de Florian, Graz Kunszt '99] NNLL): jet-veto azzini '01] onini. Stewart. √Vaalewijn '11] ×0 Monni, Salam, Zanderighi '12] Becher, Neubert '12]
 - Fully differential NNLO: [Anastasiou, Melnikov, Petriello '04] [Catani, Grazzini '07]
 - ▶ p_T resummation at NNLL: [Bozzi, Catani, de Florian, Grazzini '03 '05]
 - H+jet NNLO (gg channel):

[Chen, Gehrmann, Glover, Jaquier '14]

Mass effects?

Top-mass effects

- considered to be small
- ▶ TRUE: <1% for NNLO corrections

[Harlander, Mantler, Marzani, Ozeren '10], [Pak, Rogal, Steinhauser '10]

- BUT: only inclusive!
- ▶ HERE: validation of $m_{\mathsf{top}} \to \infty$ for
 - Higgs+jet at NLO
 - Higgs with jet veto at NNLO
- METHOD: asymptotic expansion

 \rightarrow subleading terms in $1/m_{\rm top}^k$ expansion (k=0,2,4)

Outline of the calculation

Outline of the calculation

Outline of the calculation: Higgs+jet at NLO

• subleading $1/m_{top}^k$ terms in asymptotic expansion

[Harlander, Mantler, Marzani, Ozeren '10]

fully differential up to NLO

[Harlander, Neumann, Ozeren, MW '12]

dipole subtraction

[Catani, Seymour '97]

Outline of the calculation: Jet-veto at NNLO

▶ NNLO total cross section known up to $1/m_{top}^8$

[Harlander, Mantler, Marzani, Ozeren '10]

- combination with Higgs+jet \rightarrow jet-veto through NNLO:
 - cf. [Catani, de Florian, Grazzini '01]

$$\sigma^{\mathsf{veto}} = \sigma^{\mathsf{tot}} - \sigma[\mathsf{1-jet}] - \sigma[\mathsf{2-jet}]$$

- take σ^{tot} from ggh@nnlo and σ[n-jet] from Higgs+jet calculation [Harlander, Kilgore '02]
- implemented for $1/m_{top}^k$, k = 0, 2, 4
- ▶ jet definition: anti- k_T , R = 0.5, $p_{T,\min}^{\text{jet}} = 30 \text{ GeV}$

⇒ Setup allows to validate heavy-top limit for Higgs+*n*-jet with n = 0/1/2 at NNLO/NLO/LO

Checks

- ► 1/m^k_{top} total x-section (amplitudes) checked against [Pak, Rogal, Steinhauser '10]
- α -parameter independence of Higgs+jet

[Nagy, Trócsányi '00], [Nagy '03]

• agreement with existing codes for $m_{top} \rightarrow \infty$:

- HqT: analytical fixed order p_T distribution

[Bozzi, Catani, de Florian, Grazzini '03 '05]

HNNLO: jet-vetoed cross section

```
[Catani, Grazzini '07]
```

Checks

- ► 1/m^k_{top} total x-section (amplitudes) checked against [Pak, Rogal, Steinhauser '10]
- α -parameter independence of Higgs+jet

[Nagy, Trócsányi '00], [Nagy '03]

• agreement with existing codes for $m_{top} \rightarrow \infty$:

- HqT: analytical fixed order p_T distribution

[Bozzi, Catani, de Florian, Grazzini '03 '05]

HNNLO: jet-vetoed cross section

```
[Catani, Grazzini '07]
```

Jet-veto cut dependence at NLO:

[Neumann, MW '14]

Jet-veto cut dependence at NNLO:

[Neumann, MW '14]

Jet-veto cut dependence at NNLO:

[Neumann, MW '14]

 $\sigma^{\mathsf{veto}} = \sigma^{\mathsf{tot}} - \sigma[\mathsf{1-jet}] - \sigma[\mathsf{2-jet}]$

Minimal jet cut dependence at LO:

[Neumann, MW '14]

▶ observation: Higgs+jet and total integrated over problematic large-p_T region

▶ observation: Higgs+jet and total integrated over problematic large-p_T region

▶ solution for total: high-energy matching for $z \rightarrow \infty$ (known)

▶ observation: Higgs+jet and total integrated over problematic large-p_T region

- ▶ solution for total: high-energy matching for $z \to \infty$ (known)
- Higgs+jet: similar matching for $p_T \rightarrow \infty$ (not known)
- assume it was known, then:

$$[\sigma_{LO}^{\rm H+jet,matched}]_{1/m_{\rm top}^k} - [\sigma_{LO}^{\rm H+jet}]_{1/m_{\rm top}^k} = [\sigma_{NLO}^{\rm tot,matched}]_{1/m_{\rm top}^k} - [\sigma_{NLO}^{\rm tot}]_{1/m_{\rm top}^k}$$

 \Rightarrow define matched Higgs+jet cross section:

$$[\sigma_{LO}^{\mathrm{H+jet,matched}}]_{1/m_{\mathrm{top}}^{k}} = [\sigma_{LO}^{\mathrm{H+jet}}]_{1/m_{\mathrm{top}}^{k}} - [\sigma_{NLO}^{\mathrm{tot}}]_{1/m_{\mathrm{top}}^{k}} + [\sigma_{NLO}^{\mathrm{tot,matched}}]_{1/m_{\mathrm{top}}^{k}}$$

 $[\sigma]_{1/m_{ ext{top}}^k} \stackrel{\frown}{=} ext{cross section truncated at } 1/m_{ ext{top}}^k$

- problematic effects canceled between 1. and 2. term on r.h.s.
- same possible at NLO with NNLO total cross section
 - ightarrow reliable prediction through well-behaved $1/m_{
 m top}$ expansion?

Minimal jet cut dependence at LO:

[Neumann, MW '14]

$$[\sigma_{LO}^{\mathrm{H+jet,matched}}]_{1/m_{\mathrm{top}}^k} = [\sigma_{LO}^{\mathrm{H+jet}}]_{1/m_{\mathrm{top}}^k} - [\sigma_{NLO}^{\mathrm{tot}}]_{1/m_{\mathrm{top}}^k} + [\sigma_{NLO}^{\mathrm{tot,matched}}]_{1/m_{\mathrm{top}}^k}$$

Minimal jet cut dependence at LO:

Minimal jet cut dependence at NLO:

[Neumann, MW '14]

$$[\sigma_{\textit{NLO}}^{\text{H+jet,matched}}]_{1/\textit{m}_{\text{top}}^k} = [\sigma_{\textit{NLO}}^{\text{H+jet}}]_{1/\textit{m}_{\text{top}}^k} - [\sigma_{\textit{NNLO}}^{\text{tot}}]_{1/\textit{m}_{\text{top}}^k} + [\sigma_{\textit{NNLO}}^{\text{tot,matched}}]_{1/\textit{m}_{\text{top}}^k}$$

Minimal jet cut dependence at NLO:

[Neumann, MW '14]

$$[\sigma_{\textit{NLO}}^{\text{H+jet,matched}}]_{1/\textit{m}_{\text{top}}^k} = [\sigma_{\textit{NLO}}^{\text{H+jet}}]_{1/\textit{m}_{\text{top}}^k} - [\sigma_{\textit{NNLO}}^{\text{tot}}]_{1/\textit{m}_{\text{top}}^k} + [\sigma_{\textit{NNLO}}^{\text{tot,matched}}]_{1/\textit{m}_{\text{top}}^k}$$

reweighted by exact top-mass dependence at born-level!

M. Wiesemann (University of Zürich)

Results: distributions

Results: hardest jet distribution

Transverse momentum dependent K-factor:

$$K = d\sigma^{\rm NLO}/d\sigma^{\rm LO}$$

Results: hardest jet distribution

Results: Higgs distribution

Transverse momentum dependent K-factor:

[Harlander, Neumann, Ozeren, MW '12], Neumann, MW '14]

Results: Higgs distribution

Transverse momentum dependent K-factor:

[Harlander, Neumann, Ozeren, MW '12], Neumann, MW '14]

Conclusions

- Subleading terms in $1/m_{top}$ for
 - Jet-veto at NNLO
 - Higgs+jet at NLO
 - Higgs and hardest jet distributions
- Jet-veto remarkably well described by heavy-top limit
- ▶ $1/m_{top}$ expansion not well behaved for Higgs+jet
- Definition of matched Higgs+jet rate \Rightarrow reliable prediction
- ▶ Top-mass effects at NLO found to be small then $(p_{T,\min}^{\text{jet}} \lesssim 100 \,\text{GeV})$
- Heavy-top limit valid for distributions ($p_T \lesssim 150 \, {\rm GeV}$)

BackUp

Higgs mass dependence at NLO:

[Neumann, MW '14]

Higgs mass dependence at NNLO:

Higgs mass dependence at NNLO:

Other approximations:

$$\begin{split} \sigma^{\text{veto}} &= \sigma_{\text{NLO}}^{\text{veto}} + \kappa_i \cdot \left([\sigma_{\text{NNLO}}^{\text{veto}}]_{1/m_{\text{top}}^k} - [\sigma_{\text{NLO}}^{\text{veto}}]_{1/m_{\text{top}}^k} \right) \\ \kappa_0 &= 1, \ \kappa_1 = \sigma_{\text{LO}}^{\text{veto}} / [\sigma_{\text{LO}}^{\text{veto}}]_{1/m_{\text{top}}^k}, \ \kappa_2 = \sigma_{\text{NLO}}^{\text{veto}} / [\sigma_{\text{NLO}}^{\text{veto}}]_{1/m_{\text{top}}^k} \end{split}$$

Other approximations:

$$\begin{split} \sigma^{\text{veto}} &= \sigma_{\text{NLO}}^{\text{veto}} + \kappa_i \cdot \left([\sigma_{\text{NNLO}}^{\text{veto}}]_{1/m_{\text{top}}^k} - [\sigma_{\text{NLO}}^{\text{veto}}]_{1/m_{\text{top}}^k} \right) \\ \kappa_0 &= 1, \ \kappa_1 = \sigma_{\text{LO}}^{\text{veto}} / [\sigma_{\text{LO}}^{\text{veto}}]_{1/m_{\text{top}}^k}, \ \kappa_2 = \sigma_{\text{NLO}}^{\text{veto}} / [\sigma_{\text{NLO}}^{\text{veto}}]_{1/m_{\text{top}}^k} \end{split}$$

