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Motivation

• Since the discovery of the Higgs boson 
candidate at the LHC, lots of efforts have 
been put into the determination of its 
properties and couplings	


• Non-SM effects can lead to deviations in 
the coupling strengths 	


• No deviation observed so-far, substantial 
improvements in exp accuracy expected 
for LHC run II
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ATLAS-

Need for accurate predictions!
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The top Yukawa coupling

• One crucial parameter to be measured is the 
top Yukawa	


• It can be extracted looking at Higgs production 
in ggF (indirectly) and in ttH (directly)	


• Expected to be measured at 15 (10%) at 
300(3000) fb-1
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State-of-the-art predictions	

for Higgs production at the LHC	


(circa June 2014)

4

rather poor accuracy for ttH compared to other production channels 
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• Electroweak corrections known for all 
Higgs production channels but ttH	

• ggH: Djouadi, Gambino, hep-ph/9406432, Degrassi, Maltoni, 

hep-ph/0407249, Aglietti, Bonciani, Degrassi, Vicini, hep-ph/
0610033, Actis, Passarino, Sturm, Uccirati, arXiv:0809.1301	


• VBF: Ciccolini, Denner, Dittmaier, arXiv:0707.0381 & 
0710.4749	


• VH: Ciccolini, Dittmaier, Kramer, hep-ph/0306234

State-of-the-art predictions	

for Higgs production at the LHC	


(circa June 2014)

4

rather poor accuracy for ttH compared to other production channels 
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Weak corrections to ttH

• Computation of corrections of weak origin to ttH 	

• Why only weak?	

• Lazy guy motivation: Weak corrections are simpler than full EW 

corrections, particularly for IR singularities	

• Learning guy motivation: use weak corrections to learn about how 

to compute full EW corrections (and how to automate them)	

• Pheno motivation I: Weak corrections are supposed to be the 

dominant part of full EW: they contain Sudakov logs 	

• Pheno motivation II: Weak corrections spoil the yt2 dependence of 

the cross-section, intro ducting dependence on ghvv, λhhh
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MadGraph5_aMC@NLO 

MadGraph

 MC@NLOCutTools

FKS 

Alwall, Frederix, Frixione, Maltoni, Mattelaer, Shao, Stelzer, Torrielli, Hirschi, MZ arXiv:1405.0301

MadGraph5_aMC@NLO
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Structure of EW corrections:	

1) coupling orders
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Process O(A) O(Σ)

gg → tt̄H α1
sα

1/2 α2
sα

1

qq̄ → tt̄H, q ̸= b α1
sα

1/2, α3/2 α2
sα

1, α3

qq̄ → tt̄H, q = b α1
sα

1/2, α3/2 α2
sα

1, α1
sα

2, α3

Table 1: Born-level partonic processes relevant to tt̄H production. For each of them,

we report the coupling-constant factors in front of the non-null contributions, both at the

amplitude (middle column) and at the amplitude squared (rightmost column) level.

Figure 1: Representative O(α1
sα

1/2) Born-level diagrams.

Figure 2: Representative O(α3/2) Born-level diagrams.

tt̄H production, k = 3 at the LO (eq. (2.1)) and k = 4 at the NLO (eq. (2.2)). This

immediately shows that it is also convenient to write Σk,q ≡ Σk0+p,q, with p ≥ 0, for

the NpLO coefficients; k0 is then a fixed, process-specific integer associated with the Born

cross section, equal to 3 in tt̄H production. The integer q identifies the various terms of

eqs. (2.1) and (2.2). We have conventionally chosen to associate increasing values of q with

Σk0+p,q coefficients (at fixed p) which are increasingly suppressed in terms of the hierarchy

of the coupling constants, α ≪ αS. Thus, q = 0 corresponds to the coefficient with the

largest (smallest) power of αS (α), and conversely for q = qmax. This maximum value

qmax that can be assumed by q is process- and perturbative-order-dependent, and it grows

with the number of amplitudes that interfere and that factorise different coupling-constant

combinations; in the case of tt̄H production at the LO, this can be seen by comparing the

two rightmost columns of table 1.

We propose that the coefficient Σk0+p,q be called the leading (when q = 0), or the

(q + 1)th-leading (when q ≥ 1, i.e. second-leading, third-leading, and so forth), term of the

– 4 –
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QCD EW
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Born B0 = O(α1
sα

1/2) B1 = O(α3/2)

QCD
Virtual VQCD,0 = O(α2

sα
1/2) VQCD,1 = O(α1

sα
3/2)

Real RQCD,0 = O(α3/2
s α1/2) RQCD,1 = O(α1/2

s α3/2)

EW
Virtual VEW,0 = O(α1

sα
3/2) VEW,1 = O(α5/2)

Real REW,0 = O(α1
sα

1) REW,1 = O(α2)

Table 2: Coupling-constant factors relevant to Born, one-loop, and real-emission ampli-

tudes; see the text for more details.

in the context of a mixed QCD-EW expansion, the virtual or final-state particle mentioned

before must be chosen in a set larger than the one relevant to a single-coupling series. In

particular, for the case of tt̄H production with stable top quarks and Higgs, such a set is:
{

g, q, t, Z,W±,H, γ
}

, (2.5)

where the light quark q may also be a b quark, and the top quark enters only one-loop

contributions. In the case of such contributions, the particles in the set of eq. (2.5) are fully

analogous to the L-cut particles (see sect. 3.2.1 of ref. [50]), and we understand ghosts and

Goldstone bosons. When the extra particle added to the Born diagram (be it virtual or real)

is strongly interacting, it is then natural to classify the resulting one-loop or real-emission

diagram as a QCD-type contribution, and a EW-type contribution otherwise2. The idea

of this amplitude-level classification is that QCD-type and EW-type contributions will

generally lead to QCD and EW corrections at the amplitude-squared level, respectively.

However, this correspondence, in spite of being intuitively appealing, is not exact, as we

shall show in the following; this is one of the reasons why “QCD corrections” and “EW

corrections” must not be interpreted literally. The classification just introduced is used in

table 2: for a given Born-level amplitude Bi associated with a definite coupling-constant

factor, the corresponding one-loop and real-emission quantities are denoted by VQCD,i and

RQCD,i in the case of QCD-type contributions, and by VEW,i and REW,i in the case of EW-

type contributions. We can finally consider all possible combinations Bi·V∗,j, RQCD,i·RQCD,j,

and REW,i ·REW,j and associate them with the relevant amplitude-squared quantities Σ4,q.

Note that one must not consider the RQCD,i · REW,j combinations, owing to the fact that

the two amplitudes here are relevant to different final states3.

We now observe that this bottom-up construction leads to redundant results. Here,

the case in point is that of VQCD,1 and VEW,0: the one-loop diagram (which enters VQCD,1)

obtained by exchanging a gluon between the q̄ and t̄ legs of the diagram to the left of fig. 2

is the same diagram as that (which enters VEW,0) obtained by exchanging a Z between the

q and intermediate-t legs of the diagram to the right of fig. 1. This fact does not pose any

2An alternative classification (equivalent to that used here when restricted to tt̄H production and to pro-

cesses of similar characteristics, but otherwise more general) is one that determines the type of contribution

according to the nature of the vertex involved.
3For generic processes, this is not necessarily the case, the typical situation being that where some

massless particles in the set of eq. (2.5) are present at the Born level.
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Table 2: Coupling-constant factors relevant to Born, one-loop, and real-emission ampli-

tudes; see the text for more details.

in the context of a mixed QCD-EW expansion, the virtual or final-state particle mentioned

before must be chosen in a set larger than the one relevant to a single-coupling series. In

particular, for the case of tt̄H production with stable top quarks and Higgs, such a set is:
{

g, q, t, Z,W±,H, γ
}

, (2.5)

where the light quark q may also be a b quark, and the top quark enters only one-loop

contributions. In the case of such contributions, the particles in the set of eq. (2.5) are fully

analogous to the L-cut particles (see sect. 3.2.1 of ref. [50]), and we understand ghosts and

Goldstone bosons. When the extra particle added to the Born diagram (be it virtual or real)

is strongly interacting, it is then natural to classify the resulting one-loop or real-emission

diagram as a QCD-type contribution, and a EW-type contribution otherwise2. The idea

of this amplitude-level classification is that QCD-type and EW-type contributions will

generally lead to QCD and EW corrections at the amplitude-squared level, respectively.

However, this correspondence, in spite of being intuitively appealing, is not exact, as we

shall show in the following; this is one of the reasons why “QCD corrections” and “EW

corrections” must not be interpreted literally. The classification just introduced is used in

table 2: for a given Born-level amplitude Bi associated with a definite coupling-constant

factor, the corresponding one-loop and real-emission quantities are denoted by VQCD,i and

RQCD,i in the case of QCD-type contributions, and by VEW,i and REW,i in the case of EW-

type contributions. We can finally consider all possible combinations Bi·V∗,j, RQCD,i·RQCD,j,
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Note that one must not consider the RQCD,i · REW,j combinations, owing to the fact that
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We now observe that this bottom-up construction leads to redundant results. Here,

the case in point is that of VQCD,1 and VEW,0: the one-loop diagram (which enters VQCD,1)
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2An alternative classification (equivalent to that used here when restricted to tt̄H production and to pro-

cesses of similar characteristics, but otherwise more general) is one that determines the type of contribution

according to the nature of the vertex involved.
3For generic processes, this is not necessarily the case, the typical situation being that where some

massless particles in the set of eq. (2.5) are present at the Born level.
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These definitions correspond to the arrows that appear in fig. 3: from right to left for QCD

corrections, and from left to right for EW corrections. We point out that this terminology

is consistent with that typically used in the literature. It only becomes misleading when

it is also applied to the coefficients Σk0+1,q, because this is equivalent to giving the same

name to two different classes of objects in fig. 3: the blobs and the arrows. If the roles of

these two classes are kept distinct, no ambiguity is possible. Consider, for example, the

coefficient Σ4,1 in which we are interested here: it is the second-leading NLO term, which

receives contributions both from the EW corrections to the leading Born term Σ3,0, and

from the QCD corrections to the second-leading Born term Σ3,1.

We note that the discussion given above explains why there is no ambiguity when

one works in a single-coupling perturbative expansion. In the case of QCD, for example,

the only relevant quantities of fig. 3 are the two leftmost blobs (one for each row), and

the leftmost arrow. There is thus a one-to-one correspondence between the arrow and the

leftmost blob in the lower row: therefore, no confusion arises even if one calls the latter

(the leading NLO correction) with the name of the former (the QCD corrections), which is

what is usually done. The case of the single-coupling EW expansion is totally analogous,

and applies to the quantities that in fig. 3 are to the extreme right (namely, Σ3,2, Σ4,3, and

the rightmost left-to-right arrow. Note that Σ4,1 is not involved).

Figure 4: Representative O(α1
sα

3/2) one-loop diagrams for the gg channel.

We would like now to elaborate further on the keywords “QCD corrections” and “EW

corrections”, stressing again the fact that they do not have any deep physical meaning,

but may be useful in that they are intuitive, and can be given an operational sense. The

best way to do so is that of a constructive bottom-up approach that starts at the level

of amplitudes (we note that eqs. (2.3) and (2.4) are at the level of amplitude squared)

in order to figure out which contributions each of the coefficients Σ4,q receives. While

doing so, one needs to bear in mind that, at the NLO, there are two classes of such

contributions: those due to real-emission amplitudes (eventually squared), and those due

to one-loop amplitudes (eventually contracted with Born amplitudes). Since here we are

solely interested in figuring out the general characteristics of the contributions to any given

Σ4,q (as opposed to performing a complete and explicit computation, which is rather done

automatically), the easiest procedure is that of taking representative Born-level diagrams,

such as those of figs. 1 and 2, and turn them either into one-loop graphs through the

insertion of a virtual particle, or into real-emission graphs by emitting one further final-

state particle. It is clear that in general it is not possible to obtain all one-loop and real-

emission Feynman diagrams in this way (see e.g. the second and third graphs in fig. 4), but

this is irrelevant for the sake of the present exercise. What is of crucial importance is that,
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• Setup:	

• Weak corrections computed in the 

𝛂(MZ)-scheme (G𝜇 also available)	


• mh=125 GeV, mt=173.3 GeV	

• MSTW 2008 NLO pdfs	

• Ren/Fact scales set to 	


!
!

• QCD scale variations computed with

and adopted the MSTWnlo2008 [68] PDFs with the associated αS(mZ) for all NLO as

well as LO predictions (since we are chiefly interested in assessing effects of matrix-element

origin). In our default α(mZ)-scheme, the EW coupling constant is [69]:

1

α(mZ)
= 128.93 . (3.2)

The central values of the renormalisation (µR) and factorisation (µF ) scales have been taken

equal to the reference scale:

µ =
HT

2
≡

1

2

∑

i

√

m2
i + p2T (i) , (3.3)

where the sum runs over all final-state particles. The theoretical uncertainties due to the

µR and µF dependencies that affect the coefficient Σ4,0 have been evaluated by varying

these scales independently in the range:

1

2
µ ≤ µR, µF ≤ 2µ , (3.4)

and by keeping the value of α fixed. The calculation of this theory systematics does not

entail any independent runs, being performed through the reweighting technique introduced

in ref. [70], which is fully automated in MadGraph5 aMC@NLO. All the input parameters

not explicitly mentioned here have been set equal to their PDG values [71].

We shall consider two scenarios: one where no final-state cuts are applied (i.e. fully

inclusive), and a “boosted” one, generally helpful to reduce the contamination of light-Higgs

signals due to background processes [72,73], where the following cuts

pT (t) ≥ 200 GeV , pT (t̄) ≥ 200 GeV , pT (H) ≥ 200 GeV , (3.5)

are imposed; since these emphasise the role of the high-pT regions, the idea is that of

checking whether weak effects will have a bigger impact there than in the whole of the

phase space. We shall report in sect. 3.1 our predictions for total rates, for the three

collider c.m. energies and in both the fully inclusive and the boosted scenario. In sect. 3.2

several differential distributions will be shown, at a c.m. of 13 TeV with and without the

cuts of eq. (3.5), and at a c.m. of 100 TeV in the fully-inclusive case only.

Throughout this section, we shall make use of the shorthand notation introduced at

the end of sect. 2 – see in particular table 4.

3.1 Inclusive rates

In this section we present our predictions for inclusive rates, possibly within the cuts of

eq. (3.5). As was already stressed, the results for the LO and NLO QCD contributions are

computed in the same way as has been done previously with MadGraph5 aMC@NLO or

its predecessor aMC@NLO in refs. [21,44]. There are small numerical differences (O(3%))

with ref. [44], which are almost entirely due to the choice of the value of α, and to a very

minor extent to that of mt. As far as ref. [21] is concerned, different choices had been made

there for the top and Higgs masses, and for the reference scale.
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• Ren/Fact scales set to 	


!
!

• QCD scale variations computed with

and adopted the MSTWnlo2008 [68] PDFs with the associated αS(mZ) for all NLO as

well as LO predictions (since we are chiefly interested in assessing effects of matrix-element

origin). In our default α(mZ)-scheme, the EW coupling constant is [69]:

1

α(mZ)
= 128.93 . (3.2)

The central values of the renormalisation (µR) and factorisation (µF ) scales have been taken

equal to the reference scale:

µ =
HT

2
≡

1

2

∑

i

√

m2
i + p2T (i) , (3.3)

where the sum runs over all final-state particles. The theoretical uncertainties due to the

µR and µF dependencies that affect the coefficient Σ4,0 have been evaluated by varying

these scales independently in the range:

1

2
µ ≤ µR, µF ≤ 2µ , (3.4)

and by keeping the value of α fixed. The calculation of this theory systematics does not

entail any independent runs, being performed through the reweighting technique introduced

in ref. [70], which is fully automated in MadGraph5 aMC@NLO. All the input parameters

not explicitly mentioned here have been set equal to their PDG values [71].

We shall consider two scenarios: one where no final-state cuts are applied (i.e. fully

inclusive), and a “boosted” one, generally helpful to reduce the contamination of light-Higgs

signals due to background processes [72,73], where the following cuts

pT (t) ≥ 200 GeV , pT (t̄) ≥ 200 GeV , pT (H) ≥ 200 GeV , (3.5)

are imposed; since these emphasise the role of the high-pT regions, the idea is that of

checking whether weak effects will have a bigger impact there than in the whole of the

phase space. We shall report in sect. 3.1 our predictions for total rates, for the three

collider c.m. energies and in both the fully inclusive and the boosted scenario. In sect. 3.2

several differential distributions will be shown, at a c.m. of 13 TeV with and without the

cuts of eq. (3.5), and at a c.m. of 100 TeV in the fully-inclusive case only.

Throughout this section, we shall make use of the shorthand notation introduced at

the end of sect. 2 – see in particular table 4.

3.1 Inclusive rates

In this section we present our predictions for inclusive rates, possibly within the cuts of

eq. (3.5). As was already stressed, the results for the LO and NLO QCD contributions are

computed in the same way as has been done previously with MadGraph5 aMC@NLO or

its predecessor aMC@NLO in refs. [21,44]. There are small numerical differences (O(3%))

with ref. [44], which are almost entirely due to the choice of the value of α, and to a very

minor extent to that of mt. As far as ref. [21] is concerned, different choices had been made

there for the top and Higgs masses, and for the reference scale.
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!

• Cuts:	

• Inclusive cross-section  

(no cuts)	

• Boosted analysis	

• S/B enhanced in boosted 

regimes Plehn, Salam, Spannowsky, arXiv:0910.5472	


• Apply boosted cuts	

!

• Sudakov logs relevant in 
boosted region

pT (t, t̄, H) > 200GeV
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Inclusive rates

10

σ(pb) 8 TeV 13 TeV 100 TeV

LO 1.001·10−1(2.444·10−3) 3.668·10−1(1.385·10−2) 24.01(2.307)

NLO QCD 2.56·10−2(4.80 · 10−4) 1.076·10−1(3.31 · 10−3) 9.69(0.902)

NLO weak −1.22·10−3(−2.04 · 10−4) −6.54·10−3(−1.14 · 10−3) −0.712(−0.181)

Table 5: LO, NLO QCD, and NLO weak contributions to the total rate (in pb), for three

different collider energies. The results in parentheses are relevant to the boosted scenario,

eq. (3.5).

δNLO(%) 8 TeV 13 TeV 100 TeV

QCD +25.6+6.2
−11.8 (+19.6+3.7

−11.0) +29.3+7.4
−11.6 (+23.9+5.4

−11.2) +40.4+9.9
−11.6 (+39.1+9.7

−10.4)

weak −1.2 (−8.3) −1.8 (−8.2) −3.0 (−7.8)

Table 6: NLO QCD and weak contributions, as fractions of the corresponding LO cross

section. The results in parentheses are relevant to the boosted scenario, eq. (3.5). In the

case of QCD, the results of scale variations are also shown.

The predicted rates (in pb) are given in table 5; the values outside parentheses are

the fully-inclusive ones, while those in parentheses are relevant to the boosted scenario;

in both cases, the NLO QCD contributions are sizable and positive. As far as the NLO

weak contributions are concerned, they are negative and in absolute value rather small in

the fully inclusive case, although their relative impact w.r.t. that of QCD tends to increase

with the collider energy. This picture is reversed (i.e. the impact slightly decreases) in the

boosted scenario5, where on the other hand the absolute values of the weak contributions

are non-negligible. These features can be understood more directly by looking at the NLO

contributions as fractions6 of the corresponding LO cross section; they are reported in this

form in table 6. In that table, the entries of the first (second) row are the ratios of the

entries in the second (third) row over those in the first row of table 5. One sees that the

QCD contributions increase the LO cross sections by 25%(20%) to 40%, while the weak

ones decrease it by 1% to 3% in the fully-inclusive case, and by 8% when the cuts of eq. (3.5)

are applied. In the first row of table 6 we also report (by using the usual “error” notation)

the fractional scale uncertainty that affects the LO+NLO QCD rates. This is computed

by taking the envelope of the cross sections that result from the scale variations as given in

eq. (3.4), and by dividing it by the LO predictions obtained with central scales. Note that

this is not the usual way of presenting the scale systematics (which entails using the central

LO+NLO prediction as a reference), and thus the results of table 6 might seem, at the

first glance, to be larger than those reported in ref. [44], but are in fact perfectly consistent

5Having said that, we also remark that the cuts of eq. (3.5) are imposed irrespective of the collider

energy. By increasing the c.m. energy, one would have to increase the required minimal pT ’s in order to

have similarly boosted configurations.
6The statistics we have employed in the computation of the cross sections is such that the typical error

affecting such fractions, in the present and forthcoming tables, is of the order of 0.1%.
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δHBR(%) 8 TeV 13 TeV 100 TeV

W +0.42(+0.74) +0.37(+0.70) +0.14(+0.22)

Z +0.29(+0.56) +0.34(+0.68) +0.51(+0.95)

H +0.17(+0.43) +0.19(+0.48) +0.25(+0.53)

sum +0.88(+1.73) +0.90(+1.86) +0.90(+1.70)

Table 8: Contributions due to W, Z, and H radiation, as fractions of the corresponding

LO cross section. The results in parentheses are relevant to the boosted scenario, eq. (3.5).

cross sections grow faster than the LO ones (being 0.9% of the latter in the fully-inclusive

case, and 1.7% in the boosted one), their growth is slower than that of their NLO-weak

counterparts. Both contributions feature Sudakov logarithms, but we point out that the

overall scaling behaviour in hadronic collisions is determined, among other things, by the

complicated interplay between that of the matrix elements, and the parton luminosities;

the latter are not the same in the case of the NLO-weak and HBR contributions. This

has several consequences. For example, we note that the relative individual contributions

to the HBR cross sections behave differently with the collider energy: the W -emission

contribution decreases, while the Z- and H-emission ones increase, owing to the presence

of gg-initiated partonic processes. Furthermore, the growth of PDFs at small x’s implies

that processes are closer to threshold than the collider energy would naively imply, and thus

the phase-space suppression due to the presence of an extra massive particle in the HBR

processes is not negligible. Finally, this mass effect also implies that the Bjorken x’s relevant

to HBR are slightly larger than those relevant to the NLO-weak contributions, and are thus

associated on average with slightly smaller luminosity factors. As was already discussed

in sect. 2.1, the results of table 8 are an upper bound for the HBR contributions when

these are subject to extra boson-tagging conditions, which have not been considered here.

On the other hand, nothing prevents one from defining the tt̄H cross section inclusively

in any extra weak-boson radiation; given the opposite signs of the NLO-weak and HBR

cross sections, this may possibly be beneficial (for example, if constraining or measuring

λtt̄H). Such a definition is fully consistent with perturbation theory, since both HBR and

NLO-weak contributions are of O(α2
sα

2).

All the results presented so far have been obtained in the α(mZ) scheme. It is therefore

interesting to check what happens by considering the Gµ scheme, which entails a different

renormalisation procedure and different inputs. In such a scheme we have (at the LO):

1

α
= 132.23 . (3.6)

The LO results are presented in the first row of table 9; the second row displays the relative

difference w.r.t. their α(mZ)-counterparts of table 5:

∆
Gµ

LO =
LO− LOGµ

LO
. (3.7)
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δNLO(%) 8 TeV 13 TeV 100 TeV

gg −0.67 (−2.9) −1.12 (−4.0) −2.64 (−6.8)
uū −0.01 (−3.2) −0.15 (−2.3) −0.10 (−0.5)
dd̄ −0.55 (−2.2) −0.52 (−1.9) −0.23 (−0.5)
ug +0.03 (+0.02) +0.03 (+0.01) +0.01 (< 0.01)

dg −0.02 (−0.01) −0.02 (−0.01) −0.01 (> −0.01)

Table 7: Breakdowns per partonic channel of the results of table 6 for the NLO weak

contributions. The results in parentheses are relevant to the boosted scenario, eq. (3.5).

By u and d we understand c and s as well, respectively. By ug and dg we understand ūg

and d̄g as well, respectively.

with those. Our choice here is motivated by the fact that, by using the LO cross sections

as references, we can compare NLO QCD and weak effects on a similar footing. The main

message of table 6 is, then, that in the fully inclusive case the weak contributions are

entirely negligible in view of the scale uncertainties that affect the numerically-dominant

LO+NLO QCD cross sections. On the other hand, in the boosted scenario they become

comparable with the latter, and they must thus be taken into account. This feature will

also be evident when differential distributions will be considered (see sect. 3.2).

The impacts of the individual partonic channels on the NLO weak contributions are

reported in table 7, still as fractions of the LO cross sections – hence, the sum of all the

entries in a given column of table 7 is equal to the entry in the same column and in the last

row of table 6. We point out that this breakdown into individual partonic contributions,

which is rather commonly shown in the context of EW calculations, is unambiguous because

QCD-induced singularities are only of soft type (see sect. 2.1), and thus real-emission matrix

elements and their associated Born-like counterparts have the same initial-state partons.

From table 7 we see, as is expected, that the dominance of the gg channel, which is moderate

at 8 TeV, rapidly increases with the collider c.m. energy. This trend is mitigated when the

cuts of eq. (3.5) are applied, to the extent that, at the LHC, the uū + dd̄ cross section is

larger than or comparable to the gg one: the boosted scenario forces the Bjorken x’s to

assume larger values, where the quark densities are of similar size as that of the gluon.

We now turn to considering the contributions due to processes that feature an extra

weak boson in the final state, on top of the Higgs which is present by definition; we remind

the reader that these contributions have been denoted by HBR (see table 4). The relevant

results are shown in table 8, as fractions of the corresponding LO cross section; hence, they

are directly comparable to the last row of table 6. Note that, in the case of the tt̄HH

final state, a kinematic configuration contributes to the boosted scenario provided that the

Higgs-pT cut of eq. (3.5) is satisfied for at least one of the two Higgses. From tables 8 and 6,

one sees that the HBR and NLO weak contributions, in the case of the fully-inclusive cross

sections, tend to cancel each other to a good extent: at the 75%, 50%, and 30% level at 8,

13 and 100 TeV respectively. This is not true in the boosted scenario: although the HBR
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NLO corrections (boosted regime in brackets)

Heavy boson radiation

Corrections per partonic subchannel

• Weak corrections are quite small, 
but can become important in 
boosted kinematics	


• HBR compensates Sudakov logs 
only partially 	

• differences in PS and PDFs	

• Final state not a EW singlet  

Manohar, Shotwell, Bauer, Turczyk, arXiv:1409.1918
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Differential distributions
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table 8, respectively.

Further details on the NLO weak and HBR results relevant to figs. 5 and 6 are given

in figs. 7 and 8, respectively. The main frames display the cross sections, and in the

case of the NLO weak contributions the individual results for the three dominant partonic

channels (namely, gg, dd̄, and uū) are also shown. The lower insets contain the same

information, but in the form of fractions over the relevant LO cross sections; these are thus

the differential analogues of tables 7 and 8.

As far as QCD and weak effects are concerned, figs. 5 and 6 show rather similar

patterns. NLO QCD contributions are dominant everywhere in the phase space, and their

size increase with the collider energy in a manner which is, in the first approximation, rather

independent of the observable or the range considered (however, a closer inspection reveals

some minor differences in the shapes of the relative contributions to several observables). In

other words, there is no single phase-space region associated with the growth with energy

of the relative NLO QCD contribution observed in table 6. At a given collider energy,

the NLO QCD K factors are generally not flat, with the exception of y(t) and, to a good

extent, of ∆y(tt̄,H) at 100 TeV; the K factors also tend to flatten out at large transverse

momenta or invariant masses. The case of NLO weak effects is interesting because they

become significant only in certain regions of the phase space (we remind the reader that

we are discussing here the analogue of the fully inclusive case of sect. 3.1, for which at the

level of rates weak contributions are smaller than QCD scale uncertainties, as documented

by the entries not included in round brackets in table 6). In particular, the histograms

that include the NLO weak contributions lie at the lower end of the QCD scale-uncertainty

band at large pT (H), pT (t), and (to a somewhat lesser extent) ∆y(tt̄,H). Weak effects

induce therefore a significant distortion of the spectra in those regions, and cannot be

neglected. The above regions are rather directly related with those relevant to the boosted

scenario; it is therefore consistent with the behaviour of the rates within the cuts of eq. (3.5)

shown in table 6 that we observe that the relative importance of NLO weak vs NLO QCD

contributions is greater at 13 TeV than at 100 TeV.

One has to keep in mind that the impact of the NLO weak effects discussed above can

be partly compensated by that of the HBR contributions, since the relative importance of

the latter tends to increase (in absolute value) in the same regions where the NLO weak

corrections are most significant, at both 13 and 100 TeV, as shown by the insets of figs. 7

and 8. From these figures, we also see the differential counterpart of table 7: at 13 TeV,

the interplay of the gg with the dd̄ and uū channels is involved, while at 100 TeV one is

dominated everywhere in the phase space by the gg-initiated process.

We conclude this section by presenting in fig. 9 the results for our six reference differen-

tial distributions obtained by imposing the cuts of eq. (3.5). As expected, the effect of such

cuts is that of further enhancing the impact of the NLO weak contributions, which become

competitive with the QCD ones, and non-negligible even close to the pT thresholds (com-

pare e.g. the insets of the upper two panels of figs. 5 and 9). Note that this conclusion is

not modified when the HBR contributions are taken into account, as was already observed

for the predictions of the total rates. We finally comment on a few visible features that

appear in the differential pT (t), pT (tt̄), and M(tt̄H) distributions in the boosted scenario.
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band at large pT (H), pT (t), and (to a somewhat lesser extent) ∆y(tt̄,H). Weak effects

induce therefore a significant distortion of the spectra in those regions, and cannot be

neglected. The above regions are rather directly related with those relevant to the boosted

scenario; it is therefore consistent with the behaviour of the rates within the cuts of eq. (3.5)

shown in table 6 that we observe that the relative importance of NLO weak vs NLO QCD

contributions is greater at 13 TeV than at 100 TeV.

One has to keep in mind that the impact of the NLO weak effects discussed above can

be partly compensated by that of the HBR contributions, since the relative importance of

the latter tends to increase (in absolute value) in the same regions where the NLO weak

corrections are most significant, at both 13 and 100 TeV, as shown by the insets of figs. 7

and 8. From these figures, we also see the differential counterpart of table 7: at 13 TeV,

the interplay of the gg with the dd̄ and uū channels is involved, while at 100 TeV one is

dominated everywhere in the phase space by the gg-initiated process.

We conclude this section by presenting in fig. 9 the results for our six reference differen-

tial distributions obtained by imposing the cuts of eq. (3.5). As expected, the effect of such

cuts is that of further enhancing the impact of the NLO weak contributions, which become

competitive with the QCD ones, and non-negligible even close to the pT thresholds (com-

pare e.g. the insets of the upper two panels of figs. 5 and 9). Note that this conclusion is

not modified when the HBR contributions are taken into account, as was already observed

for the predictions of the total rates. We finally comment on a few visible features that

appear in the differential pT (t), pT (tt̄), and M(tt̄H) distributions in the boosted scenario.
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Further details on the NLO weak and HBR results relevant to figs. 5 and 6 are given

in figs. 7 and 8, respectively. The main frames display the cross sections, and in the

case of the NLO weak contributions the individual results for the three dominant partonic

channels (namely, gg, dd̄, and uū) are also shown. The lower insets contain the same

information, but in the form of fractions over the relevant LO cross sections; these are thus

the differential analogues of tables 7 and 8.

As far as QCD and weak effects are concerned, figs. 5 and 6 show rather similar

patterns. NLO QCD contributions are dominant everywhere in the phase space, and their

size increase with the collider energy in a manner which is, in the first approximation, rather

independent of the observable or the range considered (however, a closer inspection reveals

some minor differences in the shapes of the relative contributions to several observables). In

other words, there is no single phase-space region associated with the growth with energy

of the relative NLO QCD contribution observed in table 6. At a given collider energy,

the NLO QCD K factors are generally not flat, with the exception of y(t) and, to a good

extent, of ∆y(tt̄,H) at 100 TeV; the K factors also tend to flatten out at large transverse

momenta or invariant masses. The case of NLO weak effects is interesting because they

become significant only in certain regions of the phase space (we remind the reader that

we are discussing here the analogue of the fully inclusive case of sect. 3.1, for which at the

level of rates weak contributions are smaller than QCD scale uncertainties, as documented

by the entries not included in round brackets in table 6). In particular, the histograms

that include the NLO weak contributions lie at the lower end of the QCD scale-uncertainty

band at large pT (H), pT (t), and (to a somewhat lesser extent) ∆y(tt̄,H). Weak effects

induce therefore a significant distortion of the spectra in those regions, and cannot be

neglected. The above regions are rather directly related with those relevant to the boosted

scenario; it is therefore consistent with the behaviour of the rates within the cuts of eq. (3.5)

shown in table 6 that we observe that the relative importance of NLO weak vs NLO QCD

contributions is greater at 13 TeV than at 100 TeV.

One has to keep in mind that the impact of the NLO weak effects discussed above can

be partly compensated by that of the HBR contributions, since the relative importance of

the latter tends to increase (in absolute value) in the same regions where the NLO weak

corrections are most significant, at both 13 and 100 TeV, as shown by the insets of figs. 7

and 8. From these figures, we also see the differential counterpart of table 7: at 13 TeV,

the interplay of the gg with the dd̄ and uū channels is involved, while at 100 TeV one is

dominated everywhere in the phase space by the gg-initiated process.

We conclude this section by presenting in fig. 9 the results for our six reference differen-

tial distributions obtained by imposing the cuts of eq. (3.5). As expected, the effect of such

cuts is that of further enhancing the impact of the NLO weak contributions, which become

competitive with the QCD ones, and non-negligible even close to the pT thresholds (com-

pare e.g. the insets of the upper two panels of figs. 5 and 9). Note that this conclusion is

not modified when the HBR contributions are taken into account, as was already observed

for the predictions of the total rates. We finally comment on a few visible features that

appear in the differential pT (t), pT (tt̄), and M(tt̄H) distributions in the boosted scenario.
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14

m
 p

er
 b

in
 [p

b]

tt-H production at the 13 TeV LHC LO

LO+NLO QCD

LO+NLO QCD+Weak

10-3

10-2

10-1

M
a
d
G
r
a
p
h
5
_
a
M
C
@
N
L
O

 1
 1.1
 1.2
 1.3
 1.4 ratio over LO

y(t)

relative contributions QCD Weak HBR

 0

 0.2

 0.4

-3 -2 -1  0  1  2  3

m
 p

er
 b

in
 [p

b]

tt-H production at the 13 TeV LHC
boosted cuts: pT(t), pT(t-), pT(h) > 200 GeV

LO

LO+NLO QCD

LO+NLO QCD+Weak

10-5

10-4

10-3

10-2

M
a
d
G
r
a
p
h
5
_
a
M
C
@
N
L
O

 1
 1.2
 1.4
 1.6
 1.8 ratio over LO

y(t)

relative contributions QCD Weak HBR

-0.2
 0

 0.2
 0.4
 0.6
 0.8

-3 -2 -1  0  1  2  3

σbb̄→tt̄H(pb) 8 TeV 13 TeV 100 TeV

α2
SαΣ3,0 1.8 · 10−4 9.1 · 10−4 8.6 · 10−2

αSα
2 Σ3,1 −1.3 · 10−4 −1.5 · 10−3 −1.3 · 10−1

α3 Σ3,2 3.1 · 10−4 1.6 · 10−3 1.9 · 10−1

Table 10: Leading, second-leading, and third-leading Born contributions due to the bb̄

initial state.

(being at most 0.36% at 100 TeV); those to Σ3,1 and Σ3,2 are comparable or slightly larger

in absolute value, and furthermore they tend to cancel each other. Given that there is no

mechanism at the NLO that could enhance the bb̄-initiated cross section in a much stronger

way than for the other partonic contributions at the same order, our assumption appears to

be perfectly safe. It is thus of academic interest the fact that the results for the bb̄-induced

Σ3,q coefficients do not obey the numerical hierarchy suggested by their corresponding

coupling-constant factors (which hierarchy is violated owing to the opening of t-channel

diagrams, such as the one on the right of fig. 2). When the mixed-coupling expansion

will be fully automated in MadGraph5 aMC@NLO, one will easily verify whether such a

feature survives NLO corrections.

3.2 Differential distributions

We now turn to presenting results for differential distributions. In order to be definite, we

have considered the following observables: the transverse momenta of the Higgs (pT (H)),

top quark (pT (t)), and tt̄ pair (pT (tt̄)), the invariant mass of the tt̄H system (M(tt̄H)),

the rapidity of the top quark (y(t)), and the difference in rapidity between the tt̄ pair and

the Higgs boson (∆y(tt̄,H)). The corresponding six distributions are shown at a collider

energy of 13 TeV (fig. 5), 100 TeV (fig. 6), and 13 TeV in the boosted scenario of eq. (3.5)

(fig. 9). In the case of the HBR process pp → tt̄HH, owing to the inclusive (in the two

Higgses) definition of the latter the histograms relevant to the observables that depend

explicitly on the Higgs four-momentum (i.e., pT (H), M(tt̄H), and ∆y(tt̄,H)) may receive

up to two entries per event.

Figures 5, 6, and 9 have identical layouts. The main frame displays three distributions,

which correspond to the LO (black dashed), LO+NLO QCD (red solid, superimposed with

full circles), and LO+NLO QCD+NLO weak (green solid) cross sections. The latter two

distributions are therefore the bin-by-bin analogues of the sum of the upper two entries and

of the sum of the three entries, respectively, in a given column of table 5. The middle inset

presents the ratios of the two NLO-accurate predictions over the corresponding LO one –

these are therefore the K factors. Centered around the NLO QCD K factor we show a

mouse-grey band, which represents the fractional scale uncertainty, defined in full analogy

to what has been done in table 6. Finally, the lower inset displays the ratios of the NLO

QCD, NLO weak, and HBR (dot-dashed magenta) contributions over the LO cross section

– these are therefore the analogues of the first two lines of table 6 and of the last line of
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table 8, respectively.

Further details on the NLO weak and HBR results relevant to figs. 5 and 6 are given

in figs. 7 and 8, respectively. The main frames display the cross sections, and in the

case of the NLO weak contributions the individual results for the three dominant partonic

channels (namely, gg, dd̄, and uū) are also shown. The lower insets contain the same

information, but in the form of fractions over the relevant LO cross sections; these are thus

the differential analogues of tables 7 and 8.

As far as QCD and weak effects are concerned, figs. 5 and 6 show rather similar

patterns. NLO QCD contributions are dominant everywhere in the phase space, and their

size increase with the collider energy in a manner which is, in the first approximation, rather

independent of the observable or the range considered (however, a closer inspection reveals

some minor differences in the shapes of the relative contributions to several observables). In

other words, there is no single phase-space region associated with the growth with energy

of the relative NLO QCD contribution observed in table 6. At a given collider energy,

the NLO QCD K factors are generally not flat, with the exception of y(t) and, to a good

extent, of ∆y(tt̄,H) at 100 TeV; the K factors also tend to flatten out at large transverse

momenta or invariant masses. The case of NLO weak effects is interesting because they

become significant only in certain regions of the phase space (we remind the reader that

we are discussing here the analogue of the fully inclusive case of sect. 3.1, for which at the

level of rates weak contributions are smaller than QCD scale uncertainties, as documented

by the entries not included in round brackets in table 6). In particular, the histograms

that include the NLO weak contributions lie at the lower end of the QCD scale-uncertainty

band at large pT (H), pT (t), and (to a somewhat lesser extent) ∆y(tt̄,H). Weak effects

induce therefore a significant distortion of the spectra in those regions, and cannot be

neglected. The above regions are rather directly related with those relevant to the boosted

scenario; it is therefore consistent with the behaviour of the rates within the cuts of eq. (3.5)

shown in table 6 that we observe that the relative importance of NLO weak vs NLO QCD

contributions is greater at 13 TeV than at 100 TeV.

One has to keep in mind that the impact of the NLO weak effects discussed above can

be partly compensated by that of the HBR contributions, since the relative importance of

the latter tends to increase (in absolute value) in the same regions where the NLO weak

corrections are most significant, at both 13 and 100 TeV, as shown by the insets of figs. 7

and 8. From these figures, we also see the differential counterpart of table 7: at 13 TeV,

the interplay of the gg with the dd̄ and uū channels is involved, while at 100 TeV one is

dominated everywhere in the phase space by the gg-initiated process.

We conclude this section by presenting in fig. 9 the results for our six reference differen-

tial distributions obtained by imposing the cuts of eq. (3.5). As expected, the effect of such

cuts is that of further enhancing the impact of the NLO weak contributions, which become

competitive with the QCD ones, and non-negligible even close to the pT thresholds (com-

pare e.g. the insets of the upper two panels of figs. 5 and 9). Note that this conclusion is

not modified when the HBR contributions are taken into account, as was already observed

for the predictions of the total rates. We finally comment on a few visible features that

appear in the differential pT (t), pT (tt̄), and M(tt̄H) distributions in the boosted scenario.
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Conclusions

• Automation of EW corrections in MadGraph5_aMC@NLO 
in progress	


• First pheno study: weak corrections to ttH	


• Weak corrections can be sizeable, in particular in boosted 
regions (important for searches)	


• HBR effects studied, partial compensation of Sudakov logs	


• Computation of EW corrections quite advanced	


• More to come…
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