

Weak corrections to ttH production at hadron colliders

Marco Zaro, LPTHE-UPMC based on Frixione, Hirschi, Pagani, Shao, MZ, arXiv:1407.0823

> LHCPhenoNet final meeting Berlin, November 24th, 2014

LHCPhenoNet

Motivation

- Since the discovery of the Higgs boson candidate at the LHC, lots of efforts have been put into the determination of its properties and couplings
- Non-SM effects can lead to deviations in the coupling strengths
- No deviation observed so-far, substantial improvements in exp accuracy expected for LHC run II

Need for accurate predictions!

The top Yukawa coupling

- One crucial parameter to be measured is the top Yukawa
- It can be extracted looking at Higgs production in ggF (indirectly) and in ttH (directly)
- Expected to be measured at 15 (10%) at 300(3000) fb-1

State-of-the-art predictions some unversions for Higgs production at the LHC

(circa June 2014)

rather poor accuracy for ttH compared to other production channels

Marco Zaro, 24-11-2014

State-of-the-art predictions some un for Higgs production at the LHC

(circa June 2014)

- Electroweak corrections known for all Higgs production channels but ttH
 - ggH: Djouadi, Gambino, hep-ph/9406432, Degrassi, Maltoni, hep-ph/0407249, Aglietti, Bonciani, Degrassi, Vicini, hep-ph/ 0610033, Actis, Passarino, Sturm, Uccirati, arXiv:0809.1301
 - VBF: Ciccolini, Denner, Dittmaier, arXiv:0707.0381 & 0710.4749
 - VH: Ciccolini, Dittmaier, Kramer, hep-ph/0306234

LHCPhenoNet

rather poor accuracy for ttH compared to other production channels

Weak corrections to ttH

- Computation of corrections of weak origin to ttH
- Why only weak?
 - Lazy guy motivation: Weak corrections are simpler than full EW corrections, particularly for IR singularities
 - Learning guy motivation: use weak corrections to learn about how to compute full EW corrections (and how to automate them)
 - Pheno motivation I: Weak corrections are supposed to be the dominant part of full EW: they contain Sudakov logs
 - Pheno motivation II: Weak corrections spoil the y_t^2 dependence of the cross-section, intro ducting dependence on g_{hvv} , λ_{hhh}

Alwall, Frederix, Frixione, Maltoni, Mattelaer, Shao, Stelzer, Torrielli, Hirschi, MZ arXiv: 1405.0301

Marco Zaro, 24-11-2014

LO

- We are used to call
 - LO
 - NLO QCD

• NLO EW

Structure of EW corrections: Sorrections: 2) partonic subchannels & IR structure

 Virtual corrections • gg→ttH (finite) ttH (soft sing.) 000 000 Ζ Real corrections • $q\overline{q} \rightarrow t\overline{t}Hg$ (soft sing) • $q\overline{g} \rightarrow t\overline{t}Hq$ (finite)

Structure of EW corrections: Sorrections: 2) partonic subchannels & IR structure

Heavy boson radiation

• $pp \rightarrow t\bar{t}HV$ (finite, but $O(\alpha_s^2 \alpha^2)$) V=W,Z,H

LHCPhenoNet

Numerical results

 Compare weak and QCD corrections for total rates and distributions:

LHCPhenoNet

Numerical results

- Compare weak and QCD corrections for total rates and distributions:
- Setup:
 - Weak corrections computed in the $\alpha(M_Z)$ -scheme (Gµ also available)
 - m_h=125 GeV, m_t=173.3 GeV
 - MSTW 2008 NLO pdfs
 - Ren/Fact scales set to

$$\mu = \frac{H_T}{2}$$

• QCD scale variations computed with

$$\frac{1}{2}\mu \le \mu_R, \mu_F \le 2\mu$$

Numerical results

- Compare weak and QCD corrections for total rates and distributions:
- Setup:
 - Weak corrections computed in the $\alpha(M_Z)$ -scheme (G_µ also available)
 - m_h=125 GeV, m_t=173.3 GeV
 - MSTW 2008 NLO pdfs
 - Ren/Fact scales set to

$$\mu = \frac{H_T}{2}$$

• QCD scale variations computed with $\frac{1}{2}\mu \leq \mu_R, \mu_F \leq 2\mu$

- Cuts:
 - Inclusive cross-section (no cuts)
 - Boosted analysis
 - S/B enhanced in boosted regimes Plehn, Salam, Spannowsky, arXiv:0910.5472

Numerical results

- Compare weak and QCD corrections for total rates and distributions:
- Setup:
 - Weak corrections computed in the $\alpha(M_Z)$ -scheme (G_µ also available)
 - m_h=125 GeV, m_t=173.3 GeV
 - MSTW 2008 NLO pdfs
 - Ren/Fact scales set to

$$\mu = \frac{H_T}{2}$$

• QCD scale variations computed with $\frac{1}{2}\mu \leq \mu_R, \mu_F \leq 2\mu$

- Cuts:
 - Inclusive cross-section (no cuts)
 - Boosted analysis
 - S/B enhanced in boosted regimes Plehn, Salam, Spannowsky, arXiv:0910.5472
 - Apply boosted cuts $p_T(t, \bar{t}, H) > 200 \text{GeV}$
 - Sudakov logs relevant in boosted region

Inclusive rates

NLO corrections (boosted regime in brackets)

$\delta_{ m NLO}(\%)$	$8 { m TeV}$	$13 { m TeV}$	$100 { m TeV}$
QCD	$+25.6^{+6.2}_{-11.8} (+19.6^{+3.7}_{-11.0})$	$+29.3^{+7.4}_{-11.6} (+23.9^{+5.4}_{-11.2})$	$+40.4^{+9.9}_{-11.6} (+39.1^{+9.7}_{-10.4})$
weak	$-1.2 \ (-8.3)$	-1.8(-8.2)	-3.0(-7.8)

Heavy boson radiation

$\delta_{ m HBR}(\%)$	$8 { m TeV}$	$13 { m TeV}$	$100 { m TeV}$
W	+0.42(+0.74)	+0.37(+0.70)	+0.14(+0.22)
Z	+0.29(+0.56)	+0.34(+0.68)	+0.51(+0.95)
Н	+0.17(+0.43)	+0.19(+0.48)	+0.25(+0.53)
sum	+0.88(+1.73)	+0.90(+1.86)	+0.90(+1.70)

Corrections per partonic subchannel

$\delta_{ m NLO}(\%)$	$8 { m TeV}$	$13 { m TeV}$	$100 { m TeV}$
gg	-0.67 (-2.9)	-1.12 (-4.0)	-2.64(-6.8)
$u \overline{u}$	-0.01 (-3.2)	$-0.15\ (-2.3)$	-0.10 (-0.5)
$d\bar{d}$	-0.55 (-2.2)	-0.52 (-1.9)	-0.23 (-0.5)

- Weak corrections are quite small, but can become important in boosted kinematics
- HBR compensates Sudakov logs only partially
 - differences in PS and PDFs
 - Final state not a EW singlet Manohar, Shotwell, Bauer, Turczyk, arXiv:1409.1918

Differential distributions

Marco Zaro, 24-11-2014

Partonic subprocesses

Marco Zaro, 24-11-2014

Boosted kinematics

Marco Zaro, 24-11-2014

Boosted vs unboosted

Marco Zaro, 24-11-2014

Weak vs Electroweak (preliminary)

Weak (-1.8 %) ElectroWeak (-1.3 %)

Very preliminary results: initial states with photons are missing.

Conclusions

- Automation of EW corrections in MADGRAPH5_AMC@NLO in progress
- First pheno study: weak corrections to ttH
- Weak corrections can be sizeable, in particular in boosted regions (important for searches)
- HBR effects studied, partial compensation of Sudakov logs
- Computation of EW corrections quite advanced
- More to come...