Higgs-boson production cross section at approximate N^3LO

Sven-Olaf Moch

Universität Hamburg

LHCPhenoNet Final meeting, Berlin, Nov 24, 2014

Work done in collaboration with:

Approximate N³LO Higgs-boson production cross section using physical-kernel constraints
 D. de Florian, J. Mazzitelli, S. M. and A. Vogt arXiv:1408.6277

QCD factorization

$$\sigma_{pp \to X} = \sum_{ij} f_i(\mu^2) \otimes f_j(\mu^2) \otimes \hat{\sigma}_{ij \to X} \left(\alpha_s(\mu^2), Q^2, \mu^2, m_X^2 \right)$$

- Hard parton cross section $\hat{\sigma}_{ij \to X}$ calculable in perturbation theory
 - known to NLO, NNLO, $\dots (\mathcal{O}(\text{few}\%)$ theory uncertainty)
- Non-perturbative parameters: parton distribution functions f_i , strong coupling α_s , particle masses m_X
 - known from global fits to exp. data, lattice computations, ...

Higgs production in gg-fusion

Effective theory

- Hard scattering cross section $\hat{\sigma}_{ij \rightarrow H+X}$ dominated by gluon-gluon fusion
 - typically treated in effective theory in limit $m_t \to \infty$; Lagrangian $\mathcal{L} = -\frac{1}{4} \frac{H}{v} C_H G^{\mu\nu a} G^a_{\mu\nu}$
- QCD corrections significant
 - NNLO corrections still large
 Harlander, Kilgore '02; Anastasiou, Melnikov '02; Ravindran, Smith, van Neerven '03
 - improvement with soft N³LO corrections S.M., Vogt '05; Laenen, Magnea '05: in *x*-space '+'-distributions $\alpha_s^k \ln^{2k-1}(1-x)/(1-x)$
 - NNLL resummation Catani, de Florian, Grazzini, Nason '03; Ahrens et al. '10; [...];
 Ahmed, Mahakhud, Rana, Ravindran '14
 - soft-virtual corrections completed: $\delta(1 x)$ -term at N³LO Anastasiou et al.'14

Physical kernel

• Cross section for Higgs boson production function of $x = m_H^2/s$

$$\sigma(H) = \sigma_0 \sum_{a,b} f_a \otimes f_b \otimes c_{ab}$$

- coefficient functions for hard scattering $c_{ab}(\alpha_s) = \alpha_s^k c_{ab}^{(k)}$: LO $c_{gg}^{(0)} = \delta(1-x)$, NLO $c_{ab}^{(1)}$, NNLO $c_{ab}^{(2)}$, N³LO $c_{ab}^{(3)}$, ...
- $c_{ab}(\alpha_s)$ in *x*-space show $x \to 1$ double logarithmic enhancement: '+'-distributions $\alpha_s^k \ln^l (1-x)/(1-x)$ with $0 \le l \le 2k-1$

Physical kernel

• Cross section for Higgs boson production function of $x = m_H^2/s$

$$\sigma(H) = \sigma_0 \sum_{a,b} f_a \otimes f_b \otimes c_{ab}$$

• coefficient functions for hard scattering $c_{ab}(\alpha_s) = \alpha_s^k c_{ab}^{(k)}$: LO $c_{gg}^{(0)} = \delta(1-x)$, NLO $c_{ab}^{(1)}$, NNLO $c_{ab}^{(2)}$, N³LO $c_{ab}^{(3)}$, ...

- $c_{ab}(\alpha_s)$ in *x*-space show $x \to 1$ double logarithmic enhancement: '+'-distributions $\alpha_s^k \ln^l (1-x)/(1-x)$ with $0 \le l \le 2k-1$
- Alternative factorization: partonic structure functions $\sigma(H) = \sum_{a,b} \sigma_0 \mathcal{F}_{ab}$
 - gg-channel dominant for $x \to 1$
 - evolution equation for \mathcal{F}_{gg} defines physical kernel K_{gg}

$$\frac{d}{d\ln m_H^2} \mathcal{F}_{gg} = \underbrace{\left\{2P_{gg}(\alpha_s) + \beta(\alpha_s) \frac{dc_{gg}(\alpha_s)}{d\alpha_s} \otimes (c_{gg}(\alpha_s))^{-1}\right\}}_{\text{scheme invariant}} \otimes \mathcal{F}_{gg}$$

$$\equiv K_{gg}(\alpha_s) \otimes \mathcal{F}_{gg}$$

• $K_{gg}(\alpha_s)$ for $x \to 1$ exhibits single logarithmic enhancement $\alpha_s^k \ln^l(1-x)/(1-x)$ with $0 \le l \le k \longrightarrow$ constraints on $c_{ab}(\alpha_s)$

Coefficient functions

- Constraints from physical kernel $K_{gg}(\alpha_s)$ exact to all powers in $(1-x)^n$
 - access to power suppressed terms with logarithmic enhancement $\alpha_s^k \ln^l(1-x)$ with $1 \le l \le 2k$
- Coefficient function at N³LO $c_{gg}^{(3)}$

 $c_{gg}^{(3)}(x) = c_{gg}^{(3)}(x) \Big|_{\mathcal{D}_k, \delta(1-x)} - 512C_A^3 \ln^5(1-x) + \left\{ 1728C_A^3 + \frac{640}{3}C_A^2\beta_0 \right\} \ln^4(1-x) \\ + \left\{ \left(-\frac{1168}{3} + 3584\zeta_2 \right) C_A^3 - \left(\frac{2512}{3} + \frac{1}{3}\xi_H \right) C_A^2\beta_0 - \frac{64}{3}C_A\beta_0^2 \right\} \ln^3(1-x) + \dots$

- unknown coefficient for $\ln^3(1-x)$ estimated $\xi_H = 300$
- exact computation $\xi_H = 896/3$ Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger arXiv:1411.3584
- Space of Mellin moments N:
 - leading contributions (SV): $\alpha_s^k \ln^l N$ with $1 \le l \le 2k$
 - sub-leading contributions (SV+1/N): $\alpha_s^k (\ln^l N)/N$ with $1 \le l \le 2k$

- SV and SV+1/N approximations provide uncertainty band S.M., Vogt '09
 - tested for large number of observables
 - γ -DIS and ϕ -DIS known exactly to N³LO

S.M., Vermaseren, Vogt '05, Soar, S.M., Vermaseren, Vogt '09

Higgs boson production: coefficient function Coefficient function at NLO

SV and SV+1/N approximations work even for N not so large

Sven-Olaf Moch

Higgs-boson production cross sectionat approximate $N^3LO - p.8$

Higgs boson production: coefficient function Coefficient function at NNLO

SV and SV+1/N approximations work even for N not so large

Sven-Olaf Moch

Higgs-boson production cross sectionat approximate $N^3 LO - p.8$

Approximate N³LO: coefficient function

Coefficient function at N³LO (only subleading 1/N terms displayed)

 $c_{gg}^{(3)}(N) \sim (108 \ln^5 N + 615.7 \ln^4 N + 2041.2 \ln^3 N + 4968 \ln^2 N + 1944 \ln N + 972)/N$

estimate from ϕ -DIS

• Leading logarithm agrees with estimate by factorization of splitting function $P_{gg}^{(0)} \longrightarrow c_{gg}^{(3)}(N) \sim 108 \ln^5 N/N$ Krämer, Laenen, Spira '96; Ball, Bonvini, Forte, Marzani, Ridolfi ´13

Sven-Olaf Moch

Approximate N³LO: coefficient function

Coefficient function at N³LO (only subleading 1/N terms displayed)

 $c_{gg}^{(3)}(N) \sim (108 \ln^5 N + 615.7 \ln^4 N + 2041.2 \ln^3 N + 4968 \ln^2 N + 1944 \ln N + 972)/N$

Exact computation

estimate from ϕ -DIS

Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger arXiv:1411.3584 $c_{gg}^{(3)}(N) \sim (108 \ln^5 N + 615.7 \ln^4 N + 2036.4 \ln^3 N + 3305 \ln^2 N + 3459 \ln N + 703)/N$

Higgs boson production: cross section

Cross section at NLO

• Approximation based on SV and SV+1/N works for current LHC energies $\sqrt{s} = 13$ TeV very well

Higgs-boson production cross sectionat approximate $N^3LO - p.10$

Higgs boson production: cross section

Cross section at NNLO

Approximate N³LO: cross section

Factorization scale variation

- Variation of factorization scale μ_F for fixed $\mu_R = m_H$ at $\sqrt{s} = 14$ TeV
- Dependence on μ_F at N³LO larger than at NNLO
 - missing four-loop splitting functions $P_{ii}^{(3)}$
 - gluon PDF only known up to NNLO
 - omission of the quark-gluon and quark-(anti)quark channels

Renormalization scale variation

- Variation of renormalization scale μ_R for fixed $\mu_F = m_H$ at $\sqrt{s} = 14$ TeV
- Perturbative stability under renormalization scale variation
 - dependence on μ_R flattens off at N³LO
 - four-loop beta function β_3 known
- Point of minimal sensitivity around $\mu_R = m_H/2$

Combined scale variation

- Simultaneous variation of scales $\mu_R = \mu_F$ around m_H at $\sqrt{s} = 14$ TeV
- Small improvement with respect μ_R variation for fixed μ_F
 - should not be trusted quantitatively
- Conservative error estimate: variation of μ_R for fixed μ_F
 - overall theoretical uncertainty $\Delta \sigma(H)$ less than 5%

Combined scale variation

- Simultaneous variation of scales $\mu_R = \mu_F$ around m_H at $\sqrt{s} = 14$ TeV
- Small improvement with respect μ_R variation for fixed μ_F
 - should not be trusted quantitatively
- Conservative error estimate: variation of μ_R for fixed μ_F
 - overall theoretical uncertainty $\Delta \sigma(H)$ less than 5%

Benchmark cross section

- Cross section $\sigma(H)$ at LHC $\sqrt{s} = 13$ TeV
- N³LO from average of SV and SV+1/N approximation
 - parameters: $m_H = 125$ GeV, $m_t = 172.5$ GeV pole mass, $\alpha_s(M_Z) = 0.1171$ with MSTW2008 PDFs (nnlo68cl)
 - scale choice $\mu_R = \mu_F = m_H$

$\mu_0=m_H$	$\mu_R/\mu_0 = 0.5$	$\mu_R/\mu_0=1$	$\mu_R/\mu_0=2$
$\mu_F/\mu_0=0.5$	48.05 ± 1.17	45.98 ± 0.70	—
$\mu_F/\mu_0=1$	48.91 ± 1.29	47.22 ± 0.76	44.63 ± 0.47
$\mu_F/\mu_0 = 2$	_	48.50 ± 0.82	46.07 ± 0.51

• scale choice $\mu_R = \mu_R = m_H/2$

$\mu_0=m_H/2$	$\mu_R/\mu_0=0.5$	$\mu_R/\mu_0 = 1$	$\mu_R/\mu_0=2$
$\mu_F/\mu_0=0.5$	48.66 ± 1.86	47.16 ± 1.04	—
$\mu_F/\mu_0=1$	48.73 ± 2.11	48.05 ± 1.17	45.98 ± 0.70
$\mu_F/\mu_0=2$	_	48.91 ± 1.29	47.22 ± 0.76

Approximate N⁴LO: cross section

Dependence on parton distributions

• Cross section $\sigma(H)$ at NNLO with uncertainties: $\sigma(H) + \Delta \sigma(PDF + \alpha_s)$

ABM11	ABM12	CT10	MSTW	NN23
39.58 ± 0.77	39.70 ± 0.84	$41.84 \ ^{+1.30}_{-1.69}$	$42.12 \begin{array}{c} +0.44 \\ -0.63 \end{array}$	43.75 ± 0.41

Comparison for PDF sets at NNLO

- ABM11, ABM12 Alekhin, Blümlein, S.M. '13, CT10 Gao et al. '13, MSTW Martin, Stirling, Thorne, Watt '09, NNPDF (NN23) Ball et al. '12
- Large spread for predictions from different PDFs $\sigma(H) = 39.6 \dots 43.8$
- PDF and α_s differences between sets amount to up to 10%
 - significantly larger than residual theory uncertainty due to incomplete N³LO QCD corrections
- Observed spread due to differences in theory considerations and analysis procedures \longrightarrow correlations between α_s , g(x) and m_q
 - target mass corrections and higher twist in DIS
 - treatment of heavy quarks
 - error correlations among data sets
 - fits to compatible data sets

Non-perturbative parameters

- Differences in α_s values due to different physics models for heavy quarks
- Charm mass m_c "tuning" parameter for variable flavor number schemes H1 coll. arxiv:1211.1182
- Effect of Higgs cross section
 - linear rise in $\sigma(H) = 40.6 \dots 43.8$ for $m_c = 1.05 \dots 1.75$ with MSTW PDFs Martin, Stirling, Thorne, Watt '10

Summary

Inclusive Higgs cross section at the LHC

- Radiative corrections at higher orders in QCD well under control
 - approximate N³LO in QCD with overall theoretical uncertainty $\Delta \sigma(H)$ less than 5%
 - good stability around point of minimal sensitivity $\mu = m_H/2$
 - conservative error estimate: variation of μ_R for fixed μ_F

Parton distributions, α_s and all that

- Precision determinations of non-perturbative parameters is dominating source of uncertainty
 - parton content of proton (PDFs)
 - coupling constants $\alpha_s(M_Z)$
 - masses $m_c,\,m_b,\,m_t,\,m_H,\,\dots$
- Spread in predictions amounts currently up to 10%