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Introduction

✤ When calculating NLO (NNLO) cross-sections one needs to consider the tree- and 
loop-contributions separately. Especially loops with many external legs prove to be 
challenging.!

✤ Considerable progress has already been made in order to attack this problem: OPP-
Method, Unitarity Methods, Mellin-Barnes Representation, Sector Decomposition.!

✤ The advantage of these methods is that they made possible what was impossible 
before, but still a lot of effort has to be put in to cancel infrared singularities among 
real and virtual corrections. Additional difficulties arise from threshold singularities 
that lead to numerical instabilities.!

✤ The Loop-Tree Duality (LTD) method aims towards a combined treatment of tree- 
and loop-contributions. Therefore the Loop-Tree Duality method casts the virtual 
corrections in a form that closely resembles the real ones.
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Figure 1: Momentum configuration of the one–loop N–point scalar integral.

displacement of the poles of the propagators along the real axis, which does not change the derivation of
the duality theorem, as will become obvious in the following. Moreover, they do not alter the relationship
between Feynman, advanced, retarded and dual propagators, which is the basis of both, the duality
theorem as a duality to the FTT, as well as the extension of the method to higher loop orders. The case of
unstable particles with complex masses has been discussed in detail in Ref. [12], and we do not consider
this possibility in the current paper.

Besides the customary Feynman propagators GF (qi), we also encounter advanced, GA(qi), and re-
tarded, GR(qi), propagators, defined by:

GA(qi) =
1

q2i −m2
i − i0 qi,0

, GR(qi) =
1

q2i −m2
i + i0 qi,0

. (5)

The Feynman, advanced, and retarded propagators only differ in the position of the particle poles in
the complex plane. Using q2i = q2i,0 − q2

i , we therefore find the poles of the Feynman and advanced
propagators in the complex plane of the variable qi,0 at:

[GF (qi)]
−1 = 0 =⇒ qi,0 = ±

√
q2
i −m2

i − i0 and [GA(qi)]
−1 = 0 =⇒ qi,0 ≃ ±

√
q2
i −m2

i+i0 . (6)

Thus, the pole with positive/negative energy of the Feynman propagator is slightly displaced below/above
the real axis, while both poles of the advanced/retarded propagator, independently of the sign of the
energy, are slightly displaced above/below the real axis (cf. Fig. 2). We further define

δ̃ (qi) ≡ 2π i θ(qi,0) δ(q
2
i −m2

i ) = 2π i δ+(q
2
i −m2

i ) , (7)

where the subscript + of δ+ refers to the on–shell mode with positive definite energy, qi,0 ≥ 0. Hence,
the phase–space integral of a physical particle with momentum qi, i.e., an on–shell particle with positive–
definite energy, q2i = m2

i , qi,0 ≥ 0, reads:
∫

ddqi
(2π)d−1

θ(qi,0) δ(q
2
i −m2

i ) · · · ≡

∫

qi

δ̃ (qi) · · · . (8)

We continue by shortly recalling the duality theorem at one–loop order, which was derived in Ref. [12].
For a detailed discussion of all definitions and steps, as well as subtleties related to them, we refer the
reader to this paper. In order to derive the duality theorem, one directly applies the residue theorem to the
computation of L(1)(p1, p2, . . . , pN) in Eq. (1): Each of the Feynman propagatorsGF (qi) has single poles

3

L(1)(p1, p2, . . . , pN ) =

Z

`1

NY

i=1

GF (qi)

with GF (qi) =
1

q2i �m2
i + i0

and

Work carried out in!
dimensional regularization!and

[Catani, Gleisberg, Krauss, Rodrigo, Winter ’08]

qi = `1 + p1 + · · ·+ pi = `1 + ki

Z

`1

= �i

Z
dd`1
(2⇡)d

Feynman propagator

Internal momenta
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Directly apply the residue theorem for!
complex energy components of the!

loop momenta!

L(1)(p1, p2, . . . , pN ) = �2⇡i

Z

~̀
1

X
ResIm{qi,0}<0

NY

j=1

GF (qj)

Selects the poles with negative imaginary part and positive energy!
(Duality beyond one-loop: [Bierenbaum, Catani, Draggiotis, Rodrigo ’10],!
 Duality with higher order poles: [Bierenbaum, Buchta, Draggiotis, Malamos, Rodrigo ’12])
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Figure 1: Location of poles and integration contour CL in the complex q0-plane for the
advanced (left) and Feynman (right) one-loop integrals, L(N)
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GF (qj)
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i-th pole
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1

q2j �m2
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i �m2
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The sum of all dual contributions is independent of   .
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corresponds to

L(1)(p1, p2, . . . , pN ) = �
XZ

`1

�̃(qi)
NY

j=1
j 6=i

GD(qi; qj)

�̃(qi) = 2⇡i�+(q
2
i �m2

i )

i.e. a d-dimensional vector that can be either light-like (η2 = 0) or time-like (η2 > 0)
with positive definite energy η0. Note that the calculation of the residue at the pole of
the internal line with momentum qi changes the propagators of the other lines in the loop
integral. Although the propagator of the j-th internal line still has the customary form
1/q2j , its singularity at q2j = 0 is regularized by a different i0 prescription: the original
Feynman prescription q2j + i0 is modified in the new prescription q2j − i0 η(qj − qi), which
we name the ‘dual’ i0 prescription or, briefly, the η prescription. The dual i0 prescription
arises from the fact that the original Feynman propagator 1/(q2j + i0) is evaluated at
the complex value of the loop momentum q, which is determined by the location of the
pole at q2i + i0 = 0. The i0 dependence from the pole has to be combined with the i0
dependence in the Feynman propagator to obtain the total dependence as given by the
dual i0 prescription. The presence of the vector ηµ is a consequence of using the residue
theorem. To apply it to the calculation of the d dimensional loop integral, we have to
specify a system of coordinates (e.g. space-time or light-cone coordinates) and select one of
them to be integrated over at fixed values of the remaining d− 1 coordinates. Introducing
the auxiliary vector ηµ with space-time coordinates ηµ = (η0, 0⊥, ηd−1), the selected system
of coordinates can be denoted in a Lorentz-invariant form. Applying the residue theorem
in the complex plane of the variable q0 at fixed (and real) values of the coordinates q⊥ and
q′d−1 = qd−1 − q0ηd−1/η0 (to be precise, in Eq. (27) we actually used ηµ = (1, 0)), we obtain
the result in Eq. (30).

The η dependence of the ensuing i0 prescription is thus a consequence of the fact that the
residues at each of the poles are not Lorentz-invariant quantities. The Lorentz-invariance
of the loop integral is recovered only after summing over all the residues.

−
N∑
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qi

δ̃(qi)

1
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i+1 − i0 ηpi+1

Figure 5: The duality relation for the one-loop N-point scalar integral. Graphical represen-
tation as a sum of N basic dual integrals.

Inserting the results of Eq. (28)–(30) in Eq. (27) we directly obtain the duality relation
between one-loop integrals and phase-space integrals:

L(N)(p1, p2, . . . , pN) = − L̃(N)(p1, p2, . . . , pN) , (32)

where the explicit expression of the phase-space integral L̃(N) is (Fig. 5)

L̃(N)(p1, p2, . . . , pN) =

∫

q

N∑

i=1

δ̃(qi)
N∏

j=1
j ̸=i

1

q2j − i0 η(qj − qi)
, (33)
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✤ The Loop-Tree Duality contains only single cuts while introducing a modified 
i0-prescription, the „dual“ prescription.

✤ Number of single cut Dual Contributions equals the number of legs

✤ The singularities of the loop diagram appear as singularities of the Dual 
Integrals.

✤ Tensor loop integrals and physical scattering amplitudes are treated in the same 
way since the Loop-Tree Duality works only on propagators.

✤ Virtual corrections are recast in a form, that closely parallels the contribution of 
real corrections.



Extension to two loops

For a set of looplines belonging to the same loop (of a multi loop diagram):
Z

`i

GF (↵1 [ ↵2 [ · · · [ ↵n) = �
Z

`i

GD(↵1 [ ↵2 [ · · · [ ↵n)

[Bierenbaum, Catani, Draggiotis, Rodrigo ’10]

Subsequently apply the LTD to the other loops of the diagram. 
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Figure 3: Momentum configuration of the two–loop N–point scalar integral.

In this way, we directly obtain the duality relation between one–loop integrals and single–cut phase–
space integrals and hence Eq. (24) can be interpreted as the application of the duality theorem to the
given set of momenta α1. It obviously agrees with Eq. (13). Furthermore, by using Eq. (21) in its
refined form where the subsets αi are given by the single momenta qi of the inner lines of the one–loop
integral, we rederive the FTT at one–loop, namely the one–loop integral written in terms of multiple–cut
contributions and Feynman propagators:

L(1)(p1, p2, . . . , pN) = −
∑

α
(1)
1 ∪α

(2)
1 =α1

∫

ℓ1

∏

i1∈α
(1)
1

δ̃ (qi1)
∏

i2∈α
(2)
1

GF (qi2) . (25)

The sum runs over all partitions of α1 as defined in Eq. (21), excluding the possibility to have a term
with only Feynman propagators. Them–cut integral of the FTT is given by the sum of the contributions
from all partitions of α1, with α

(1)
1 containing preciselym elements∗.

The extension of the duality theorem and of the FTT from scalar loop integrals to full scattering am-
plitudes in the case of unitary, local field theories and in the occurrence of real masses is straightforward
and has been discussed in detail in Ref. [12].

3 Duality relation at two loops

We now turn to the general two–loop master diagram, as presented in Fig. 3. Again, all external momenta
pi are taken as outgoing, and we have pi,j = pi+pi+1+ . . .+pj , with momentum conservation p1,N = 0.
The label i of the external momenta is defined modulo N , i.e., pN+i ≡ pi. Note, however, that one or
both of the external momenta attached to the four–leg vertices might be absent: pℓ = 0 and/or pN = 0. In
the two–loop case, unlike at the one–loop order, the number of external momenta might differ from the

∗If the number of space–time dimensions is d, then m is limited to be m ≤ d; the terms with larger values of m vanish,
since the corresponding number of delta functions in the integrand is larger than the number of integration variables.
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Notation:

GF (↵k) =
Y

i2↵k

GF (qi), GD(↵k) =
X

i2↵k

�̃(qi)
Y

j2↵k
j 6=i

GD(qi; qj)

qi =

8
><

>:

`1 + p1,i i 2 ↵1

`2 + pi,l�1 i 2 ↵2

`1 + `2 + pi,l�1 i 2 ↵3

↵1 = {0, 1, . . . , r}, ↵2 = {r + 1, r + 2, . . . , l}
↵3 = {l + 1, l + 2, . . . , N}



Extension to two loops

✤ Each application to a loop introduces an extra single cut. !
✤ Apply it as many times as there are loop: Opening loops to trees!
✤ Every application converts Feynman into Dual Propagators. Since the LTD can only be applied to 

Feynman P.s, the Dual P.s of the unification of several subsets must be reexpressed in terms of Dual       
and Feynman P.s. before going to the next loop!

✤ One loop line might take part in more that one loop, see „middle“ line in graph
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✤ Reiterate the procedure for higher order loop integrals

L(2)(p1, p2, . . . , pN ) =

Z

`1

Z

`2

{�GD(↵1)GF (↵2)GD(↵3) +GD(↵1)GD(↵2 [ ↵3) +GD(↵3)GD(�↵1 [ ↵2)}



Higher order poles

✤ It is possible to derive the LTD for higher order poles similarly to simple poles!
✤ Yet there is a more practical solution which takes advantage of IBP-relations!
✤ Consider a m-loop scalar integral with n denominators D1 … Dn raised  to exponents       

a1 … an in d dimensions:

Total derivative:
Z

`1

. . .

Z

`m

@

@sµ
tµ

Da1
1 . . . Dan

n
= 0

sµ = `µ1 , . . . , `
µ
m

tµ = `µ1 , . . . , `
µ
m, p1, . . . , pN

✤ Differentiation will raise an exponent or leave it unchanged!
✤ Contractions of loop with external momenta can be expressed as a propagator to         

lower an exponent!
✤ Sometimes this reexpressing is not possible: Irreducible Scalar Products (ISP).        

Consider these as extra propagators with negative exponent.

Z

`1

. . .

Z

`m

1

Da1
1 . . . Dan

n
= F (a1, . . . , an)

[Bierenbaum, Buchta, Draggiotis, Malamos, Rodrigo ’12]
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Higher order poles

Example with the simplest graph possible:
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✤ For more complicated case Mathematica package Fire was used successfully.!
✤ Not necessary to reduce to a certain integral basis. Just get rid of higher order poles.

Solve system of six linear equations: s = p2 + i0F (12110) =
�1 + 3✏

(1 + ✏)s
F (11110),
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LT-Duality is equivalent to integrating along the !
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 dual integrals

Forward-backward intersection!
These singularities remain and require!

contour deformation
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Numerical Implementation: Basics

L(1)(p1, p2, . . . , pN ) = �
XZ

`1

�̃(qi)
NY

j=1
j 6=i

GD(qi; qj)

�̃(qi)GD(qi; qj) = 2⇡i
�(qi,0 � q(+)

i,0 )

2q(+)
i,0

1

(q(+)
i,0 + kji,0)2 � (q(+)

j,0 )2

with kij = qi � qj q(+)
i,0 =

q
q2
i +m2

i � i0and

Rewrite dual propagator like this

The resulting N contributions have to be integrated over the loop three-momenta.



Numerical Implementation: Basics

! ! ! ! ! ! ! 1. The first equation describes an ellipsoid in the loop three-   ! !       
!                                     momentum  and demands              .!

   ! ! ! ! ! ! !    An ellipsoid is the result of the intersection of a forward with a ! !
! ! ! ! ! !         backward hyperboloid. !

The origins of the hyperboloids are separated in a time-like (light-like) fashion, expressed by 
the condition: !

2. The second equation describes a hyperboloid as a result of the intersection of two forward 
light-cones of space-like (light-l.) separation.!

        may be positive or negative: 

q(+)
i,0 + q(+)

j,0 + kji,0 = 0

q(+)
i,0 � q(+)

j,0 + kji,0 = 0

k2ji � (mj +mi)
2 � 0, kji,0 < 0

kji,0

k2ji,0 � (mj �mi)
2  0

kji,0 < 0

forward-backward

forward-forward

1.

2.
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Infrared singularities: Massless case

Forward-forward: Collinear singularities cancel ! !
! ! ! ! !    !       among dual contributions!

!

Forward-backward: Collinear and soft !! ! ! ! !
! ! ! ! ! ! !     singularities remain. They are !
! ! ! ! ! ! !     restricted to a finite region and!
!    ! ! ! ! ! !     can be mapped to the real ! !
! ! ! ! ! ! ! ! phase-space emission

[Buchta, Chachamis, Draggiotis, Malamos, Rodrigo ’14]
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IR singularities IR singularities 
Forward with forward light-cone: 

� collinear singular behaviour 
cancels among dual integrals 

Forward with backward light-cone:

� Collinear and soft singular 
behaviour remains, and

� Is restricted to a finite region of 
the loop-momentum space, which 
is of the order of the magnitude of 
external momenta

� Mapping with finite real emission 
phase-space

soft
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Positions
LTD

Use this scheme to indicate!
 the position of singularities! 0 H 0 H
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H 0 0 0

Example:

E: Ellipsoid Sing., H: Hyperboloid Sing.

Example:!
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Preparation: Deformation groups

0 H 0 0 0
H 0 H E 0
E H 0 E 0
E E E 0 E
0 0 0 0 0

} Contributions are coupled:!
In order to preserve the cancellations of the !
hyperboloids, every contr. receives all deformations !
that occur within the coupled contributions

Deform this contribution only with the!
 deformations that itself contains 

No deformation needed here

Organize the contributions into groups. Each group is deformed independently.!
Within a group, every contribution receives the same deformation which !

accounts for all of the ellipsoids of the group.



Singularities in Loop-Momentum Space

Triangle with one ellipsoid and two hyperboloid singularities
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Deformation: 1+1 dim

Let’s have a short look at 
an easy case, the one-
dimensional integral!

E: location of the singularity
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Deformation: 1+3 dim

For each individual ellipsoid include:

� scaling factor
width of the deformation } Can be chosen differently for each!

individual ellipsoid

def = i�~̀ exp

✓
�G�2
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A

◆

A



Deformation: 1+3 dim

For each individual ellipsoid include:

Sum over the entire group: i~ =
X

j2group

defj

Final deformation: ~̀ ! ~̀0
= ~̀ + i~

� scaling factor
width of the deformation } Can be chosen differently for each!

individual ellipsoid

def = i�~̀ exp

✓
�G�2

D

A

◆

A



Numerical Implementation: Results
✤ Implementation in C++. The code runs on an Intel i7 (3.4GHz) desktop 

machine.!

✤ Triangle, Box, Pentagon with no deformation needed: 4 digits in 0.5s!

✤ Pentagon with deformations: 4 digits in ~25s

Real part  Re Error Imaginary part Im Error
Analytic value -1.001066E-10 0 -5.208136E-10 0

LT Duality -1.001089E-10 9.051720E-16 -5.208556E-10 9.051461E-16

Numerical result produced with Cuhre (Cuba Library) [Hahn ’05],!
analytic values by LoopTools [Hahn ’99].



Numerical Implementation: Results

Triangle (all internal masses equal), varying the mass around the threshold:!
Red curve is LoopTools, blue points is LTD

Re Im

Red and blue are one top of each other! Good precision close to threshold!
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Numerical Implementation: Results

Pentagon, varying the mass, all internal masses equal:!
Red curve is LoopTools, blue points is LTD

Re Im

Even complex structures are picked up! Up to 5 deformations!
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✤ The Tree-Loop Duality lets us rewrite loop integrals (scattering 
amplitudes) as linear combinations of tree-level objects.

✤ It aims for a holistic approach, treating real and virtual corrections 
simultaneously in a Monte Carlo event generator.

✤ Partial cancellation of singularities among Dual Integrals, remaining 
singularities in a finite region of the loop three-momentum.

✤ General purpose numerical implementation soon!


