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Introduction

* When calculating NLO (NNLO) cross-sections one needs to consider the tree- and
loop-contributions separately. Especially loops with many external legs prove to be
challenging.

* Considerable progress has already been made in order to attack this problem: OPP-
Method, Unitarity Methods, Mellin-Barnes Representation, Sector Decomposition.

* The advantage of these methods is that they made possible what was impossible
before, but still a lot of effort has to be put in to cancel infrared singularities among
real and virtual corrections. Additional ditficulties arise from threshold singularities

that lead to numerical instabilities.

* The Loop-Tree Duality (LTD) method aims towards a combined treatment of tree-
and loop-contributions. Therefore the Loop-Tree Duality method casts the virtual
corrections in a form that closely resembles the real ones.
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Loop-1ree Duality at one loop

LIV

Directly apply the residue theorem for
complex energy components of the
loop momenta!
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Selects the poles with negative imaginary part and positive energy!

(Duality beyond one-loop: [Bierenbaum, Catani, Draggiotis, Rodrigo "10],
Duality with higher order poles: [Bierenbaum, Buchta, Draggiotis, Malamos, Rodrigo "12])



Loop-lree Duality at one loop

n future-like vector n* > 0, ny > 0

Different choices of n correspond to different coordinate systems.
The sum of all dual contributions is independent of 7.



Loop-lree Duality at one loop
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Loop-lree Duality at one loop

* The Loop-Tree Duality contains only single cuts while introducing a modified
i0-prescription, the ,,dual” prescription.

* Number of single cut Dual Contributions equals the number of legs

* The singularities of the loop diagram appear as singularities of the Dual
Integrals.

* Tensor loop integrals and physical scattering amplitudes are treated in the same
way since the Loop-Tree Duality works only on propagators.

+ Virtual corrections are recast in a form, that closely parallels the contribution of
real corrections.



Extension to two loops " %

|Bierenbaum, Catani, Draggiotis, Rodrigo "10}
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For a set of looplines belonging to the same loop (of a multi loop diagram):

/Gp(quaQU---Uan):—/ GplarUas U---Uay)

Subsequently apply the LTD to the other loops of the diagram.



Extension to two loops

+ Each application to a loop introduces an extra single cut.

* Apply it as many times as there are loop: Opening loops to trees

+ Every application converts Feynman into Dual Propagators. Since the LTD can only be applied to
Feynman P.s, the Dual P.s of the unification of several subsets must be reexpressed in terms of Dual
and Feynman P.s. before going to the next loop

* One loop line might take part in more that one loop, see ,,middle” line in graph

L® (p1,pa,...,DN) /g/{ Gp(a1)Gr(a2)Gplas) + Gplar)Gplaz Uas) + Gpl(asz)Gp(—ar Uas)}

+ Reiterate the procedure for higher order loop integrals



Higher order poles

|[Bierenbaum, Buchta, Draggiotis, Malamos, Rodrigo "12]

* [t is possible to derive the LTD for higher order poles similarly to simple poles
* Yet there is a more practical solution which takes advantage of IBP-relations
* Consider a m-loop scalar integral with n denominators D ... Dy raised to exponents

ai ... an in d dimensions: / / : — Fl(a iy )
D an 1y+-.,0n
gl Em 1 e o o mn
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+ Differentiation will raise an exponent or leave it unchanged

* Contractions of loop with external momenta can be expressed as a propagator to
lower an exponent

* Sometimes this reexpressing is not possible: Irreducible Scalar Products (ISP).
Consider these as extra propagators with negative exponent.
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Example with the simplest graph possible:
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Example with the simplest graph possible:
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Higher order poles

Example with the simplest graph possible:
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Higher order poles

Example with the simplest graph possible:

s Denominators:
D = /2
lo 4+ p b1+ £o 2 Dy = /2
D3 = ({2 + p)°
lo Dy = (1 + £3)°
k F(12110) o A 1o

Solve system of six linear equations:  F(12110) =

Total derivatives:

0
%
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Higher order poles

Example with the simplest graph possible:

P . . :
s Denominators: Total derivatives:
D1 = E% O
/4 01+ ¢ 2 4
2+ P 1+ £2 /) Dy = 2 0.
D3 = ({2 + p)° 4 .
: oL
lo Dy = (41 + 42) A
p D La g . 7/7] = 17 2
F(12110) 3
- S€
1X 11 ' : F(12110) = F(1111 — p? L ¢
Solve system of six linear equations ( 0) Horos ( O s =l

* For more complicated case Mathematica package Fire was used successfully.
* Not necessary to reduce to a certain integral basis. Just get rid of higher order poles.



Singular behavior of the loop integrand

[Buchta, Chachamis, Draggiotis, Malamos, Rodrigo "14] The
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Singular behavior of the loop integrand

[Buchta, Chachamis, Draggiotis, Malamos,

3

Rodrigo 14 The 1oop integrand becomes singular at hyper-

boloids with qu) = \/ a; +m; —i0 (solid lines)
and Q§,6> " —\/ a? +m? —i0 (dashed lines) and
originin —ki,

_k2 ° ° ° ° ° °
PN / LT-Duality is equivalent to integrating along the
G SN forward hyperboloids!
N ° —K3
IR L N Forward-forward intersection
P These singularities cancel among,

dual integrals

3 Forward-backward intersection
I, These singularities remain and require

contour deformation



Numerical Implementation: Basics
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Numerical Implementation: Basics

L<1)(p17p27 JE 7pN) = _Z/
lq

with k;; = ¢; — g, and Qo = \/q§ + m? — i0

The resulting N contributions have to be integrated over the loop three-momenta.



Numerical Implementation: Basics

‘ q,§+) T qj(-JB) + k;;0 =0 torward-backward

)

2. qrg;) — q](.jg) + kj;0 =0 torward-forward

.The first equation describes an ellipsoid in the loop three-

momentum and demands k;; o < 0.

Ll SN N An ellipsoid is the result of the intersection of a forward with a
— — backward hyperboloid.

The origins of the hyperboloids are separated in a time-like (light-like) fashion, expressed by
the condition: k% — (mj +my)? >0, kjio <0

2. The second equation describes a hyperboloid as a result of the intersection of two forward

light-cones of space-like (light-1.) separation. |2
J

i0— (mj — m;)° < 0

kji,omay be positive or negative:



Infrared singularities: Massless case

[Buchta, Chachamis, Draggiotis, Malamos, Rodrigo "14]

Forward-forward: Collinear singularities cancel
among dual contributions

Forward-backward: Collinear and soft
singularities remain. They are
restricted to a finite region and
can be mapped to the real
phase-space emission




Preparation

Feynman-integral Positions
LTD o
Example: i T o QI - S 1 IR R § 0 Gp Gp Gp
Box E Gp 8 Gp Gp
-'g Gp Gp & Gbp
S ' Gp Gp Gp §

Use this scheme to indicate
the position of singularities!



Preparation

Feynman-integral Positions
LTD o
Example: i T o QI - S 1 IR R § 0 Gp Gp Gp
Box E Gp 8 Gp Gp
-'g Gp Gp & Gbp
S ' Gp Gp Gp §

Use this scheme to indicate

Egh : ool
the position of singularities! Example:

Sy A e e
= Ak g NG

0 H
H 0
E H
E: Ellipsoid Sing., H: Hyperboloid Sing. H 0o



Preparation: Deformation groups

0 H 0 O
B 0 H FE
B 0 L
. E 0
0 0 0 O

S Im O o O
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Preparation: Deformation groups

Contributions are coupled:
In order to preserve the cancellations of the
hyperboloids, every contr. receives all deformations
that occur within the coupled contributions

_, Deform this contribution only with the

deformations that itself contains
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<o ) . T e S e MR
= AR ¢ o [N o R S
=TI o TN o 5 AN o, B

0
0
0
E
0 — No deformation needed here

Organize the contributions into groups. Each group is deformed independently.
Within a group, every contribution receives the same deformation which
accounts for all of the ellipsoids of the group.



Singularities in Loop-Momentum Space




Deformation: 1+1 dim

[Let’s have a short look at

Shape of the contour deformation
an easy case, the one-

dimensional integral 10
1
f(gm) oy ) 9 : 28
g 72 Frect g0
= 0 ®
Corresponding deformation: £
/ SO ]
by — 0 =0,
2 9 g contour deformation
\/ gw — F 10 L Integration path before defo i
+IAL, XD o2 | | | i | | poles| )

-4 -3 -2 -1 0 1 2 3 4

. . | Re(IxX')
E: location of the singularity 5



Deformation: 1+5 dim

A

A scaling factor } Can be chosen differently for each
A width of the deformation

, G’
For each individual ellipsoid include: ~ def = ¢ A€ exp ( < )

individual ellipsoid



Deformation: 1+5 dim

A

A scaling factor } Can be chosen differently for each
A width of the deformation

, G’
For each individual ellipsoid include: def = 1\l exp ( < )

individual ellipsoid

Sum over the entire group: IR = Z det;

Final deformation: Z X Zl — Z 4+ K



Numerical Implementation: Results

+ Implementation in C++. The code runs on an Intel i7 (3.4GHz) desktop

machine.

+ Triangle, Box, Pentagon with no deformation needed: 4 digits in 0.5s

+ Pentagon with deformations: 4 digits in ~25s

Real part

Re Error

Imaginary part

Im Error

Analytic value

-1.001066E-10

0

-5.208136E-10

0

LT Duality

-1.001089E-10

9.0561720E-16

-5.208556E-10

9.051461E-16

Numerical result produced with Cuhre (Cuba Library) [Hahn "05],
analytic values by LoopTools [Hahn "99].




Numerical Implementation: Results

Triangle (all internal masses equal), varying the mass around the threshold:

Red curve is LoopTools, blue points is LTD

|
L, Sl
—6.x107° -

—8.x107% -

Real part

—0.000012 -

—0.000014 -

—0.00001 |-

Re

~5.x107° i
~0.00001 |

~0.000015 -

Imaginary part

~0.00002 -

—0.000025 -

—0.00003 -

Im

|
1.2

Red and blue are one top of each other! Good precision close to threshold!




Numerical Implementation: Results

Pentagon, varying the mass, all internal masses equal:
Red curve is LoopTools, blue points is LTD

Re | Im
““““““““ O‘.6 ‘ : : : : : ‘ ‘ ‘ ‘ ‘ s ‘ | | | | | | | | | ) ‘ | | | | ‘ | | | | | | | 1.2
iy 5

Even complex structures are picked up! Up to b detormations!
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Conclusions and outlook

* The Tree-Loop Duality lets us rewrite loop integrals (scattering
amplitudes) as linear combinations of tree-level objects.

+ [t aims for a holistic approach, treating real and virtual corrections
simultaneously in a Monte Carlo event generator.

+ Partial cancellation of singularities among Dual Integrals, remaining
singularities in a finite region of the loop three-momentum.

* (General purpose numerical implementation soon!



