
Multiloop QCD & CBK identities
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• intro: massless propagators in multiloop QCD: main applications

• mini-history and current status of the art

• the problem of reliabilty of 5-loop calculations

• Conformal Symmetry at work:
CBK (Crewther-Broadhurst-Kataev relations) and their implications for very
nontrivial checks of the five-loop results on the Adler function

• a new contribution⋆ to the the Bjorken SR for polarized scattering qt
O(αs

4), its (ir)relevance to physics⋆ and its compliance with the CBK-
relation /new result!/

• relevance of O(αs
4) term in the Bjorken sum rule: interplay between higher

order PT corrections to the Bjorken SR for polarized scattering and higher
twist contributions

⋆ ignited by: S.A. Larin, The singlet contribition to the Bjorken SR for polarized DIS, arxiV:1303.4021



multiloop /in pQCD but not only!/ problems reducible to

massless propagators (p-integrals for brevity)

• 2-points correlators at large energies (massless term + O(m2
q) corrections)

via the optical theorem lead to:

R(s) = σtot(e
+e−→ hadrons)/σ(e+e−→ µ+µ−)

semi-leptonic τ -decays

Γ(Z → hadrons)

Γ(H → b̄b) and Γ(H → gg) /via a top quark loop/

• beta-functions and anomalous dimensions

• coefficient functions in OPE of 2 local operators (DIS, SVZ sum rules,. . . )

• massless QCD propagators (e.g. gluon self-energy in the Landau gauge,
useful for lattice)



Anom. Dim. from p-integrals

IRR (Infrared ReaRrangement)/Vladimirov, (78)/

+
IR R∗ -operation /K. Ch., Smirnov (1984)/ lead to

main THEOREM of RG-calculations:

any (L+1) loop UV counterterm (read: any (L+1) loop MS Anomalous
Dimension) can be expressed through pole and constant terms of some

L-loop p-integrals

Corollary:

absorptive part of any (L+1) massless 2-point correlator can be expressed
through pole and constant terms of some L-loop p-integrals



THEOREM + Corollary

is our key tool for multiloop RG calculations as it reduces the general task of evaluation

of (L+1)-loop UV counterterms (absrptive part of (L+1)-loop 2-point massless correlators)

to a well-defined and clearly posed purely mathematical problem: the calculation of L-loop

p-integrals (that is massless propagator-type FI’s).

In the following we shall refer to the latter as the L-loop Problem.

1. 1-loop Problem is trivial.

2. the 2-loop Problem was solved after inventing and developing the Gegenbauer polynomial

technique in x-space (GPTX) (K.Ch.,F. Tkachov (1980)). Starting idea: : an x-space scalar

propagator in D = 4 − 2ǫ dimensions can be always expanded in spherical harmonics

ortogohonal on unit sphere in D-dimensions (r1 > r2, λ = 1 − ǫ)

1

(~x1 − ~x2)λ
=

1

rλ
1

∑

n≥0

C
λ
n(x̂1x̂2)

(r1

r2

)n

(x̂1x̂2 ≡ ~x1 ~x2/(r1r2))

GTPX is applicable to analytically compute some quite non-trivial three and even higher loop

p-integrals. However, in practice calculations quickly get clumsy, especially for diagrams with

numerators. Nevertheless, it proved to be very usefull in cases of scalar diagrams with many

multilinear vertexes /appear frequently in supersymmetric theories/



An impressive example of GPTX in action (8 loops!!)

+ many more similar integrals

copied from the recent work (January of 2013):

“The Leading Order Dressing Phase in ABJM Theory”

Andrea Mauri, Alberto Santambrogio, Stefano Scoleri, arXiv:1301.7732 [hep-th]



The main breakthrough at the three loop level happened with elaborating

the method of integration by parts (IBP) of integrals.

Historical references:

At one loop, IBP (for DR integrals) was used in ⋆, a crucial step —

an appropriate modification of the integrand before differentiation was

undertaken in ⋆⋆ (in momentum space, 2 and 3 loops) and in ⋆⋆⋆ (in

position space, 2 loops)

⋆ G. ′t Hooft and M. Veltman (1979)
⋆⋆⋆ A. Vasiliev, Yu. Pis’mak and Yu. Khonkonen (1981)
⋆⋆ F. Tkachov (1981); K. Ch. and F. Tkachov (1981)



With the use of IBP identities the 3-loop Problem was completely solved and

corresponding (manually constructed) algorithm was effectively implemented first in

SCHOONSCHIP CAS (Gorishny, Larin, Surguladze, and Tkachov) and then with

FORM (Vermaseren, Larin, Tkachov, /1991/ . . . Vermaseren 2000–2012).

This achievement resulted to a host of various important 3- and 4-four loop calculations
performed by different teams during 80-th and 90-th.

Note that the 4-loop correction to the QCD β function was done only as late as in
1996 and using “massive” way /van Ritbergen, Vermaseren,and Larin/; the reason
was too complicated combinatorics of the IR reduction



4-loop Problem has been under study in the Karlsruhe-Moscow group (P. Baikov,
K.Ch., J. Kühn . . . ) since late 90th. It is essentially solved by now with the help of
1/D expansion /reduction to masters, implemented as a FORM program BAICER/
and Glue-and-Cut symmetry (analytical evaluation of all necessary masters)

As a result during last 12 years in our group the the results for the Adler function,
RV V (s) and a closely related quantity – Z-decay rate into hadrons have been extended
by one more loop (that is to order α4

s, which corresponds 5-loop for the Adler function).

These results +some others related to 5 and 4-loop correlators (Higgs decays into hadrons, etc.) can

be found in:

Phys.Rev.Lett. 88 (2002) 01200

Phys.Rev.Lett. 95 (2005) 012003

Phys.Rev.Lett. 96 (2006) 012003

Phys.Rev.Lett. 97 (2006) 061803

Phys.Rev.Lett.101:012002,2008

Phys.Rev.Lett. 102 (2009) 212002

Phys.Rev.Lett.104:132004,2010

Phys.Rev.Lett. 108 (2012) 222003

JHEP 1207 (2012) 017

Phys.Lett. B714 (2012) 62-65



Example of Phenomenological Relevance

• With previous α3
s calculation⋆ of Γh

Z, the theoretical errors were
comparable with the experimental ones and, in despair, everybody
was using the famous Kataev&Starshenko /1993/ estimation of the
α4
s term which (incidentally?) has happened to be quite close to the true number!

• After our calculations the situation has become significantly better,
especially for Γh

Z, where the the theoretical error was reduced by a
factor of four!

• α4
s correction to the τ decay rate has decreased the theoretical error

and improved stability the result wrt the renormalization scale (µ)
variation

⋆ Gorishnii, Kataev, Larin, (1991); Surguladze, Samuel, (1991); (both used Feynman gauge); K. Ch.

(1997) (in general covariant gauge)



How reliable are available results at ≤ 4 loops and 5 loops?

A lot of things might go wrong in a multyloop (and usuallymulti-month
if not in a sense years) calculation: from

• a trivial normalization factor buried somewhere in your programs and not expanded
deeply enough in ǫ = 2−D/2 (this is exactly was happened with the very first calculation of

the Adler function in O(α3
s) /Gorishny, Kataev and Larin, 1988/, the result was corrected only by

three years after)

• . . .

• to a bug in FORM which shows itself irregularly:
”it affected mainly very big programs that needed the fourth stage of the
sorting rather intensively and it showed itself mainly with TFORM with a
probability of occurring proportional to at least W 3 if W is the number of
workers.” (a recent citation of the FORM creator and leading maintainer Jos
Vermaseren)



Four loop RG

At 4 loops every calculation was repeated (and confirmed!) by independent

computation(s):

4-loop QED β function (in QCD) + R-ratio at α3
s: an original (Feynman gauge

result) /Gorishny, Larin, Kataev (1991)/ was confirmed 5 years later

/K. Ch. (1996), (general covariant gauge)/

4-loop QCD β function /T. van Ritbergen, J. Vermaseren, S .Larin, (1997)/

was confirmed 8 years later /M. Czakon, (2004)/ (general covariant gauge in

both cases)

4-loop quark anomalous dimension was computed 2 times (general covariant

gauge in both cases) once with massless and once with massive setups with

identical results

all master integrals apearing in 4-loop calculations (both massless props

and massive tadpoles) have been evaluated many times independently, both

analytically and numerically



Five loop RG

Here the situation is not so good: since 2002 we have performed many 5-loop
RG calculations:

and (almost) no one has yet been confirmed in full by an independent
computation. An exception is quark and gluon form factors to three
loops in massless QCD: reduction to masters was done in 2 independent
ways (with BAICER and FIRE); the pole part was found first by
/S. Moch, J.A.M. Vermaseren, A. Vogt (2005)/

All master p-integrals appearing in 5-loop calculations (4-loop massless props)
are certainly correct (confirmed by 2 analytical and one numerical — all
independent — evaluations).

But how to check two reductions:

1. 4-loop input FI’s (typically ≈ 108) to 28 masters (performed via a
sophisticated FORM program)

and

2. IR reduction from 5 to 4 loops (human made and also quite complicated)



Exactly at this point CBK (Crewther-Broadhurst-Kataev)

relations (conformal symmetry based) enter into the game and

provide us with extremely powerful and highly non-trivial test of

the 5-loop Adler function /the check has been first suggested by

Andrei Kataev/



Bjorken Sum Rule

• the polarized Bjorken sum rule (as ≡
αs
π )

Bjp(Q2) =

∫ 1

0

[gep1 (x,Q2)− gen1 (x,Q2)]dx =
1

6
|
gA
gV
|CBjp(as)

Coefficient function CBjp(as) is fixed by OPE of two EM currents (up to power
suppressed corrections)

i

∫

TV E
α (x)V E

β (0)eiqxdx|q2→∞ ≈
qσ

Q2
ǫαβρσ×

{

Tr[E2tc] C
Bjp(as)

}

Ac
ρ(0) + . . .

where E = diag(Qi),

V E
α = ψEγρψ is the EM current,

Ac
ρ = ψtcγρψ is (non-singlet!) axial current and Q2 = −q2



Evaluation of L-loop corrections to a CF of OPE could be done in terms of massless L-loop

propagators (S. Gorisny, S. Larin and F. Tkachov (1982)) =⇒ one could use techniques

developed for p-integrals

At order α3
s the CF was computed in early nineties /Larin, Vermaseren, 91/.The next order is

contributed by about 54 thousand of 4-loop diagrams . . . (cmp. to ≈ 20 thousand of 5-loop

diagrams contributing to R(s) at the same order)

We have computed the 4-loop O(α4
s) contribution to /PRL, 104 (2010) 1320004/ CBjp(as)

for generic color group with two aims: to confront to exp. data (here SU(3) would be

enough) and to check the Adler function via CBK relation



The Crewther relation states that in the conformal invariant limit

(β ≡ 0) CBjp(as) is related to the (nonsinglet) Adler function via the

following beautiful equality

CBjp(as)D
NS(as))|c−i = 1

its generalization for real QCD reads:

CBjp(as)D
NS(as) = 1 +

β(as)

as

[

KNS = K1 as + K2 a
2
s + K3 a

3
s + .

Main ingredients of the derivation: the AVV 3-point function

and constraints on it from (approximate) conformal invariance +

Adler-Bardeen anomaly theorem



Crewther Relation: (short) bibliography

discovered: R.J. Crewther, Phys. Rev. Lett. 28, 1421 (1972).

generalized for “real” QCD:

D.J. Broadhurst and A.L. Kataev, Phys. Lett. B 315, 179 (1993)

further developed:
G.T. Gabadadze and A.L. Kataev,JETP Lett. 61, 448 (1995). S.J. Brodsky, G.T.
Gabadadze, A.L. Kataev and H.J. Lu, Phys. Lett. B 372, 133 (1996); . . .
A. Kataev and S. Mikhailov, Archive:1011.5248; recent discussion in A. Kataev,
Archive: 1305.4605

”proven” (still with some hand-waving):
R.J. Crewther, Phys. Lett. B 397, 137 (1997).
V. M. Braun, G. P. Korchemsky and D. Müller, Prog. Part. Nucl. Phys. 51, 311
(2003)



Which exactly constraints come from the Crewther relation?

CBjp(as)C
NS
D (as) = 1 +

β(as)

as

[

K1 as +K2 a
2
s +K3 a

3
s + . . .

]

If it is valid at order ans , then at the next order an+1
s , we have

(dn+1 − C
Bjp
n+1 + interference terms) an+1

s = β0 as

[

Kn a
n
s

]

α1
s : (d1 − C1) : CF⇐⇒K0 ≡ 0← one constraint

α2
s : (d2 − C2) : C2

F , T CF , CF CA⇐⇒K1 : CF ← two constraints

α3
s : (d3 − C3) : C

3
F , C

2
FCA , CFC

2
A , C

2
FT ,CFCAT ,CFT

2

m

K2 : C
2
F , CFCA, CFT← three constraints



At last, at O(α4
s) there exist exactly 12 color strtuctures:

C4
F , C

3
FCA , C

2
FC

2
A , CFC

3
A , C

3
FTFnf , C

2
FCATFnf ,

CFC
2
ATFnf , C

2
FT

2
Fn

2
f , CFCAT

2
Fn

2
f , CFT

3
Fn

3
f , d

abcd
F dabcdA , nfd

abcd
F dabcdF

while the coefficient K3 is contributed by only 6 color structures:

CFT
2 , CF C

2
A , C

2
F T ,CF CA T ,C

2
F CA , C

3
F

Thus, we have 12-6 = 6 constraints on the difference

d4 − (CBjp)4

3 of them are very simple: the above difference cannot contain

C4
F , d

abcd
F dabcdA nfd

abcd
F dabcdF

remaining three are a bit more complicated



d4 (1/CBjp)4

C4
F

4157
2048 + 3

8 ζ3
4157
2048 + 3

8 ζ3

nf
dabcdF dabcdF

dR
−13

16 − ζ3 +
5
2 ζ5 −13

16 − ζ3 +
5
2 ζ5

dabcdF dabcdA
dR

3
16 − 1

4 ζ3 −
5
4 ζ5

3
16 − 1

4 ζ3 −
5
4 ζ5

CFT
3
f −6131

972 + 203
54 ζ3 +

5
3 ζ5 −605

972

C2
FT

2
f

5713
1728 − 581

24 ζ3 +
125
6 ζ5 + 3 ζ2

3
869
576 − 29

24 ζ3

CFT
2
fCA

340843
5184 − 10453

288 ζ3 −
170
9 ζ5 −

1
2 ζ

2
3

165283
20736 + 43

144 ζ3 −
5
12 ζ5 +

1
6 ζ

2
3

C3
FTf

1001
384 + 99

32 ζ3 −
125
4 ζ5 +

105
4 ζ7 − 473

2304 − 391
96 ζ3 +

145
24 ζ5

C2
FTfCA

32357
13824 + 10661

96 ζ3 −
5155
48 ζ5 −

33
4 ζ2

3 − 105
8 ζ7 −17309

13824 + 1127
144 ζ3 −

95
144 ζ5 −

35
4 ζ7

CFTfC
2
A −(··· )

(··· ) +
8609
72 ζ3 +

18805
288 ζ5 −

11
2 ζ2

3 + 35
16 ζ7 −(··· )

(··· ) −
59
64 ζ3 +

1855
288 ζ5 −

11
12 ζ

2
3 + 35

16 ζ7

C3
FCA −253

32 − 139
128 ζ3 +

2255
32 ζ5 −

1155
16 ζ7 −8701

4608 + 1103
96 ζ3 −

1045
48 ζ5

C2
FC

2
A −592141

18432 − 43925
384 ζ3 +

6505
48 ζ5 +

1155
32 ζ7 −435425

55296 − 1591
144 ζ3 +

55
9 ζ5 +

385
16 ζ7

CFC
3
A

(··· )
(··· ) −

(··· )
(··· ) ζ3 −

77995
1152 ζ5 +

605
32 ζ2

3 − 385
64 ζ7

(··· )
(··· ) −

(··· )
(··· ) ζ3 −

12545
1152 ζ5 +

121
96 ζ2

3 − 385
64 ζ7



Comments:

The CBK test is highly non-trivial:

• four-loop box-type diagrams (in propagator kinematics) versus five loop propagators

• No IR-trickery is neccessary in calculation of CBjp(as)

• final 4-loop p-integrals are much simpler for OPE (2 instead of 3 squared
propagators inside)

• As a result we have been able to check that CBjp(as) is indeed gauge-independent
(the Adler finction was computed in the simplest Feynman gauge only!)

• Technical note: in the course of our calculations we have had to extend the Larin
treatment of Hooft-Veltman γ5 at 4-loop level (a natural object for the dim. reg., which

really appears in the course of calculations, is γ[µνα] instead of γ5γ
µ with anticommuting γ5; the

mismatch should be corrected by the Larin factor)



Larin (arxiV:1303.4021) has drawn attention to ”missing” contributions to
the Bjorken sum rule:

O(αs
3
) O(αs

4
)

Two important questions:

1. Is CBK relation still valid (no missing contributions to the Adler function as far as we

know)?

2. Any relevance of the new terms to the phenomenology?



Larin (arxiV:1303.4021) has drawn attention to ”missing” contributions to
the Bjorken sum rule:

O(αs
3
) O(αs

4
)

color structures: d
abc

d
abc

= 40/3 (Cf|nfTr|CA)× d
abc

d
abc

Two important questions:

1. Is CBK relation still valid (no missing contributions to the Adler function as far as we

know)? YES

2. Any relevance of the new terms to the phenomenology? /probably/ NO



Bjorken Sum Rule: new term starting from order α3
s:

• the polarized Bjorken sum rule (as ≡
αs
π )

Bjp(Q2) =

∫ 1

0

[gep1 (x,Q2)− gen1 (x,Q2)]dx =
1

6
|
gA
gV
|CBjp(as)

Coefficient function CBjp(as) is fixed by OPE of two EM currents (up to power
suppressed corrections)

i

∫

TV E
α (x)V E

β (0)eiqxdx|q2→∞ ≈
qσ

Q2
ǫαβρσ×

{

Tr[E2tc]C
Bjp(as) + 3Tr[E] CBjp

SI (as)
}

Ac
ρ(0) + . . .

for c=3 (we neglect sea-quarks in nucleons but assume nf=4 to have non-zero Tr(E))
the content of the figure bracket would read:

1

6
CBjp(as) + 3×

2

3
CBjp

SI (as) =
1

6

[

CBjp(as) + 12CBjp
SI (as,mc)

]



Let start from the first question: under which conditions CBK relation will survive if Larin’s terms are

not zero?

(
C

Bjp
NS (as) + C

Bjp
SI (as)

)
D

NS
(as) = 1 +

β(as)

as

[
K

NS
= K1 as + . . .

]

with CBjp
SI (as) proportional new color structure dabcdabc

As β0 = 11
12CA −

Tf nf
3 we conclude that

1. O(αs
3) term in CBjp

SI must be zero (Larin states that it is the case, but in his original work of

1991 there is no discussion at all!)

2. O(αs
4) term in CBjp

SI must have the structure

constβ0 dabcdabc

Indeed, direct calculation gives (preliminary result at α4
s, for massless c-quark):

CBjp
SI (as) = 0 · a3

s +
1

9
β0 d

abcdabc
(αs

π

)4

=
(110

27
−

20

81
nf

)

a4
s =

(

4.074− 0.247nf

)

a4
s ≈ (nf = 4)3 a4

s



Thus, if we assume that c-loop is massless in SI-diagrams and set traditionally nf = 3
for the rest (non-singlet) diagrams we get for full

CBjp
full = CBjp

NS + 12CBjp
SI

the following result:
CBjp

full(nf = 3, 4) =

1− as − 3.583 a2
s − 20.22 a3

s + (−175.7 + 37.037 = −138.663) a4
s

BUT! we should remember 2 things:

1. that typical momentum scale is Q2 = 3GeV2, thus we should expect a ”decoupling

suppression” factor like Q2

4m2
c
< 1

2. with mc 6= 0 the CBK relation stops to work (completely broken conformal
invariance!) and one should expect a nonzero contribution already at O(αs

3) (but

again suppressed by a factor Q2

4m2
c
)



in the effective nf = 3 QCD the Bjorken rule is unambiguous
/modulo higher twists!/

predictions of QCD which can be confronted with experimental data:

0 0.5 1.0 1.5 2.0 2.5 3.0

0

0.04

0.08

0.12

0.16

0.20

 PT NLO
 PT N2LO
 PT N3LO

p-n
1

Q2 (GeV2)

gA/6
APT

Perturbative part of the BSR as a function of the momentum transfer squared Q2 in different orders in both the

APT and standard PT approaches against the combined set of the Jefferson Lab (taken from V.L. Khandramai, R.S.

Pasechnik, D.V. Shirkov, O.P. Solovtsova, O.V. Teryaev, Four-loop QCD analysis of the Bjorken sum rule vs data,

Phys.Lett.B706:340-344,2012).



Higher twist contribution to the Borken (polarized) SR

Γ
p−n
1 (Q

2
) =

|gA|

6

[
1 − ∆

PT
Bj (Q

2
)

]
+

∞∑

i=2

µ2i

Q2i−2
,

Recent analysis of µ4 from exp. data + PT

/Khandramai, Solovtsova, Teryaev, arXiv:1302.3952v1 (2013)/ has demonstrated a huge sensitivity to

the higher order corrections:



Conclusions

• the new (O(αs
4)) contribution to CBjorken

pol (discussed first by Larin a year
ago) is computed (in the massless QCD!), it is a simple, purely rational
number proportional to β0 d

abcdabc as is unambiguously dictated by the
corresponding CBK relation

• Physically, due to the fact that for nf = 3 the current JEM
µ belongs to the

SU(3)f octet (Qu +Qd +Qs ≡ 0) the Larin’s term is completely saturated
by heavy quarks: its effect on the phenomenology is presumably small.
The issue requires further investigation.

• conformal symmetry based CBK relations do provide higly non-trivial and
very usefull constraints on V V ANS triangle amplitude and, consequently, on
the product

CBjp(as)D
NS(as)

in massless QCD

• these constraints have been successfully tested at five loops (with an
account of a new term pointed out by Sergei Larin)



R(s) from p-integrals

Starting object: the polarization operator of EM quark current jµ = eqq̄γµq

Πµν(q) = i

∫

dxeiqx〈0|T [ jvµ(x)j
v
ν(0) ]|0〉 = (−gµνq

2 + qµqν)Π(q2)

related to R(s) through
R(s) ≈ ℑΠ(s− iδ)

Π is not completely physical due to a divergency of T (jvµ(x)j
v
ν(0)) at x → 0, as a result its

normalization mode and corresponding evolution equation reads ((as ≡ αs/π), massless QCD)

Π = Z
em

+ Π
B
(−Q

2
, α

B
s )(

µ
2 ∂

∂µ2
+ β(as)as

∂

∂as

)
Π = γem(as)

At first sight, it would be advantageous to avoid this by considering (obviously RG invariant!) Adler

function defined as D = Q2 ∂
∂Q2Π0 and which is related to R(s) in a unique and simple way

R(s) ↔ D(Q) ⇐= Adler function ≡ Q
2 d

dQ2
Π(q

2
) = Q

2
∫

R(s)

(s + Q2)2
ds



BUT, this is not true!

The reason: O(αs
L) /that is (L + 1)-loop/ Adler function receives, obviously,

contributions from (L+ 1) loop p-integrals (including their constant part).

In fact, only L-loop integrals are enough← HUGE simplification. Indeed, let us rewrite
the RG equation for Π as follows:

For massless (L + 1) loop Π0(L = ln µ2

Q2, as) RG equation amounts to

∂

∂L
Π0 = γem(as)−

(

β(as)as

∂

∂as

)

Π0

ր տ

(L+1) loop anom. dim.
L-loop integrals only contribute
due to the factor of β(as)

If one knows the rhs to αL
s , then one could trivially construct the Adler function

with the same accuracy!

Anomalous dimensions (as well as β-functions) are simple (no-scale)
polynomilas in αs /at least in MS-like schemes/ =⇒ one loop could be
always ”undone” with so-called Infrared Rearrangement trick


