Multiloop QCD \& CBK identities

based on works of "Karlsruhe-Moscow group" (2001-2014-...)

Pavel Baikov (MSU), Johannes Kühn (KIT)
Konstantin Chetyrkin (KIT)

LHCPHENONET, Berlin, 24 November 2014

- intro: massless propagators in multiloop QCD: main applications
- mini-history and current status of the art
- the problem of reliabilty of 5-loop calculations
- Conformal Symmetry at work: CBK (Crewther-Broadhurst-Kataev relations) and their implications for very nontrivial checks of the five-loop results on the Adler function
- a new contribution ${ }^{\star}$ to the the Bjorken $S R$ for polarized scattering qt $\mathcal{O}\left(\alpha_{s}{ }^{4}\right)$, its (ir)relevance to physics* and its compliance with the CBKrelation /new result!/
- relevance of $\mathcal{O}\left(\alpha_{s}{ }^{4}\right)$ term in the Bjorken sum rule: interplay between higher order PT corrections to the Bjorken SR for polarized scattering and higher twist contributions
* ignited by:
S.A. Larin, The singlet contribition to the Bjorken SR for polarized DIS, arxiV:1303.4021
multiloop /in pQCD but not only!/ problems reducible to massless propagators (p-integrals for brevity)
- 2-points correlators at large energies (massless term $+\mathcal{O}\left(m_{q}^{2}\right)$ corrections) via the optical theorem lead to:
$R(s)=\sigma_{t o t}\left(e^{+} e^{-} \rightarrow\right.$ hadrons $) / \sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)$
semi-leptonic $\boldsymbol{\tau}$-decays
$\Gamma(Z \rightarrow$ hadrons $)$
$\Gamma(H \rightarrow \bar{b} b)$ and $\Gamma(H \rightarrow g g) /$ via a top quark loop/
- beta-functions and anomalous dimensions
- coefficient functions in OPE of 2 local operators (DIS, SVZ sum rules,... .)
- massless QCD propagators (e.g. gluon self-energy in the Landau gauge, useful for lattice)

Anom. Dim. from p-integrals

IRR (Infrared ReaRrangement)/Vladimirov, (78)/

IR R^{*}-operation /K. Ch., Smirnov (1984)/ lead to
main THEOREM of RG-calculations:
any ($L+1$) loop UV counterterm (read: any ($L+1$) loop $\overline{M S}$ Anomalous Dimension) can be expressed through pole and constant terms of some L-loop p-integrals

Corollary:
absorptive part of any ($L+1$) massless 2-point correlator can be expressed through pole and constant terms of some L-loop p-integrals

THEOREM + Corollary

is our key tool for multiloop RG calculations as it reduces the general task of evaluation of ($L+1$)-loop UV counterterms (absrptive part of ($L+1$)-loop 2-point massless correlators) to a well-defined and clearly posed purely mathematical problem: the calculation of L-loop p-integrals (that is massless propagator-type FI's).

In the following we shall refer to the latter as the L-loop Problem.

1. 1-loop Problem is trivial.
2. the 2-loop Problem was solved after inventing and developing the Gegenbauer polynomial technique in x-space (GPTX) (K.Ch.,F. Tkachov (1980)). Starting idea: : an x-space scalar propagator in $D=4-2 \epsilon$ dimensions can be always expanded in spherical harmonics ortogohonal on unit sphere in D-dimensions ($r_{1}>r_{2}, \lambda=1-\epsilon$)

$$
\frac{1}{\left(\vec{x}_{1}-\vec{x}_{2}\right)^{\lambda}}=\frac{1}{r_{1}^{\lambda}} \sum_{n \geq 0} C_{n}^{\lambda}\left(\widehat{x}_{1} \widehat{x}_{2}\right)\left(\frac{r_{1}}{r_{2}}\right)^{n} \quad\left(\widehat{x}_{1} \widehat{x}_{2} \equiv \overrightarrow{x_{1}} \overrightarrow{x_{2}} /\left(r_{1} r_{2}\right)\right)
$$

GTPX is applicable to analytically compute some quite non-trivial three and even higher loop p-integrals. However, in practice calculations quickly get clumsy, especially for diagrams with numerators. Nevertheless, it proved to be very usefull in cases of scalar diagrams with many multilinear vertexes /appear frequently in supersymmetric theories/

An impressive example of GPTX in action (8 loops!!)

$$
\begin{aligned}
& \bar{I}_{8 d}=\square=\frac{1}{(4 \pi)^{8}}\left(-\frac{1}{2048 \varepsilon^{4}}+\frac{1}{192 \varepsilon^{3}}-\frac{1}{64 \varepsilon^{2}}-\frac{11}{192 \varepsilon}\right), \\
& \bar{I}_{8 e}=\square=\frac{1}{(4 \pi)^{8}}\left(-\frac{1}{6144 \varepsilon^{4}}+\frac{1}{256 \varepsilon^{3}}-\frac{19}{384 \varepsilon^{2}}+\frac{5}{16 \varepsilon}\right) .
\end{aligned}
$$

For their evaluation, we used the Gegenbauer polynomials x-space technique (GPXT). We briefly review this technique in Appendix C.

+ many more similar integrals
copied from the recent work (January of 2013):
"The Leading Order Dressing Phase in ABJM Theory"
Andrea Mauri, Alberto Santambrogio, Stefano Scoleri, arXiv:1301.7732 [hep-th]

The main breakthrough at the three loop level happened with elaborating the method of integration by parts (IBP) of integrals.

Historical references:
At one loop, IBP (for DR integrals) was used in *, a crucial step an appropriate modification of the integrand before differentiation was undertaken in ${ }^{\star \star}$ (in momentum space, 2 and 3 loops) and in ${ }^{* * *}$ (in position space, 2 loops)

* G. 't Hooft and M. Veltman (1979)
*** A. Vasiliev, Yu. Pis'mak and Yu. Khonkonen (1981)
** F. Tkachov (1981); K. Ch. and F. Tkachov (1981)

With the use of IBP identities the 3-loop Problem was completely solved and corresponding (manually constructed) algorithm was effectively implemented first in SCHOONSCHIP CAS (Gorishny, Larin, Surguladze, and Tkachov) and then with FORM (Vermaseren, Larin, Tkachov, /1991/ ... Vermaseren 2000-2012).

This achievement resulted to a host of various important 3- and 4-four loop calculations performed by different teams during 80 -th and 90 -th.

Note that the 4-loop correction to the QCD β function was done only as late as in 1996 and using "massive" way /van Ritbergen, Vermaseren, and Larin/; the reason was too complicated combinatorics of the IR reduction

4-loop Problem has been under study in the Karlsruhe-Moscow group (P. Baikov, K.Ch., J. Kühn ...) since late 90th. It is essentially solved by now with the help of $1 / D$ expansion /reduction to masters, implemented as a FORM program BAICER/ and Glue-and-Cut symmetry (analytical evaluation of all necessary masters)
As a result during last 12 years in our group the the results for the Adler function, $R^{V V}(s)$ and a closely related quantity - Z-decay rate into hadrons have been extended by one more loop (that is to order α_{s}^{4}, which corresponds 5-loop for the Adler function).

These results +some others related to 5 and 4-loop correlators (Higgs decays into hadrons, etc.) can be found in:

```
Phys.Rev.Lett. }88\mathrm{ (2002) }0120
Phys.Rev.Lett. }95\mathrm{ (2005) }01200
Phys.Rev.Lett. }96\mathrm{ (2006) }01200
Phys.Rev.Lett. }97\mathrm{ (2006) }06180
Phys.Rev.Lett.101:012002,2008
Phys.Rev.Lett. 102 (2009) }21200
Phys.Rev.Lett.104:132004,2010
Phys.Rev.Lett. 108 (2012) }22200
JHEP 1207 (2012) 017
Phys.Lett. B714 (2012) 62-65
```


Example of Phenomenological Relevance

- With previous α_{s}^{3} calculation* of Γ_{Z}^{h}, the theoretical errors were comparable with the experimental ones and, in despair, everybody was using the famous Kataev\&Starshenko /1993/ estimation of the α_{s}^{4} term which (incidentally?) has happened to be quite close to the true number!
- After our calculations the situation has become significantly better, especially for Γ_{Z}^{h}, where the the theoretical error was reduced by a factor of four!
- α_{s}^{4} correction to the τ decay rate has decreased the theoretical error and improved stability the result wrt the renormalization scale (μ) variation
* Gorishnii, Kataev, Larin, (1991); Surguladze, Samuel, (1991); (both used Feynman gauge); K. Ch. (1997) (in general covariant gauge)

How reliable are available results at ≤ 4 loops and 5 loops?

A lot of things might go wrong in a multyloop (and usually multi-month if not in a sense years) calculation: from

- a trivial normalization factor buried somewhere in your programs and not expanded deeply enough in $\epsilon=2-D / 2$ (this is exactly was happened with the very first calculation of the Adler function in $\mathcal{O}\left(\alpha_{s}^{3}\right) / G o r i s h n y$, Kataev and Larin, 1988/, the result was corrected only by three years after)
- to a bug in FORM which shows itself irregularly:
"it affected mainly very big programs that needed the fourth stage of the sorting rather intensively and it showed itself mainly with TFORM with a probability of occurring proportional to at least W^{3} if W is the number of workers." (a recent citation of the FORM creator and leading maintainer Jos Vermaseren)

Four loop RG

At 4 loops every calculation was repeated (and confirmed!) by independent computation(s):

4-loop QED β function (in QCD) $+R$-ratio at α_{s}^{3} : an original (Feynman gauge result) /Gorishny, Larin, Kataev (1991)/ was confirmed 5 years later /K. Ch. (1996), (general covariant gauge)/

4-loop QCD β function /T. van Ritbergen, J. Vermaseren, S .Larin, (1997)/ was confirmed 8 years later /M. Czakon, (2004)/ (general covariant gauge in both cases)

4-loop quark anomalous dimension was computed 2 times (general covariant gauge in both cases) once with massless and once with massive setups with identical results
all master integrals apearing in 4-loop calculations (both massless props and massive tadpoles) have been evaluated many times independently, both analytically and numerically

Five loop RG

Here the situation is not so good: since 2002 we have performed many 5-loop RG calculations:
and (almost) no one has yet been confirmed in full by an independent computation. An exception is quark and gluon form factors to three loops in massless QCD: reduction to masters was done in 2 independent ways (with BAICER and FIRE); the pole part was found first by /S. Moch, J.A.M. Vermaseren, A. Vogt (2005)/

All master p-integrals appearing in 5-loop calculations (4-loop massless props) are certainly correct (confirmed by 2 analytical and one numerical - all independent - evaluations).

But how to check two reductions:

1. 4-loop input FI's (typically $\approx 10^{8}$) to 28 masters (performed via a sophisticated FORM program)
and
2. IR reduction from 5 to 4 loops (human made and also quite complicated)

Exactly at this point CBK (Crewther-Broadhurst-Kataev)
relations (conformal symmetry based) enter into the game and
provide us with extremely powerful and highly non-trivial test of
the 5-loop Adler function /the check has been first suggested by
Andrei Kataev/

Bjorken Sum Rule

- the polarized Bjorken sum rule $\left(a_{s} \equiv \frac{\alpha_{s}}{\pi}\right)$

$$
\boldsymbol{B} j p\left(Q^{2}\right)=\int_{0}^{1}\left[g_{1}^{e p}\left(x, Q^{2}\right)-g_{1}^{e n}\left(x, Q^{2}\right)\right] d x=\frac{1}{6}\left|\frac{g_{A}}{g_{V}}\right| C^{B j p}\left(a_{s}\right)
$$

Coefficient function $C^{B j p}\left(a_{s}\right)$ is fixed by OPE of two EM currents (up to power suppressed corrections)
$\left.i \int T V_{\alpha}^{E}(x) V_{\beta}^{E}(0) e^{i q x} d x\right|_{q^{2} \rightarrow \infty} \approx \frac{q^{\sigma}}{Q^{2}} \epsilon_{\alpha \beta \rho \sigma} \times$

$$
\left\{\operatorname{Tr}\left[E^{2} t_{c}\right] C^{B j p}\left(a_{s}\right)\right\} A_{\rho}^{c}(0)+\ldots
$$

where $E=\operatorname{diag}\left(Q_{i}\right)$,
$V_{\alpha}^{E}=\bar{\psi} E \gamma_{\rho} \psi$ is the EM current, $A_{\rho}^{c}=\bar{\psi} t^{c} \gamma_{\rho} \psi$ is (non-singlet!) axial current and $Q^{2}=-q^{2}$

Evaluation of L-loop corrections to a CF of OPE could be done in terms of massless L-loop propagators (S. Gorisny, S. Larin and F. Tkachov (1982)) \Longrightarrow one could use techniques developed for p-integrals

At order α_{s}^{3} the CF was computed in early nineties /Larin, Vermaseren, 91/.The next order is contributed by about 54 thousand of 4-loop diagrams \ldots (cmp. to ≈ 20 thousand of 5-loop diagrams contributing to $R(s)$ at the same order)

We have computed the 4-loop $\mathcal{O}\left(\alpha_{s}^{4}\right)$ contribution to /PRL, 104 (2010) 1320004/ $C^{B j p}\left(a_{s}\right)$ for generic color group with two aims: to confront to exp. data (here $\operatorname{SU}(3)$ would be enough) and to check the Adler function via CBK relation

The Crewther relation states that in the conformal invariant limit $(\beta \equiv 0) C_{B j p}\left(a_{s}\right)$ is related to the (nonsinglet) Adler function via the following beautiful equality

$$
\left.C_{B j p}\left(a_{s}\right) D^{N S}\left(a_{s}\right)\right)\left.\right|_{c-i}=1
$$

its generalization for real QCD reads:

$$
C^{B j p}\left(a_{s}\right) D^{N S}\left(a_{s}\right)=1+\frac{\beta\left(a_{s}\right)}{a_{s}}\left[K^{N S}=K_{1} a_{s}+K_{2} a_{s}^{2}+K_{3} a_{s}^{3}+\right.
$$

Main ingredients of the derivation: the AVV 3-point function and constraints on it from (approximate) conformal invariance + Adler-Bardeen anomaly theorem

Crewther Relation: (short) bibliography

discovered: R.J. Crewther, Phys. Rev. Lett. 28, 1421 (1972).
generalized for "real" QCD:
D.J. Broadhurst and A.L. Kataev, Phys. Lett. B 315, 179 (1993)
further developed:
G.T. Gabadadze and A.L. Kataev, JETP Lett. 61, 448 (1995). S.J. Brodsky, G.T.

Gabadadze, A.L. Kataev and H.J. Lu, Phys. Lett. B 372, 133 (1996); ...
A. Kataev and S. Mikhailov, Archive:1011.5248; recent discussion in A. Kataev, Archive: 1305.4605
"proven" (still with some hand-waving):
R.J. Crewther, Phys. Lett. B 397, 137 (1997).
V. M. Braun, G. P. Korchemsky and D. Müller, Prog. Part. Nucl. Phys. 51, 311 (2003)

Which exactly constraints come from the Crewther relation?

$$
C^{B j p}\left(a_{s}\right) C_{D}^{N S}\left(a_{s}\right)=1+\frac{\beta\left(a_{s}\right)}{a_{s}}\left[K_{1} a_{s}+K_{2} a_{s}^{2}+K_{3} a_{s}^{3}+\ldots\right]
$$

If it is valid at order a_{s}^{n}, then at the next order a_{s}^{n+1}, we have

$$
\begin{gathered}
\left(d_{n+1}-C_{n+1}^{B j p}+\text { interference terms }\right) a_{s}^{n+1}=\beta_{0} a_{s}\left[K_{n} a_{s}^{n}\right] \\
\alpha_{s}^{1}:\left(d_{1}-C_{1}\right): C_{F} \Longleftrightarrow K_{0} \equiv 0 \leftarrow \text { one constraint } \\
\alpha_{s}^{2}:\left(d_{2}-C_{2}\right): C_{F}^{2}, T C_{F}, C_{F} C_{A} \Longleftrightarrow K_{1}: C_{F} \leftarrow \text { two constraints } \\
\alpha_{s}^{3}:\left(d_{3}-C_{3}\right): C_{F}^{3}, C_{F}^{2} C_{A}, C_{F} C_{A}^{2}, C_{F}^{2} T, C_{F} C_{A} T, C_{F} T^{2} \\
\mathbb{1} \\
K_{2}: C_{F}^{2}, C_{F} C_{A}, C_{F} T \leftarrow \text { three constraints }
\end{gathered}
$$

At last, at $\mathcal{O}\left(\alpha_{s}^{4}\right)$ there exist exactly 12 color strtuctures:

$$
\begin{gathered}
C_{F}^{4}, C_{F}^{3} C_{A}, C_{F}^{2} C_{A}^{2}, C_{F} C_{A}^{3}, C_{F}^{3} T_{F} n_{f}, C_{F}^{2} C_{A} T_{F} n_{f}, \\
C_{F} C_{A}^{2} T_{F} n_{f}, C_{F}^{2} T_{F}^{2} n_{f}^{2}, C_{F} C_{A} T_{F}^{2} n_{f}^{2}, C_{F} T_{F}^{3} n_{f}^{3}, d_{F}^{a b c d} d_{A}^{a b c d}, n_{f} d_{F}^{a b c c} d_{F}^{a b c d}
\end{gathered}
$$

while the coefficient K_{3} is contributed by only 6 color structures:

$$
C_{F} T^{2}, C_{F} C_{A}^{2}, C_{F}^{2} T, C_{F} C_{A} T, C_{F}^{2} C_{A}, C_{F}^{3}
$$

Thus, we have 12-6 = $\mathbf{6}$ constraints on the difference

$$
d_{4}-\left(C^{B j p}\right)_{4}
$$

3 of them are very simple: the above difference cannot contain

$$
C_{F}^{4}, d_{F}^{a b c d} d_{A}^{a b c d} \quad n_{f} d_{F}^{a b c d} d_{F}^{a b c d}
$$

remaining three are a bit more complicated

	d_{4}	$\left(1 / C^{B j p}\right)_{4}$
C_{F}^{4}	$\frac{4157}{2048}+\frac{3}{8} \zeta_{3}$	$\frac{4157}{2048}+\frac{3}{8} \zeta_{3}$
$n_{f} \frac{d_{F}^{a b c d} d_{F}^{a b c d}}{d_{R}}$	$-\frac{13}{16}-\zeta_{3}+\frac{5}{2} \zeta_{5}$	$-\frac{13}{16}-\zeta_{3}+\frac{5}{2} \zeta_{5}$
$\frac{d_{F}^{a b c d_{A}^{a b c d}}}{d_{R}}$	$\frac{3}{16}-\frac{1}{4} \zeta_{3}-\frac{5}{4} \zeta_{5}$	$\frac{3}{16}-\frac{1}{4} \zeta_{3}-\frac{5}{4} \zeta_{5}$
$C_{F} T_{f}^{3}$	$-\frac{6131}{972}+\frac{203}{54} \zeta_{3}+\frac{5}{3} \zeta_{5}$	$-\frac{605}{972}$
$C_{F}^{2} T_{f}^{2}$	$\frac{5713}{1728}-\frac{581}{24} \zeta_{3}+\frac{125}{6} \zeta_{5}+3 \zeta_{3}^{2}$	$\frac{869}{576}-\frac{29}{24} \zeta_{3}$
$C_{F} T_{f}^{2} C_{A}$	$\frac{340843}{5184}-\frac{10453}{288} \zeta_{3}-\frac{170}{9} \zeta_{5}-\frac{1}{2} \zeta_{3}^{2}$	$\frac{165283}{20776}+\frac{43}{144} \zeta_{3}-\frac{5}{12} \zeta_{5}+\frac{1}{6} \zeta_{3}^{2}$
$C_{F}^{3} T_{f}$	$\frac{1001}{384}+\frac{99}{32} \zeta_{3}-\frac{125}{4} \zeta_{5}+\frac{105}{4} \zeta_{7}$	$-\frac{473}{2304}-\frac{391}{96} \zeta_{3}+\frac{145}{24} \zeta_{5}$
$C_{F}^{2} T_{f} C_{A}$	$\frac{32357}{13824}+\frac{10661}{96} \zeta_{3}-\frac{5155}{48} \zeta_{5}-\frac{33}{4} \zeta_{3}^{2}-\frac{105}{8} \zeta_{7}$	$-\frac{17309}{13824}+\frac{1127}{144} \zeta_{3}-\frac{95}{144} \zeta_{5}-\frac{35}{4} \zeta_{7}$
$C_{F} T_{f} C_{A}^{2}$	$-\frac{(\cdots)}{(\cdots)}+\frac{8609}{72} \zeta_{3}+\frac{18805}{288} \zeta_{5}-\frac{11}{2} \zeta_{3}^{2}+\frac{35}{16} \zeta_{7}$	$-\frac{(\cdots)}{(\cdots)}-\frac{59}{64} \zeta_{3}+\frac{1855}{288} \zeta_{5}-\frac{11}{12} \zeta_{3}^{2}+\frac{35}{16} \zeta_{7}$
$C_{F}^{3} C_{A}$	$-\frac{253}{32}-\frac{139}{128} \zeta_{3}+\frac{2255}{32} \zeta_{5}-\frac{1155}{16} \zeta_{7}$	$-\frac{8701}{4608}+\frac{1103}{96} \zeta_{3}-\frac{1045}{48} \zeta_{5}$
$C_{F}^{2} C_{A}^{2}$	$-\frac{592141}{18432}-\frac{43925}{384} \zeta_{3}+\frac{6505}{48} \zeta_{5}+\frac{1155}{32} \zeta_{7}$	$-\frac{435425}{55296}-\frac{1591}{144} \zeta_{3}+\frac{55}{9} \zeta_{5}+\frac{385}{16} \zeta_{7}$
$C_{F} C_{A}^{3}$	$\frac{(\cdots)}{(\cdots)}-\frac{(\cdots)}{(\cdots)} \zeta_{3}-\frac{77995}{1152} \zeta_{5}+\frac{605}{32} \zeta_{3}^{2}-\frac{385}{64} \zeta_{7}$	$\frac{(\cdots)}{(\cdots)}-\frac{(\cdots)}{(\cdots)} \zeta_{3}-\frac{12545}{1152} \zeta_{5}+\frac{121}{96} \zeta_{3}^{2}-\frac{385}{64} \zeta_{7}$

Comments:

The CBK test is highly non-trivial:

- four-loop box-type diagrams (in propagator kinematics) versus five loop propagators
- No IR-trickery is neccessary in calculation of $C_{B j p}\left(a_{s}\right)$
- final 4-loop p-integrals are much simpler for OPE (2 instead of 3 squared propagators inside)
- As a result we have been able to check that $C_{B j p}\left(a_{s}\right)$ is indeed gauge-independent (the Adler finction was computed in the simplest Feynman gauge only!)
- Technical note: in the course of our calculations we have had to extend the Larin treatment of Hooft-Veltman γ_{5} at 4-loop level (a natural object for the dim. reg., which really appears in the course of calculations, is $\gamma^{[\mu \nu \alpha]}$ instead of $\gamma_{5} \gamma^{\mu}$ with anticommuting γ_{5}; the mismatch should be corrected by the Larin factor)

Larin (arxiV:1303.4021) has drawn attention to "missing" contributions to the Bjorken sum rule:

$$
\mathcal{O}\left(\boldsymbol{\alpha}_{s}{ }^{3}\right)
$$

$$
\mathcal{O}\left(\alpha_{s}{ }^{4}\right)
$$

Two important questions:

1. Is CBK relation still valid (no missing contributions to the Adler function as far as we know)?
2. Any relevance of the new terms to the phenomenology?

Larin (arxiV:1303.4021) has drawn attention to "missing" contributions to the Bjorken sum rule:

Two important questions:

1. Is CBK relation still valid (no missing contributions to the Adler function as far as we know)? YES
2. Any relevance of the new terms to the phenomenology? /probably/ NO

Bjorken Sum Rule: new term starting from order α_{s}^{3} :

- the polarized Bjorken sum rule $\left(a_{s} \equiv \frac{\alpha_{s}}{\pi}\right)$

$$
\boldsymbol{B} j p\left(Q^{2}\right)=\int_{0}^{1}\left[g_{1}^{e p}\left(x, Q^{2}\right)-g_{1}^{e n}\left(x, Q^{2}\right)\right] d x=\frac{1}{6}\left|\frac{g_{A}}{g_{V}}\right| C^{B j p}\left(a_{s}\right)
$$

Coefficient function $C^{B j p}\left(a_{s}\right)$ is fixed by OPE of two EM currents (up to power suppressed corrections)
$\left.i \int T V_{\alpha}^{E}(x) V_{\beta}^{E}(0) e^{i q x} d x\right|_{q^{2} \rightarrow \infty} \approx \frac{q^{\sigma}}{Q^{2}} \epsilon_{\alpha \beta \rho \sigma} \times$

$$
\left\{\operatorname{Tr}\left[E^{2} t_{c}\right] C^{B j p}\left(a_{s}\right)+3 \operatorname{Tr}[E] C_{S I}^{B j p}\left(a_{s}\right)\right\} A_{\rho}^{c}(0)+\ldots
$$

for $\mathrm{c}=3$ (we neglect sea-quarks in nucleons but assume $n_{f}=4$ to have non-zero $\operatorname{Tr}(E)$) the content of the figure bracket would read:

$$
\frac{1}{6} C^{B j p}\left(a_{s}\right)+3 \times \frac{2}{3} C_{S I}^{B j p}\left(a_{s}\right)=\frac{1}{6}\left[C^{B j p}\left(a_{s}\right)+12 C_{S I}^{B j p}\left(a_{s}, m_{c}\right)\right]
$$

Let start from the first question: under which conditions CBK relation will survive if Larin's terms are not zero?

$$
\left(C_{N S}^{B j p}\left(a_{s}\right)+C_{S I}^{B j p}\left(a_{s}\right)\right) D^{N S}\left(a_{s}\right)=1+\frac{\beta\left(a_{s}\right)}{a_{s}}\left[K^{N S}=K_{1} a_{s}+\ldots\right]
$$

with $C_{S I}^{B j p}\left(a_{s}\right)$ proportional new color structure $\boldsymbol{d}^{a b c} \boldsymbol{d}^{a b c}$
As $\boldsymbol{\beta}_{0}=\frac{11}{12} C_{A}-\frac{\boldsymbol{T}_{f} n_{f}}{3}$ we conclude that

1. $\mathcal{O}\left(\boldsymbol{\alpha}_{s}{ }^{3}\right)$ term in $C_{S I}^{B j p}$ must be zero (Larin states that it is the case, but in his original work of 1991 there is no discussion at all!)
2. $\mathcal{O}\left(\boldsymbol{\alpha}_{s}{ }^{4}\right)$ term in $C_{S I}^{B j p}$ must have the structure

$\operatorname{const} \boldsymbol{\beta}_{0} d^{a b c} d^{a b c}$

Indeed, direct calculation gives (preliminary result at α_{s}^{4}, for massless c-quark):

$$
\begin{gathered}
C_{S I}^{B j p}\left(a_{s}\right)=0 \cdot a_{s}^{3}+\frac{1}{9} \beta_{0} d^{a b c} d^{a b c}\left(\frac{\alpha_{s}}{\pi}\right)^{4} \\
=\left(\frac{110}{27}-\frac{20}{81} n_{f}\right) a_{s}^{4}=\left(4.074-0.247 n_{f}\right) a_{s}^{4} \approx\left(n_{f}=4\right) 3 a_{s}^{4}
\end{gathered}
$$

Thus, if we assume that c-loop is massless in SI-diagrams and set traditionally $n_{f}=3$ for the rest (non-singlet) diagrams we get for full

$$
C_{f u l l}^{B j p}=C_{N S}^{B j p}+12 C_{S I}^{B j p}
$$

the following result:

$$
\begin{gathered}
C_{f u l l}^{B j p}\left(n_{f}=3,4\right)= \\
1-a_{s}-3.583 a_{s}^{2}-20.22 a_{s}^{3}+(-175.7+37.037=-138.663) a_{s}^{4}
\end{gathered}
$$

BUT! we should remember 2 things:

1. that typical momentum scale is $Q^{2}=3 \mathrm{GeV}^{2}$, thus we should expect a "decoupling suppression" factor like $\frac{Q^{2}}{4 m_{c}^{2}}<1$
2. with $m_{c} \neq 0$ the CBK relation stops to work (completely broken conformal invariance!) and one should expect a nonzero contribution already at $\mathcal{O}\left(\alpha_{s}{ }^{3}\right)$ (but again suppressed by a factor $\frac{Q^{2}}{4 m_{c}^{2}}$)
in the effective $n_{f}=3$ QCD the Bjorken rule is unambiguous
/modulo higher twists!/ predictions of QCD which can be confronted with experimental data:

Perturbative part of the BSR as a function of the momentum transfer squared Q^{2} in different orders in both the APT and standard PT approaches against the combined set of the Jefferson Lab (taken from V.L. Khandramai, R.S. Pasechnik, D.V. Shirkov, O.P. Solovtsova, O.V. Teryaev, Four-loop QCD analysis of the Bjorken sum rule vs data, Phys.Lett.B706:340-344,2012).

Higher twist contribution to the Borken (polarized) SR

$$
\Gamma_{1}^{p-n}\left(Q^{2}\right)=\frac{\left|g_{A}\right|}{6}\left[1-\Delta_{\mathrm{Bj}}^{\mathrm{PT}}\left(Q^{2}\right)\right]+\sum_{i=2}^{\infty} \frac{\mu_{2 i}}{Q^{2 i-2}}
$$

Recent analysis of μ_{4} from exp. data + PT
/Khandramai, Solovtsova, Teryaev, arXiv:1302.3952v1 (2013)/ has demonstrated a huge sensitivity to the higher order corrections:

B. Higher twist contribution

We expand our consideration, including the HT part which is presented in expression (1). In Table IT we show our results for values of the coefficient μ_{4} (the errors are statistical only) fitted to the low Q^{2} data [10, 11] in different PT orders. One can see that μ_{4}-values extracted changes rather strongly between different PT orders. The absolute value of μ_{4} decreases with the order of PT and just at $\mathrm{N}^{3} \mathrm{LO}$ becomes compatible to zero. It can be interpreted as a manifestation of duality between higher orders and HT (see Ref. [21]). Note that a value extracted in the

TABLE I: Results of μ_{4}-extraction from the data on the Bjorken sum rule in different PT orders.

PT order	LO	NLO	$\mathrm{N}^{2} \mathrm{LO}$	$\mathrm{N}^{3} \mathrm{LO}$
$\mu_{4}, \mathrm{GeV}^{2}$	-0.037 ± 0.003	-0.025 ± 0.004	-0.012 ± 0.006	0.005 ± 0.008

leading-order (LO) is consistent with a value $\mu_{4}=-0.047 \pm 0.025 \mathrm{GeV}^{2}$ presented in Ref. [22] as well as with a value $\mu_{4}=-0.028 \pm 0.019 \mathrm{GeV}^{2}$ obtained from the next-to-leading-order (NLO) fit based on the x-dependent structure functions data [23].

Conclusions

- the new $\left(\mathcal{O}\left(\alpha_{s}{ }^{4}\right)\right)$ contribution to $C_{p o l}^{\text {Bjorken }}$ (discussed first by Larin a year ago) is computed (in the massless QCD!), it is a simple, purely rational number proportional to $\beta_{0} d^{a b c} d^{a b c}$ as is unambiguously dictated by the corresponding CBK relation
- Physically, due to the fact that for $n_{f}=3$ the current $J_{\mu}^{E M}$ belongs to the $S U(3)_{f}$ octet ($Q_{u}+Q_{d}+Q_{s} \equiv 0$) the Larin's term is completely saturated by heavy quarks: its effect on the phenomenology is presumably small. The issue requires further investigation.
- conformal symmetry based CBK relations do provide higly non-trivial and very usefull constraints on $V V A^{N S}$ triangle amplitude and, consequently, on the product

$$
C_{B j p}\left(a_{s}\right) D^{N S}\left(a_{s}\right)
$$

in massless QCD

- these constraints have been successfully tested at five loops (with an account of a new term pointed out by Sergei Larin)

$\boldsymbol{R}(s)$ from p-integrals

Starting object: the polarization operator of EM quark current $\boldsymbol{j}_{\mu}=\boldsymbol{e}_{q} \overline{\boldsymbol{q}} \boldsymbol{\gamma}_{\mu} \boldsymbol{q}$

$$
\Pi_{\mu \nu}(q)=i \int \mathrm{~d} x e^{i q x}\langle 0| T\left[j_{\mu}^{v}(x) j_{\nu}^{v}(0)\right]|0\rangle=\left(-g_{\mu \nu} q^{2}+q_{\mu} q_{\nu}\right) \Pi\left(q^{2}\right)
$$

related to $R(s)$ through

$$
R(s) \approx \Im \Pi(s-i \delta)
$$

Π is not completely physical due to a divergency of $T\left(j_{\mu}^{v}(x) j_{\nu}^{v}(0)\right)$ at $x \rightarrow 0$, as a result its normalization mode and corresponding evolution equation reads ($\left(a_{s} \equiv \alpha_{s} / \pi\right)$, massless QCD)

$$
\begin{gathered}
\Pi=Z^{\mathrm{em}}+\Pi^{B}\left(-Q^{2}, \alpha_{s}^{B}\right) \\
\left(\mu^{2} \frac{\partial}{\partial \mu^{2}}+\beta\left(a_{s}\right) a_{s} \frac{\partial}{\partial a_{s}}\right) \Pi=\gamma_{\mathrm{em}}\left(a_{s}\right)
\end{gathered}
$$

At first sight, it would be advantageous to avoid this by considering (obviously RG invariant!) Adler function defined as $D=Q^{2} \frac{\partial}{\partial Q^{2}} \Pi_{0}$ and which is related to $R(s)$ in a unique and simple way

$$
R(s) \leftrightarrow D(Q) \Longleftarrow \text { Adler function } \equiv Q^{2} \frac{d}{d Q^{2}} \Pi\left(q^{2}\right)=Q^{2} \int \frac{R(s)}{\left(s+Q^{2}\right)^{2}} d s
$$

BUT, this is not true!

The reason: $\mathcal{O}\left(\boldsymbol{\alpha}_{s}{ }^{L}\right)$ /that is $(L+1)$-loop/ Adler function receives, obviously, contributions from $(L+1)$ loop p-integrals (including their constant part).
In fact, only L-loop integrals are enough \leftarrow HUGE simplification. Indeed, let us rewrite the RG equation for Π as follows:
For massless $(L+1)$ loop $\Pi_{0}\left(L=\ln \frac{\mu^{2}}{Q^{2}}, a_{s}\right)$ RG equation amounts to

$$
\frac{\partial}{\partial L} \Pi_{0}=\gamma_{\mathrm{em}}\left(a_{s}\right)-\left(\beta\left(a_{s}\right) a_{s} \frac{\partial}{\partial a_{s}}\right) \Pi_{0}
$$

$(L+1)$ loop anom. dim.

L-loop integrals only contribute due to the factor of $\beta\left(a_{s}\right)$

If one knows the rhs to α_{s}^{L}, then one could trivially construct the Adler function with the same accuracy!
Anomalous dimensions (as well as β-functions) are simple (no-scale) polynomilas in α_{s} /at least in MS-like schemes/ \Longrightarrow one loop could be always "undone" with so-called Infrared Rearrangement trick

