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Message

Message: can compute NNLO cross sections like you always though you would

1. Compute relevant IR factorization formulae

2. Use them to construct general, explicit, local subtractions (see Zoltán’s talk)

3. Integrate subtractions once and for all, verify pole cancellation (this talk)

4. Apply the generic scheme to specific process (this talk)

Gábor Somogyi | Colorful NNLO – Completely local subtractions for fully differential predicitions at NNLO | page 2



Subtraction at NNLO – a quick overview

Gábor Somogyi | Colorful NNLO – Completely local subtractions for fully differential predicitions at NNLO | page 3



IR factorization formulae

Collinear and soft currents at NNLO are known

◮ Tree level 3-parton splitting functions and double soft gg and qq̄ currents

(Campbell, Glover 1997; Catani, Grazzini 1998;
Del Duca, Frizzo, Maltoni 1999; Kosower 2002)

◮ One-loop 2-parton splitting functions and soft gluon current

(Bern, Dixon, Dunbar, Kosower 1994; Bern, Del Duca, Kilgore,
Schmidt 1998-9; Kosower, Uwer 1999; Catani, Grazzini 2000;

Kosower 2003)
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Subtraction at NNLO – structure

Rewrite the NNLO correction as a sum of three terms

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m = σNNLO

m+2 + σNNLO
m+1 + σNNLO

m

each integrable in four dimensions

σNNLO
m+2 =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

σNNLO
m+1 =

∫

m+1

{[

dσRV
m+1 +

∫

1
dσ

RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(∫

1
dσ

RR,A1
m+2

)
A1

]

Jm

}

σNNLO
m =

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(∫

1
dσ

RR,A1
m+2

)
A1

]}

Jm

1. dσ
RR,A2
m+2 regularizes the double unresolved limits of dσRR

m+2

2. dσ
RR,A1
m+2 regularizes the single unresolved limits of dσRR

m+2

3. dσ
RR,A12
m+2 accounts for the overlap of dσRR,A1

m+2 and dσ
RR,A2
m+2

4. dσ
RV,A1
m+1 regularizes the single unresolved limits of dσRV

m+1

5.
( ∫

1
dσ

RR,A1
m+2

)
A1 regularizes the singly-unresolved limit of

∫

1
dσ

RR,A1
m+2
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Colorful NNLO – general features

Colorful NNLO: Completely local subtractions for fully differential predictions at NNLO

Construct subtractions starting from universal IR limit formulae

◮ tree and one-loop splitting functions, soft currents

◮ simple and general procedure for matching of limits to avoid multiple subtractions

◮ extension over full phase space based on momentum mappings that can be
generalized to any number of unresolved partons

Fully local in color, spin and momentum space

◮ no need to consider the color decomposition of real emission ME’s

◮ azimuthal correlations correctly taken into account in gluon splitting

◮ can check explicitly that the ratio of subtractions to the real emission cross section
tends to unity in any IR limit

Straightforward to constrain subtractions to near singular regions

◮ gain in efficiency

◮ independence of physical results on phase space cut is strong check
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Integrating the subtractions
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Integrating the subtractions

Momentum mappings used to define the counterterms

{p}n+p
R

−→ {p̃}n ⇒ dφn+p({p};Q) = dφn({p̃}
(R)
n ;Q)[dp

(R)
p,n ]

◮ implement exact momentum conservation, recoil distributed democratically (can be
generalized to any p)

◮ different collinear and soft mappings (R labels precise limit)

◮ exact factorization of phase space

Counterterms are products (in color and spin space) of

◮ factorized ME’s independent of variables in [dp
(R)
p,n ]

◮ singular factors (AP functions, soft currents), to be integrated over [dp
(R)
p,n ]

XR ({p}n+p) =
(
8παsµ

2ǫ
)p

SingR (p
(R)
p )⊗ |M

(0)
n ({p̃}

(R)
n )|2

Can compute once and for all the integral over unresolved partons

∫

p

XR ({p}n+p) =
(
8παsµ

2ǫ
)p

[ ∫

p

SingR (p
(R)
p )

]

⊗ |M
(0)
n ({p̃}

(R)
n )|2
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List of master integrals

Int status

I
(k)
1C ,0

✔

I
(k)
1C ,1

✔

I
(k)
1C ,2

✔

I
(k)
1C ,3

✔

I
(k)
1C ,4

✔

I
(k,l)
1C ,5

✔

I
(k,l)
1C ,6

✔

I
(k)
1C ,7

✔

I1C ,8 ✔

Int status

I
(k)
12S ,1

✔

I
(k)
12S ,2

✔

I
(k)
12S ,3

✔

I
(k)
12S ,4

✔

I
(k)
12S ,5

✔

I12S ,6 ✔

I12S ,7 ✔

I12S ,8 ✔

I12S ,9 ✔

I12S ,10 ✔

I12S ,11 ✔

I12S ,12 ✔

I12S ,13 ✔

Int status

I1S ,0 ✔

I1S ,1 ✔

I1S ,2 (m > 3) ✘

I
(k)
1S ,3

✔

I1S ,4 ✔

I1S ,5 ✔

I1S ,6 ✔

I1S ,7 ✔

Int status

I
(k)
12CS ,1

✔

I12CS ,2 ✔

I12CS ,3 ✔

Int status

I1CS ,0 ✔

I1CS ,1 ✔

I
(k)
1CS ,2

✔

I1CS ,3 ✔

I1CS ,4 ✔

Int status

I
(j,k,l,m)
2C ,1

✔

I
(j,k,l,m)
2C ,2

✔

I
(j,k,l,m)
2C ,3

✔

I
(j,k,l,m)
2C ,4

✔

I
(−1,−1,−1,−1)
2C ,5

✔/✘

I
(k,l)
2C ,6

✔

Int status

I
(k,l)
12C ,1

✔

I
(k,l)
12C ,2

✔

I
(k)
12C ,3

✔

I
(k,l)
12C ,4

✔

I
(k)
12C ,5

✔

I
(k)
12C ,6

✔

I
(k)
12C ,7

✔

I
(k)
12C ,8

✔

I
(k)
12C ,9

✔

I
(k)
12C ,10

✔

Int status

I
(k)
2CS ,1

✔

I
(k)
2CS ,2

✔

I
(2)
2CS ,2

✔/✘

I
(k)
2CS ,3

✔

I
(k)
2CS ,4

✔

I
(k)
2CS ,5

✔

Int status

I2S ,1 ✔

I2S ,2 ✔

I2S ,3 ✔

I2S ,4 ✔

I2S ,5 ✔

I2S ,6 ✔

I2S ,7 ✔

I2S ,8 ✔

I2S ,9 ✔

I2S ,10 ✔

I2S ,11 ✔

I2S ,12 ✔

I2S ,13 ✔

I2S ,14 ✔

I2S ,15 ✔

I2S ,16 ✔

I2S ,17 ✔

I2S ,18 ✔

I2S ,19 ✔

I2S ,20 ✔

I2S ,21 ✔

I2S ,22 ✔

I2S ,23 ✔

✔: pole coefficients known analytically, finite numerically

✘: pole coefficients known analytically up to 1
ǫ2
, finite and 1

ǫ
numerically

Gábor Somogyi | Colorful NNLO – Completely local subtractions for fully differential predicitions at NNLO | page 9



List of master integrals

Note

◮ not the usual notion of master integrals: no IBPs used

◮ algebraic and symmetry relations exploited to reduce to this basic set

◮ but set is not linearly independent, known relations used for checks
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Phase space integrals - an example

Abelian double soft counterterm: among many others, in dσ
RR,A2
m+2 we find

(

S
(0,0)
rs

)ab

= (8παsµ
2ǫ)2

∑

i,k,j,l

1

4

sik

sir skr

sjl

sjssls
|M

(0)
m,(i,k)(j,l)

({p̃})|2

× (1− yrQ − ysQ + yrs)
d′0−m(1−ǫ)Θ(y0 − yrQ − ysQ + yrs)

The set of m momenta, {p̃}, is obtained by a momentum mapping which leads to an
exact factorization of phase space

{p}m+2
Srs−→ {p̃} : dφm+2({p};Q) = dφm({p̃};Q)[dp

(rs)
2,m]

b
b

b
b

1

r

s

m + 2

−→

b
b

b
b

1̃

m̃ + 2

⊗

r

s

K
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Phase space integrals - an example

Abelian double soft counterterm: among many others, in dσ
RR,A2
m+2 we find

(

S
(0,0)
rs

)ab

= (8παsµ
2ǫ)2

∑

i,k,j,l

1

4

sik

sir skr

sjl

sjssls
|M

(0)
m,(i,k)(j,l)

({p̃})|2

× (1− yrQ − ysQ + yrs)
d′0−m(1−ǫ)Θ(y0 − yrQ − ysQ + yrs)

The set of m momenta, {p̃}, is obtained by a momentum mapping which leads to an
exact factorization of phase space

{p}m+2
Srs−→ {p̃} : dφm+2({p};Q) = dφm({p̃};Q)[dp

(rs)
2,m]

Then we must compute
∫

[dp
(rs)
2,m]

(

S
(0,0)
rs

)ab

≡

[
αs

2π
Sǫ

(
µ2

Q2

)ǫ ]2 ∑

i,k,j,l

[S
(0)
rs ](i,k),(j,l)|M

(0)
m,(i,k)(j,l)

({p̃})|2

where [S
(0)
rs ](i,k),(j,l) ≡ [S

(0)
rs ](i,k),(j,l)(pi , pk , pj , pl , ǫ, y0, d

′
0) is a kinematics dependent function.
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Abelian double soft integral

For simplicity, consider the terms in the sum where j = i and l = k: [S
(0)
rs ](i,k),(i,k).

Kinematical dependence is through cosχik = ∡(pi , pk), we set cosχik = 1− 2Yik,Q , i.e.,
Yik,Q is between zero and one.

Using angles and energies in the Q rest frame with some specific orientation to
parametrize the factorized phase space measure, [dp(rs)2,m], we find that [S

(0)
rs ](i,k),(i,k) is

proportional to

I2S ,2(Yik,Q ; ǫ, y0, d
′
0) = −

4Γ4(1− ǫ)

πΓ2(1 − ǫ)

By0 (−2ǫ, d ′
0)

ǫ
Yik,Q

∫ y0

0
dy y−1−2ǫ(1− y)d

′
0−1+ǫ

×

∫ 1

−1
d(cos ϑ) (sin ϑ)−2ǫ

∫ 1

−1
d(cosϕ) (sinϕ)−1−2ǫ

[
f (ϑ, ϕ; 0)

]−1[
f (ϑ,ϕ;Yik,Q)

]−1

×
[
Y (y , ϑ, ϕ;Yik,Q)

]−ǫ

2F1

(
− ǫ,−ǫ, 1− ǫ,1− Y (y , ϑ, ϕ;Yik,Q)

)

where

f (ϑ, ϕ;Yik,Q) = 1− 2
√

Yik,Q(1 − Yik,Q) sinϑ cosϕ− (1 − 2Yik,Q)χ cos ϑ

Y (y , ϑ, ϕ;χ) =
4(1 − y)Yik,Q

[2(1 − y) + y f (ϑ, ϕ; 0)][2(1− y) + y f (ϑ, ϕ;Yik,Q)]
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Solving the integrlas

Strategy for computing the master integrals

1. write phase space in terms of
angles and energies

2. angular integrals in terms of
Mellin-Barnes representations

3. resolve the ǫ poles by analytic
continuation

4. MB integrals to Euler-type
integrals, pole coefficients are finite
parametric integrals

1. choose explicit parametrization of
phase space

2. write the parametric integral
representation in chosen variables

3. resolve the ǫ poles by sector
decomposition

4. pole coefficients are finite
parametric integrals

5. evaluate the parametric integrals in terms of multiple polylogs

6. simplify result (optional)
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Methods of integration - angular integrals

Consider the d dimensional angular integral with n denominators

Ωj1,...,jn =

∫

dΩd−1(q)
1

(p1 · q)j1 · · · (pn · q)jn

This admits the following Mellin-Barnes representation (j = j1 + . . .+ jn)

Ωj1,...,jn ({vkl}; ǫ) = 22−j−2ǫπ1−ǫ
1

∏n
k=1 Γ(jk )Γ(2 − j − 2ǫ)

×

∫ +i∞

−i∞

[
n∏

k=1

n∏

l=k

dzkl

2πi
Γ(−zkl ) (vkl )

zkl

][
n∏

k=1

Γ(jk + zk)

]

Γ(1− j − ǫ− z) .

where vkl =
pk · pl

2
for k 6= l and vkk =

p2
k

4
while

z =
n∑

k=1

n∑

l=k

zkl and zk =
k∑

l=1

zlk +
n∑

l=k

zkl .
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Methods of integration - MB to parametric integrals

Basic idea is to express products of gamma functions as real integrals

I =

∫ +i∞

−i∞

dz1

2πi

dz2

2πi
· · ·Γ[a+ z1 + z2]Γ[b − z1 − z2] · · · v

z1
1 v

z2
2

=

∫ +i∞

−i∞

dz1

2πi

dz2

2πi
· · ·Γ[a+ b]

∫ 1

0
dt ta−1+z1+z2(1 − t)b−1−z1−z2 · · · v z1

1 v
z2
2

if ℜ(a + z1 + z2) > 0 and ℜ(b − z1 − z2) > 0 so the t integral converges

Eliminate enough gamma functions to be able to perform the MB integrals

◮ can eliminate all gamma functions for real integrals, then use
∫ +i∞

−i∞

dz

2πi
v z = δ(1 − v) , v > 0

◮ For multidimensional MB integrals, sometimes it is more useful to eliminate just the
gamma functions that couple the MB integrations. This turns the multidimensional
MB integral into products of 1d MB integrals.

After solving the remaining MB integrals, we get the desired parametric representation.
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Methods of integration - symbolic integration

Assume P and Q are polynomials and the following integral converges

I (x) =

∫ 1

0
dt1 dt2 dt3 . . .

P(x , t1, t2, t3, . . .)

Q(x , t1, t2, t3, . . .)

The t1 integration

◮ assuming the denominator is a product of factors all linear in t1, after partial
fractioning, we will need to compute

∫ 1

0

dt1

tn1
,

∫ 1

0

dt1

[t1 − a(x , t2, . . .)]n
,

◮ n = 1 is non-trivial
∫

dt1

t1
= ln t1 ,

∫
dt1

t1 − a(x , t2, . . .)
= ln[t1 − a(x , t2, . . .)]

◮ e.g., we have
∫ 1

0

dt1

t1 − a(x , t2, . . .)
= ln

[

1−
1

a(x , t2, . . .)

]

◮ this is elementary, although there is some fine print for definite integrals
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Methods of integration - symbolic integration

Assume P and Q are polynomials and the following integral converges

I (x) =

∫ 1

0
dt1 dt2 dt3 . . .

P(x , t1, t2, t3, . . .)

Q(x , t1, t2, t3, . . .)

The t2 integration

◮ assuming the new denominator is a product of factors all linear in t2, after partial
fractioning — aside from the integrals we already encountered — we will have to
compute

∫ 1

0

dt2

tn2
ln

[

1−
1

a(x , t2, . . .)

]

,

∫ 1

0

dt2

[t2 − b(x , t3, . . .)]n
ln

[

1−
1

a(x , t2, . . .)

]

,

◮ if a(x , t2, . . .) is also linear in t2, we can use the functional identities for the logarithm
[ln(ab) = ln a + ln b, ln(1/a) = − ln a] to write

ln

[

1−
1

a(x , t2, . . .)

]

= ln[a1(x , t3, . . .)− t2]− ln[a2(x , t3, . . .)− t2]

◮ again, n = 1 is non-trivial
∫

dt2

t2
ln t2 =

1

2
ln2(t2) ,

∫
dt2

t2
ln(1− t2) = −Li2(t2)
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Methods of integration - symbolic integration

Assume P and Q are polynomials and the following integral converges

I (x) =

∫ 1

0
dt1 dt2 dt3 . . .

P(x , t1, t2, t3, . . .)

Q(x , t1, t2, t3, . . .)

The t2 integration (cont.)

◮ e.g., we have
∫ 1

0

dt2

t2 − b(x , t3, . . .)
ln(t2) = Li2

[
1

b(x , t3, . . .)

]
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Methods of integration - symbolic integration

Assume P and Q are polynomials and the following integral converges

I (x) =

∫ 1

0
dt1 dt2 dt3 . . .

P(x , t1, t2, t3, . . .)

Q(x , t1, t2, t3, . . .)

Before going to the t3 integration, notice

1. at each step, we needed to introduce a new transcendental function, ln, Li2

2. we needed to know the functional identities for ln to proceed
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Methods of integration - symbolic integration

Assume P and Q are polynomials and the following integral converges

I (x) =

∫ 1

0
dt1 dt2 dt3 . . .

P(x , t1, t2, t3, . . .)

Q(x , t1, t2, t3, . . .)

The t3 integration

◮ assuming the new denominator is a product of factors all linear in t3, after partial
fractioning — aside from the integrals we already encountered — we will have to
compute

∫ 1

0

dt3

tn3
Li2

[
p(x , t3, . . .)

q(x , t3, . . .)

]

,

∫ 1

0

dt3

[t3 − c(x , t4, . . .)]n
Li2

[
p(x , t3, . . .)

q(x , t3, . . .)

]

,

◮ will need to introduce new transcendental functions ⇒ multiple polylogs

◮ will need to use the functional identities for Li2 to reduce to some standard form ⇒

symbols, coporoducts, Hopf algebra of multiple polylogs
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Multiple polylogarithms

The appropriate generalization of log and classical polylogs (Goncharov 1998, 2001)

G(a1, . . . , an; z) =

∫ z

0

dt

t − a1
G(a2, . . . , an; t) with G(z) = 1

G(0, . . . , 0
︸ ︷︷ ︸

n

; z) =
1

n!
lnn(z)

Logarithms and classical polylogs are special cases, e.g.,

G(a, . . . , a
︸ ︷︷ ︸

n

; z) =
1

n!
lnn

(

1−
z

a

)

, G(0, . . . , 0
︸ ︷︷ ︸

n−1

, a; z) = −Lin

(
z

a

)

Functional relations among Gs

◮ Problem: after the (n − 1)-st integration, the n-th variable can appear in the ai

∫
dtn

tn − b
G(a1(tn, . . .), . . . , an−1(tn , . . .); z(tn, . . .))

Must reduce to ‘canonical’ form, where tn is only in the last entry.

◮ Unfortunately the functional equations among Gs that would be needed to do this
are often unknown and need to be derived.
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Symbols, coproducts

Symbols are a tool for obtaining functional equations among Gs

(Goncharov 2009; Goncharov, Spradlin, Vergu, Volovich
2010; Duhr, Gangl, Rhodes 2011)

◮ The symbol is a way of associating to a multiple polylog a tensor in a certain tensor
space.

S(G(an−1, . . . , a1; an)) =

n−1∑

i=1

S(G(an−1, . . . , ai−1, ai+1, . . . , a1; an))⊗

(
ai − ai+1

ai − ai−1

)

e.g.,

S

(
1

n!
lnn(z)

)

= z ⊗ . . .⊗ z
︸ ︷︷ ︸

n times

, S(Lin(z)) = −(1− z)⊗ z ⊗ . . .⊗ z
︸ ︷︷ ︸

(n−1) times

◮ Functional equations between multiple polylogs become algebraic equations between
tensors.

The idea of symbols can be refined based on the Hofp algebra structure of multiple
polylogs ⇒ coproduct (Duhr 2012)

◮ With these refinements one can build algorithms to reduce multiple polylogs to
‘canonical’ form.
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Abelian double soft integral

For simplicity, consider the terms in the sum where j = i and l = k: [S
(0)
rs ](i,k),(i,k).

Kinematical dependence is through cosχik = ∡(pi , pk), we set cosχik = 1− 2Yik,Q , i.e.,
Yik,Q is between zero and one.

Using angles and energies in the Q rest frame with some specific orientation to
parametrize the factorized phase space measure, [dp(rs)2,m], we find that [S

(0)
rs ](i,k),(i,k) is

proportional to

I2S ,2(Yik,Q ; ǫ, y0, d
′
0) = −

4Γ4(1− ǫ)

πΓ2(1 − ǫ)

By0 (−2ǫ, d ′
0)

ǫ
Yik,Q

∫ y0

0
dy y−1−2ǫ(1− y)d

′
0−1+ǫ

×

∫ 1

−1
d(cos ϑ) (sin ϑ)−2ǫ

∫ 1

−1
d(cosϕ) (sinϕ)−1−2ǫ

[
f (ϑ, ϕ; 0)

]−1[
f (ϑ,ϕ;Yik,Q)

]−1

×
[
Y (y , ϑ, ϕ;Yik,Q)

]−ǫ

2F1

(
− ǫ,−ǫ, 1− ǫ,1− Y (y , ϑ, ϕ;Yik,Q)

)

where

f (ϑ, ϕ;Yik,Q) = 1− 2
√

Yik,Q(1 − Yik,Q) sinϑ cosϕ− (1 − 2Yik,Q)χ cos ϑ

Y (y , ϑ, ϕ;χ) =
4(1 − y)Yik,Q

[2(1 − y) + y f (ϑ, ϕ; 0)][2(1− y) + y f (ϑ, ϕ;Yik,Q)]
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Abelian double soft integral

This integral is equal to (y0 = 1, d ′
0 = 3− 3ǫ)

I2S ,2(Y ; ǫ, 1, 3− 3ǫ) =

=
1

2ǫ4
−

1

ǫ3

[

ln(Y ) − 3

]

+
1

ǫ2

[

2Li2(1− Y ) + ln2(Y )− π2 −

(
2

1− Y

−
1

2(1− Y )2
+

9

2

)

ln(Y ) +
1

2(1− Y )
+ 16

]

+
1

ǫ

[
5

3

(
18Li3(1 − Y )

5
+

6Li3(Y )

5

−
6Li2(1− Y ) ln(Y )

5
−

2

5
ln3(Y ) +

3

5
ln(1− Y ) ln2(Y ) + π2 ln(Y )−

78ζ3

5

)

+

(
3

1− Y
−

3

4(1 − Y )2
+

15

4

)(

2Li2(1− Y ) + ln2(Y )
)

− 6π2 −

(
27

2(1 − Y )

−
13

4(1− Y )2
+

91

4

)

ln(Y ) +
19

4(1 − Y )
+

163

2

]

+O(ǫ0)

Note the Y → 1 limit is finite

lim
Y→1

I2S ,2(Y ; ǫ, 1, 3− 3ǫ) =
1

2ǫ4
+

3

ǫ3
+

1

ǫ2

(
71

4
− π2

)

+
1

ǫ

(
393

4
− 6π2 − 24ζ3

)

+O(ǫ0)
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Abelian double soft integral

Finite term is computed numerically (y0 = 1, d ′
0 = 3− 3ǫ)
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Analytic vs. numeric

As a matter of principle

◮ A rigorous proof of cancellation of IR poles requires the poles of integrated
counterterms in analytic form.

However

◮ An actual implementation needs numbers for the finite parts of the integrated
counterterms.

◮ These finite parts are smooth functions of kinematic variables.

Hence

◮ Numerical forms of the finite parts are sufficient for practical purposes. The final
results can be conveniently given by interpolating tables or approximating functions
computed once and for all.

◮ In particular, suitable approximating functions may be obtained by fitting.
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Example of approximation by fitting

Doubly-unresolved double-collinear master integral I2C ,6(xir , xjs ; ǫ, 1, 3− 3ǫ, k, l)

I2C ,6(xir , xjs ; ǫ, α0, d0; k, l) = xirxjs

∫ 1

0
dαdβ

∫ 1

0
dv du α−1−ǫβ−1−ǫ(1 − α− β)2d0−2(1−ǫ)

× [α+ (1− α− β)xir ]
−1−ǫ[β + (1 − α− β)xjs ]

−1−ǫv−ǫ(1 − v)−ǫu−ǫ(1− u)−ǫ

×

(
α+ (1− α− β)xir v

2α + (1 − α− β)xir

)k (β + (1 − α− β)xjsu

2β + (1− α− β)xjs

)l

Θ(α0 − α− β)
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Example of approximation by fitting

Doubly-unresolved double-collinear master integral I2C ,6(xir , xjs ; ǫ, 1, 3− 3ǫ, k, l)

◮ poles (up to 1
ǫ4
) extracted via sector decomposition

◮ numerical values of pole coefficients computed for a 17× 17 grid with precision of
∼ 10−7

◮ define three regions (note: result is symmetric in xir , xjs)
◮ asymptotic: xir , xjs < 10−4

◮ non-asymptotic: xir , xjs > 10−2

◮ border: xir < 10−2 or xjs < 10−2

◮ in each region, fit with ansatz

F(xir , xjs) =
∑

pi ,li

Cm;p1,p2;l1,l2(x
p1
ir
x
p2
js
)(logl1(xir ) log

l2(xjs))

where p1 + p2 ≤ m with m a free parameter, while l1 + l2 ≤ n and n is predicted
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Example of approximation by fitting

Doubly-unresolved double-collinear master integral I2C ,6(xir , xjs ; ǫ, 1, 3− 3ǫ, k, l)
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Integrated approximate cross sections

Recall the NNLO correction is a sum of three terms

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m = σNNLO

m+2 + σNNLO
m+1 + σNNLO

m

each integrable in four dimensions

σNNLO
m+2 =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

σNNLO
m+1 =

∫

m+1

{[

dσRV
m+1 +

∫

1
dσ

RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(∫

1
dσ

RR,A1
m+2

)
A1

]

Jm

}

σNNLO
m =

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(∫

1
dσ

RR,A1
m+2

)
A1

]}

Jm

Integrated approximate cross sections

◮ After summing over unobserved flavors, all integrated approximate cross sections can
be written as products (in color space) of various insertion operators with lower
point cross sections.

◮ Can be computed once and for all (though admittedly lots of tedious work).
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The double virtual contribution

After adding all integrated approximate cross sections the double virtual contribution
must be finite in ǫ.

σNNLO
m =

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(∫

1
dσ

RR,A1
m+2

)
A1

]}

Jm

◮ Have checked the cancellation of the 1
ǫ4

and 1
ǫ3

poles analytically for any number of
jets (i.e., with m symbolic).

◮ Have checked m = 2 (e+e− → qq̄, H → bb̄) explicitly and we find that all poles
cancel.

◮ Have checked m = 3 (e+e− → qq̄g) explicitly and we find that all poles cancel.
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The double virtual contribution

After adding all integrated approximate cross sections the double virtual contribution
must be finite in ǫ.

σNNLO
m =

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(∫

1
dσ

RR,A1
m+2

)
A1

]}

Jm

◮ Have checked the cancellation of the 1
ǫ4

and 1
ǫ3

poles analytically for any number of
jets (i.e., with m symbolic).

◮ Have checked m = 2 (e+e− → qq̄, H → bb̄) explicitly and we find that all poles
cancel.

◮ Have checked m = 3 (e+e− → qq̄g) explicitly and we find that all poles cancel.

Message: the method works, try and apply
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Application: H → bb̄
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Cancellation of poles

Consider H → bb̄ decay at NNLO.

◮ admittedly the simplest case

◮ but this just amounts to having to sum less terms in a general formula

The double virtual contribution has the following pole structure (µ2 = m2
H
)

dσVV

H→bb̄
=

(
αs(µ2)

2π

)2

dσB

H→bb̄

{
2C2

F

ǫ4
+

(
11CACF

4
+ 6C2

F −
CFnf

2

)
1

ǫ3

+

[(
8

9
+

π2

12

)

CACF +

(
17

2
− 2π2

)

C2
F −

2CFnf

9

]
1

ǫ2

+

[(

−
961

216
+

13ζ3

2

)

CACF +

(
109

8
− 2π2 − 14ζ3

)

C2
F
+

65CFnf

108

]
1

ǫ

}
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Cancellation of poles

Consider H → bb̄ decay at NNLO.

◮ admittedly the simplest case

◮ but this just amounts to having to sum less terms in a general formula

The double virtual contribution has the following pole structure (µ2 = m2
H
)

dσVV

H→bb̄
=

(
αs(µ2)

2π

)2

dσB

H→bb̄

{
2C2

F

ǫ4
+

(
11CACF

4
+ 6C2

F −
CFnf

2

)
1

ǫ3

+

[(
8

9
+

π2

12

)

CACF +

(
17

2
− 2π2

)

C2
F −

2CFnf

9

]
1

ǫ2

+

[(

−
961

216
+

13ζ3

2

)

CACF +

(
109

8
− 2π2 − 14ζ3

)

C2
F
+

65CFnf

108

]
1

ǫ

}

The sum of the integrated approximate cross sections gives (µ2 = m2
H
)

∑
∫

dσA =

(
αs(µ2)

2π

)2

dσB

H→bb̄

{
−2C2

F

ǫ4
+

(

−
11CACF

4
− 6C2

F +
CFnf

2

)
1

ǫ3

+

[(

−
8

9
−

π2

12

)

CACF +

(

−
17

2
+ 2π2

)

C2
F
+

2CFnf

9

]
1

ǫ2

+

[(
961

216
−

13ζ3

2

)

CACF +

(

−
109

8
+ 2π2 + 14ζ3

)

C2
F −

65CFnf

108

]
1

ǫ

}
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Energy spectrum of jets in H → bb̄ at NNLO

Energy spectrum of the leading jet in the rest frame of the Higgs boson. Jets are
clustered using the Jade algorithm with ycut = 0.1

(AHL: Anastasiou, Herzog, Lazopoulos, JHEP 1203 (2012) 035)
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Energy spectrum of jets in H → bb̄ at NNLO

Energy spectrum of the leading jet in the rest frame of the Higgs boson.

◮ right: jets are clustered using the Jade algorithm with ycut = 0.05

◮ left: jets are clustered using the Durham algorithm with ycut = 0.1
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Conclusions

Have set up

◮ completely local subtractions for fully differential predictions at NNLO

◮ construction of subtraction terms based on IR limit formulae

◮ analytic integration of subtraction terms is feasible with modern integration
techniques

◮ demonstrated cancellation of ǫ poles for m = 2 and m = 3

◮ worked out in full detail for processes with no colored particles in the initial state

First application: Higgs boson decay into a b and anti-b quark
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