

Comprehensive measurements of t-channel single top-quark production cross-sections at $\sqrt{s} = 7$ TeV with the ATLAS detector

Wolfgang Wagner Bergische Universität Wuppertal

November 25, 2014

- 1) Motivation
- 2) Theoretical predictions
- 3) Event selection and analysis strategy
- 4) Measurement results

to be published in Phys. Rev. D arXiv:1406.7844

work supported by:

UNIVERSITÄT A new era in (single) top-quark physics

1,800 in the high-purity region

Large sets of single top-quark candidate events offer new possibilities: precision measurements, differential cross-sections, properties

search for new processes (not covered):

Observables

- total cross-sections
 - $\sigma(tq) = \sigma(\bar{t}q)$
 - cross-section ratio $R_t = \frac{\sigma(tq)}{\sigma(\bar{t}q)}$
- differential cross-sections

 $d\sigma(tq)$ $d\sigma(tq)$ $\overline{dp_{\mathrm{T}}(t)} = \overline{d|y(t)|}$

Range in Bjorken x:

0.02 < x < 0.5

Calculation done with MCFM 6.5 and Hathor

$$R_t = \frac{\sigma(tq)}{\sigma(\bar{t}q)}$$

shows *significant* differences between different PDF sets

Uncertainties:

- Statistical uncertainty from integration
- Scale uncertainty (independent restricted scale variations)
- PDF internal uncertainties
- α_s ± 0.002 or correlated with PDF uncertainty
- Proposed procedure has been adopted by the TOPLHCWG

Differential top p_T and y distributions do *not* show big differences for different PDF sets.

→ publication does not contain comparison for different PDF sets

Measurement of forward jets is crucial for t-channel analyses.

BERGISCHE

UNIVERSITÄT WUPPERTAL

- Select only events with leptonic W decays, to suppress QCD-multijet background.
- Some acceptance due to
 W → τν decays.

- Data sets defined by single lepton (e / μ) trigger
- Charged lepton (e, μ) selection:
 - ▷ p_T > 25 GeV
 - > $|\eta(\mu, e)| < 2.5$
 - Isolation in η-φ space
 - Missing transverse momentum: E_T^{miss} > 30 GeV
 - QCD-multijet veto: $M_{T}(IE_{T}^{miss}) > 30 \text{ GeV}$ $p_{T}(\ell) > 40 \text{ GeV} \cdot \left(1 - \frac{\pi - |\Delta \phi(j_{1}, \ell)|}{\pi - 1}\right)$
 - Jet definition and selection
 - > Anti- k_T algorithm (R = 0.4)
 - ▷ p_T > 30 GeV
 - |η| < 4.5</p>
 - number of jets: 2 or 3
 - Exactly one b-tagged jet (@ 54% efficiency)
 (in 95% of all selected 2-jets events the b-quark jet from top decay is tagged)

Candidate events are separated into 5 channels: Split into + and – of the lepton charge and split into 2-jet and 3-jet channel

Neural networks are used to separate signal from background processes

- W + jets background rate determined by background dominated region in simultaneous fit with the signal rate
- Top-quark backgrounds (top-quark pairs, Wt, and tb production) constraint to theory prediction
- Multijet background rate determined by a fit to the MET distribution (electrons) and matrix method (muons)

top quarks

BERGISCHE

UNIVERSITÄT WUPPERTAL

top antiquarks

8

$R_t = 2.04 \pm 0.13 \,(\text{stat.}) \pm 0.12 \,(\text{syst.}) = 2.04 \pm 0.18$

- Statistical and systematic uncertainties are at the same level
- Relative precision: 8.7%
- Result is compatible with all predictions

Uncertainty	$\Delta R_t / R_t$
Data statistical	± 6.2%
Monte Carlo statistical	± 3.6%
PDF	± 2.5%
Background normalization	± 1.9%

- Combine top-quark and top-antiquark production to one process and refit.
- Measure: $\sigma(tq+\overline{t}q)$
- Result: $\sigma(tq + \bar{t}q) = 68 \pm 2 \text{ (stat.)} \pm 8 \text{ (syst.)} = 68 \pm 8 \text{ pb}$

Use:
$$\sigma(tq + \bar{t}q) \propto |V_{tb}|^2$$

 $|V_{tb}|^2_{\text{meas}} = \frac{\sigma(tq + \bar{t}q)_{\text{meas}}}{\sigma(tq + \bar{t}q)_{\text{pred}}} \cdot |V_{tb}|^2_{\text{SM}}$

Assume: Wtb vertex has Standard Modell (V - A) structure and $|V_{tb}| >> |V_{ts}|$, $|V_{td}|$ (using BR(t \rightarrow Wb) measurements)

 $|V_{tb}| = 1.02 \pm 0.01 (\text{stat.}) \pm 0.06 (\text{syst.}) \pm 0.02 (\text{theo.}) {}^{+0.01}_{-0.00} (m_t)$ = 1.02 ± 0.07.

Dominant uncertainties:

JES of jets at high $|\eta|$, b-tagging efficieny, W+jets modelling

Defining a high-purity region

	2-jet-ℓ ⁺ HPR	2-jet-ℓ ⁻ HPR
tq	1210 ± 150	1.3 ± 0.2
$\bar{t}q$	0.29 ± 0.05	549 ± 87
tī,Wt,tb,īb	161 ± 18	175 ± 19
$W^++b\bar{b},c\bar{c},light$ jet	s 250 ± 48	0.35 ± 0.07
$W^-+b\bar{b},c\bar{c},light$ jet	s 0.7 ± 0.2	166 ± 40
W+c	110 ± 26	125 ± 30
Z+jets, diboson	15 ± 10	11.4 ± 6.8
Multijet	59 ± 30	62 ± 31
Total expectation	1810 ± 160	1090 ± 110
Data	1813	1034
purity	67%	50%

Distribution of kinematic variables have signal shape.

BERGISCHE

UNIVERSITÄT WUPPERTAL

Differential cross-sections

BERGISCHE UNIVERSITÄT WUPPERTAL

Normalized Distributions

∖s=8 TeV

100 σ_{t} [pb]

Measurement of a fiducial cross-section:

- Measurement within the accessible phase space.
- Reduced dependence on the extrapolation to the full phase space using Monte Carlo generators.
- Measurement based on \approx 18,000 events!

$$\sigma_{\rm fid} = \frac{\epsilon_{\rm corr, sel}}{\epsilon_{\rm corr, fid}} \cdot \frac{\hat{\gamma}}{\mathcal{L}} = R_f \cdot \frac{\hat{\gamma}}{\mathcal{L}}$$

$$\sigma = \frac{1}{\epsilon_{\rm fid}} \cdot \sigma_{\rm fid}$$

$$\sigma = \frac{1}{\epsilon_{\rm fid}} \cdot \sigma_{\rm fid}$$

$$\sigma_{\rm corrected with acceptance correction from: aMC@NLO(2\rightarrow3)+Herwig Powheg(2\rightarrow3)+Pythia6 Powheg(2\rightarrow3)+Pythia6 Powheg(2\rightarrow2)+Pythia6 AcerMC+Pythia6 \mu=172.5 \, GeV AcerMC+Pythia6 \mu=60 \, GeV AcerMC+Pythia6$$

Comparison of different MC generators and parton showers.

NLO generators clearly improve scale dependence compared to LO (AcerMC).

- Thorough investigation of single top-quark production in the t-channel at √s = 7 TeV → measurement of several cross-sections:
 σ(tq) = 46 ± 6 pb σ(tq) = 23 ± 4 pb σ(tq + tq) = 68 ± 8 pb
- Measurement of the cross-section ratio: $R_t = 2.04 \pm 0.18$
- All measurements are in agreement with the SM prediction.
- Data are available in HEPDATA.
- R_t has the potential to discriminate among some PDF sets, but need reduced uncertainties.
- Improvements are expected for 8 TeV data sets:
 - data statistical uncertainty reduced by factor of 2
 - reduced uncertainties on jets and signal model

Backup

$$\sigma(tq) = 41.9^{+1.8}_{-0.9} \text{ pb}$$

$$\sigma(\bar{t}q) = 22.7^{+0.9}_{-1.0} \text{ pb}$$

$$\sigma(tq + \bar{t}q) = 64.6^{+2.7}_{-2.0} \text{ pb}$$

NLO + NNLL resummation by N. Kidonakis

BERGISCHE UNIVERSITÄT WUPPERTAL

 E_{τ}^{miss} fit

	2-jet channels			3-jet channels		
	ℓ^+	ℓ^-	ℓ^+	ℓ^-	2-tag	
tq	2550 ± 220	3.6 ± 0.3	845 ± 74	1.2 ± 0.1	309 ± 26	
$\bar{t}q$	1.5 ± 0.1	1390 ± 120	0.52 ± 0.05	435 ± 38	162 ± 14	
$t\bar{t},Wt,t\bar{b},\bar{t}b$	5250 ± 530	5130 ± 510	8200 ± 820	8180 ± 820	5850 ± 580	
W^+ + $b\bar{b}$, $c\bar{c}$,light jets	5700 ± 2500	16.3 ± 8.2	2400 ± 1200	11.5 ± 5.7	200 ± 100	
$W^-+b\bar{b},c\bar{c},light$ jets	9.2 ± 4.6	3400 ± 1700	4.1 ± 2.0	1470 ± 740	137 ± 68	
W+c	1460 ± 350	1620 ± 390	388 ± 93	430 ± 100	6.5 ± 1.6	
Z+jets, diboson	370 ± 220	310 ± 180	190 ± 120	180 ± 110	22 ± 13	
Multijet	750 ± 340	740 ± 370	320 ± 160	440 ± 220	21 ± 11	
Total expectation	16100 ± 2600	12600 ± 2000	12400 ± 1500	11100 ± 1100	6710 ± 610	
Data	16198	12837	12460	10819	6403	

Input variables

	Variables used in the 2-jet channels and the 3-jet channels		
$m(\ell v b)$	The invariant mass of the reconstructed top quark.		
$m_{\mathrm{T}}(\ell E_{\mathrm{T}}^{\mathrm{miss}})$	The transverse mass of the lepton– $E_{\rm T}^{\rm miss}$ system, as defined in Eq. (1).		
$\eta(\ell v)$	The pseudorapidity of the system of the lepton and the reconstructed neutrino.		
$m(\ell b)$	The invariant mass of the charged lepton and the b-tagged jet.		
H_{T}	The scalar sum of the transverse momenta of the jets, the charged lepton, and the $E_{\rm T}^{\rm miss}$.		
	Variables used in the 2-jet channels only		
m(jb)	The invariant mass of the untagged jet and the <i>b</i> -tagged jet.		
$ \eta(j) $	The absolute value of the pseudorapidity of the untagged jet.		
$\Delta \mathbf{R}(\ell, j)$	ΔR between the charged lepton and the untagged jet.		
$\Delta R(\ell v b, j)$	ΔR between the reconstructed top quark and the untagged jet.		
$ \eta (b) $	The absolute value of the pseudorapidity of the <i>b</i> -tagged jet.		
$\left \Delta p_{\mathrm{T}}\left(\ell,j ight)\right $	The absolute value of the difference between the transverse momentum of the charged lepton and the untagged jet.		
$ \Delta p_{\mathrm{T}}(\ell v b, j) $	The absolute value of the difference between the transverse momentum of the reconstructed top quark and		
	the untagged jet.		
$E_{\mathrm{T}}^{\mathrm{miss}}$	The missing transverse momentum.		
Variables used in the 3-jet channels only			
$ \Delta y(j_1, j_2) $	The absolute value of the rapidity difference of the leading and 2 nd leading jets.		
$m(j_2j_3)$	The invariant mass of the 2 nd leading jet and the 3 rd leading jet.		
$\cos \theta (\ell, j)_{\ell \nu b \text{r.f.}}$	The cosine of the angle θ between the charged lepton and the leading untagged jet in the rest frame		
	of the reconstructed top quark.		
$\Sigma\eta(j_i)$	The sum of the pseudorapidities of all jets in the event.		
$m(j_1 j_2)$	The invariant mass of the two leading jets.		
$p_{\mathrm{T}}(\ell v b)$	The transverse momentum of the reconstructed top quark.		

BERGISCHE

UNIVERSITÄT WUPPERTAL

AS

BERGISCHE UNIVERSITÄT WUPPERTAL

NN discriminant shapes

Post-fit input variables

BERGISCHE

UNIVERSITÄT WUPPERTAL

Systematic uncertainties 1

Source	$\Delta \sigma(tq)/\sigma(tq)$ [%]	$\Delta \sigma(ar{t}q)/\sigma(ar{t}q)$ [%]	$\Delta R_t/R_t$ [%]	$\Delta \sigma(tq+\bar{t}q)/\sigma(tq+\bar{t}q)$ [%]
Data statistical	±3.1	±5.4	±6.2	±2.7
Monte Carlo statistical	±1.9	±3.2	±3.6	±1.9
Multijet normalization	± 1.1	± 2.0	±1.6	± 1.4
Other background normalization	±1.1	±2.8	±1.9	± 1.6
JES detector	±1.6	±1.4	< 1	±1.4
JES statistical	< 1	< 1	< 1	< 1
JES physics modeling	< 1	< 1	< 1	< 1
JES η intercalibration	±6.9	± 8.4	±1.8	±7.3
JES mixed detector and modeling	< 1	< 1	< 1	< 1
JES close-by jets	< 1	< 1	< 1	< 1
JES pile-up	< 1	< 1	< 1	< 1
JES flavor composition	± 1.4	± 1.4	± 1.2	± 1.6
JES flavor response	< 1	< 1	± 1.0	< 1
<i>b</i> -JES	< 1	< 1	< 1	< 1
lat anarov resolution	+2.1	+1.6	+1.0	+1.0
Jet vertex freetien	±2.1	±1.0	±1.0	±1.7
b tagging officiency	< 1	< 1	< 1	< 1
o-tagging efficiency	±3.0	±4.1	< 1	±3.9
<i>c</i> -tagging enictency	< 1	±1.4	< 1	< 1
Mistag efficiency	< 1	< 1	< 1	< 1
b/b acceptance	± 1.0	< 1	< 1	
$E_{\rm T}^{\rm miss}$ modeling	± 2.3	± 3.4	±1.6	± 2.6
Lepton uncertainties	± 2.8	± 3.0	± 1.0	±2.8 27

BERGISCHE

UNIVERSITÄT WUPPERTAL

Systematic uncertainties 2

Source	$\Delta \sigma(tq) / \sigma(tq)$ [%]	$\Delta\sigma(\bar{t}q)/\sigma(\bar{t}q)$ [%]	$\Delta R_t/R_t$ [%]	$\Delta \sigma(tq+\bar{t}q)/\sigma(tq+\bar{t}q)$ [%]
PDF	±3.2	±5.8	±2.5	±3.2
W+jets shape variation	< 1	< 1	< 1	< 1
tq generator + parton shower	±1.9	±1.6	< 1	±1.9
tq scale variations	±2.6	±3.0	< 1	± 2.6
$t\bar{t}$ generator + parton shower	< 1	± 2.1	±1.6	< 1
tī ISR / FSR	< 1	< 1	±1.0	< 1
Luminosity	±1.8	±1.8	±0.5	±1.8
Total systematic	±12.0	±14.9	±6.1	±12.1
Total	±12.4	±15.9	±8.7	±12.4

$$\sigma_t = \sigma_t (172.5 \text{ GeV}) + p_1 \cdot \Delta m_t + p_2 \cdot \Delta m_t^2$$

	p1 [pb/GeV]	p ₂ [pb/ GeV ²]
$\sigma(tq+\bar{t}q)$	-0.46	-0.06
$\sigma(tq)$	-0.27	-0.04
$\sigma(\bar{\iota}q)$	-0.19	-0.02