QCD jet cross sections at NNLO accuracy

Zoltán Trócsányi

University of Debrecen and MTA-DE Particle Physics Research Group in collaboration with G. Bevilaqua, R. Derco, V. Del Duca, C. Duhr, A. Kardos, G. Somogyi, Z. Szőr, D. Tommasini, F. Tramontano, Z. Tulipánt

LHCPhenonet workshop, Berlin November 24, 2014

LHCphenOnet

Outline

- The problem and our goals
- Our method: recipe for a general subtraction scheme at any order in perturbation theory
- Main difficulty: integrating the counter terms
- Light in the tunnel: cancellation of poles
- Conclusions

$$\sigma^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_m^{\text{VV}}$$
$$\equiv \int_{m+2} \mathrm{d}\sigma_{m+2}^{\text{RR}} J_{m+2} + \int_{m+1} \mathrm{d}\sigma_{m+1}^{\text{RV}} J_{m+1} + \int_m \mathrm{d}\sigma_m^{\text{VV}} J_m$$

$$\sigma^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_m^{\text{VV}}$$
$$\equiv \int_{m+2} \mathrm{d}\sigma_{m+2}^{\text{RR}} J_{m+2} + \int_{m+1} \mathrm{d}\sigma_{m+1}^{\text{RV}} J_{m+1} + \int_m \mathrm{d}\sigma_m^{\text{VV}} J_m$$

 \blacktriangleright matrix elements are known for $\sigma^{\rm RR}$ and $\sigma^{\rm RV}$ for many processes

$$\sigma^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_m^{\text{VV}}$$
$$\equiv \int_{m+2} \mathrm{d}\sigma_{m+2}^{\text{RR}} J_{m+2} + \int_{m+1} \mathrm{d}\sigma_{m+1}^{\text{RV}} J_{m+1} + \int_m \mathrm{d}\sigma_m^{\text{VV}} J_m$$

matrix elements are known for σ^{RR} and σ^{RV} for many processes
 σ^{VV} is known for many 0 \rightarrow 4 parton, V+3 parton processes – higher

multiplicities are on the horizon

$$\sigma^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_m^{\text{VV}}$$
$$\equiv \int_{m+2} \mathrm{d}\sigma_{m+2}^{\text{RR}} J_{m+2} + \int_{m+1} \mathrm{d}\sigma_{m+1}^{\text{RV}} J_{m+1} + \int_m \mathrm{d}\sigma_m^{\text{VV}} J_m$$

- matrix elements are known for σ^{RR} and σ^{RV} for many processes
 - σ^{VV} is known for many $0 \rightarrow 4$ parton, V+3 parton processes higher

multiplicities are on the horizon

- the three contributions are separately divergent in d = 4 dimensions:
 - in σ^{RR} kinematical singularities as one or two partons become unresolved yielding ϵ -poles at $O(\epsilon^{-4}, \epsilon^{-3}, \epsilon^{-2}, \epsilon^{-1})$ after integration over phase space, no explicit ϵ -poles
 - in σ^{RV} kinematical singularities as one parton becomes unresolved yielding ϵ -poles at $O(\epsilon^{-2}, \epsilon^{-1})$ after integration over phase space + explicit ϵ -poles at $O(\epsilon^{-2}, \epsilon^{-1})$

- in σ^{VV} explicit ϵ -poles at O (ϵ^{-4} , ϵ^{-3} , ϵ^{-2} , ϵ^{-1})

$$\sigma^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_m^{\text{VV}}$$
$$\equiv \int_{m+2} \mathrm{d}\sigma_{m+2}^{\text{RR}} J_{m+2} + \int_{m+1} \mathrm{d}\sigma_{m+1}^{\text{RV}} J_{m+1} + \int_m \mathrm{d}\sigma_m^{\text{VV}} J_m$$

- matrix elements are known for σ^{RR} and σ^{RV} for many processes
 - σ^{VV} is known for many $0 \rightarrow 4$ parton, V+3 parton processes higher

multiplicities are on the horizon

- the three contributions are separately divergent in d = 4 dimensions:
 - in σ^{RR} kinematical singularities as one or two partons become unresolved yielding ϵ -poles at $O(\epsilon^{-4}, \epsilon^{-3}, \epsilon^{-2}, \epsilon^{-1})$ after integration over phase space, no explicit ϵ -poles
 - in σ^{RV} kinematical singularities as one parton becomes unresolved yielding ϵ -poles at $O(\epsilon^{-2}, \epsilon^{-1})$ after integration over phase space + explicit ϵ -poles at $O(\epsilon^{-2}, \epsilon^{-1})$

- in σ^{VV} explicit ϵ -poles at O (ϵ^{-4} , ϵ^{-3} , ϵ^{-2} , ϵ^{-1}) How to combine to obtain finite cross section?

$\sigma^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_m^{\text{VV}}$ $\equiv \int_{m+2} \mathrm{d}\sigma_{m+2}^{\text{RR}} J_{m+2} + \int_{m+1} \mathrm{d}\sigma_{m+1}^{\text{RV}} J_{m+1} + \int_m \mathrm{d}\sigma_m^{\text{VV}} J_m$

- matrix elements are known for σ^{RR} and σ^{RV} for many processes

multiplicities are on the horizon

- the three contributions are separately divergent in d = 4 dimensions:
 - in σ^{RR} kinematical singularities as one or two partons become unresolved yielding ϵ -poles at $O(\epsilon^{-4}, \epsilon^{-3}, \epsilon^{-2}, \epsilon^{-1})$ after integration over phase space, no explicit ϵ -poles
 - in σ^{RV} kinematical singularities as one parton becomes unresolved yielding ϵ -poles at $O(\epsilon^{-2}, \epsilon^{-1})$ after integration over phase space + explicit ϵ -poles at $O(\epsilon^{-2}, \epsilon^{-1})$
 - in σ^{VV} explicit ϵ -poles at O (ϵ^{-4} , ϵ^{-3} , ϵ^{-2} , ϵ^{-1}) How to combine to obtain finite cross section?

personal opinion: general solution is not yet available

Approaches

Sector decomposition

Anastasiou, Melnikov, Petriallo et al 2004-

Antennae subtraction

Gehrmann, Gehrmann-De Ridder, Glover et al 2004-

 \bigcirc q_T-subtraction

S. Catani, M. Grazzini et al 2007-

- Sector-improved phase space for real radiation
 Czakon et al 2010-
- Completely Local Subtractions for Fully Differential Predictions at NNLO (Colorful NNLO)

Somogyi, TZ et al 2005-

For details see: NNLO Ante Portas (LHCPhenonet Summer School in Hungary, June 2014)

<u>http://www.lhcphenonet.eu/debrecen2014/</u>

Several options available - why a new one? Our goal is to devise a subtraction scheme with

Our goal is to devise a subtraction scheme with

✓ fully local counter-terms
 (efficiency and mathematical rigor)

- ✓ fully local counter-terms
 (efficiency and mathematical rigor)
- ✓ fully differential predictions
 (with jet functions defined in d = 4)

- ✓ fully local counter-terms
 (efficiency and mathematical rigor)
- ✓ fully differential predictions
 (with jet functions defined in d = 4)

- ✓ fully local counter-terms
 (efficiency and mathematical rigor)
- ✓ fully differential predictions
 (with jet functions defined in d = 4)
- ✓ completely general construction
 (valid in any order of perturbation theory)

- ✓ fully local counter-terms
 (efficiency and mathematical rigor)
- ✓ fully differential predictions
 (with jet functions defined in d = 4)
- ✓ completely general construction
 (valid in any order of perturbation theory)
- ✓ option to constrain subtraction near singular regions (important check)

Recipe

of subtractions is governed by the jet functions

$$\sigma_{m+2}^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_{m}^{\text{VV}} = \sigma_{m+2}^{\text{NNLO}} + \sigma_{m+1}^{\text{NNLO}} + \sigma_{m}^{\text{NNLO}}$$

$$\sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \left\{ d\sigma_{m+2}^{\text{RR}} J_{m+2} - d\sigma_{m+2}^{\text{RR},A_2} J_m - \left(d\sigma_{m+2}^{\text{RR},A_1} J_{m+1} - d\sigma_{m+2}^{\text{RR},A_{12}} J_m \right) \right\}$$

$$\sigma_{m+1}^{\text{NNLO}} = \int_{m+1} \left\{ \left(d\sigma_{m+1}^{\text{RV}} + \int_1 d\sigma_{m+2}^{\text{RR},A_1} \right) J_{m+1} - \left[d\sigma_{m+1}^{\text{RV},A_1} + \left(\int_1 d\sigma_{m+2}^{\text{RR},A_1} \right) A_1 \right] J_m \right\}$$

$$\sigma_m^{\text{NNLO}} = \int_m \left\{ d\sigma_m^{\text{VV}} + \int_2 \left(d\sigma_{m+2}^{\text{RR},A_2} - d\sigma_{m+2}^{\text{RR},A_{12}} \right) + \int_1 \left[d\sigma_{m+1}^{\text{RV},A_1} + \left(\int_1 d\sigma_{m+2}^{\text{RR},A_1} \right) A_1 \right] \right\} J_m$$

of subtractions is governed by the jet functions

$$\sigma_{m+2}^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_{m}^{\text{VV}} = \sigma_{m+2}^{\text{NNLO}} + \sigma_{m+1}^{\text{NNLO}} + \sigma_{m}^{\text{NNLO}}$$

$$\sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \left\{ d\sigma_{m+2}^{\text{RR}} J_{m+2} - d\sigma_{m+2}^{\text{RR},A_2} J_m - \left(d\sigma_{m+2}^{\text{RR},A_1} J_{m+1} - d\sigma_{m+2}^{\text{RR},A_{12}} J_m \right) \right\}$$

$$\sigma_{m+1}^{\text{NNLO}} = \int_{m+1} \left\{ \left(d\sigma_{m+1}^{\text{RV}} + \int_{1} d\sigma_{m+2}^{\text{RR},A_1} \right) J_{m+1} - \left[d\sigma_{m+1}^{\text{RV},A_1} + \left(\int_{1} d\sigma_{m+2}^{\text{RR},A_1} \right) A_1 \right] J_m \right\}$$

$$\sigma_{m}^{\text{NNLO}} = \int_{m} \left\{ d\sigma_{m}^{\text{VV}} + \int_{2} \left(d\sigma_{m+2}^{\text{RR},A_2} - d\sigma_{m+2}^{\text{RR},A_{12}} \right) + \int_{1} \left[d\sigma_{m+1}^{\text{RV},A_1} + \left(\int_{1} d\sigma_{m+2}^{\text{RR},A_1} \right) A_1 \right] \right\} J_m$$

RR,A2 regularizes doubly-unresolved limits

of subtractions is governed by the jet functions

$$\sigma_{m+2}^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_{m}^{\text{VV}} = \sigma_{m+2}^{\text{NNLO}} + \sigma_{m+1}^{\text{NNLO}} + \sigma_{m}^{\text{NNLO}}$$

$$\sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \left\{ d\sigma_{m+2}^{\text{RR}} J_{m+2} - d\sigma_{m+2}^{\text{RR},\text{A}_2} J_m - \left(d\sigma_{m+2}^{\text{RR},\text{A}_1} J_{m+1} - d\sigma_{m+2}^{\text{RR},\text{A}_{12}} J_m \right) \right\}$$

$$\sigma_{m+1}^{\text{NNLO}} = \int_{m+1} \left\{ \left(d\sigma_{m+1}^{\text{RV}} + \int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) J_{m+1} - \left[d\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) A_1 \right] J_m \right\}$$

$$\sigma_m^{\text{NNLO}} = \int_m \left\{ d\sigma_m^{\text{VV}} + \int_2 \left(d\sigma_{m+2}^{\text{RR},\text{A}_2} - d\sigma_{m+2}^{\text{RR},\text{A}_{12}} \right) + \int_1 \left[d\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) A_1 \right] \right\} J_m$$

RR,A1 regularizes singly-unresolved limits

of subtractions is governed by the jet functions

$$\sigma_{m+2}^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_{m}^{\text{VV}} = \sigma_{m+2}^{\text{NNLO}} + \sigma_{m+1}^{\text{NNLO}} + \sigma_{m}^{\text{NNLO}}$$

$$\sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \left\{ d\sigma_{m+2}^{\text{RR}} J_{m+2} - d\sigma_{m+2}^{\text{RR},\text{A}_2} J_m - \left(d\sigma_{m+2}^{\text{RR},\text{A}_1} J_{m+1} - d\sigma_{m+2}^{\text{RR},\text{A}_{12}} J_m \right) \right\}$$

$$\sigma_{m+1}^{\text{NNLO}} = \int_{m+1} \left\{ \left(d\sigma_{m+1}^{\text{RV}} + \int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) J_{m+1} - \left[d\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) A_1 \right] J_m \right\}$$

$$\sigma_m^{\text{NNLO}} = \int_m \left\{ d\sigma_m^{\text{VV}} + \int_2 \left(d\sigma_{m+2}^{\text{RR},\text{A}_2} - d\sigma_{m+2}^{\text{RR},\text{A}_{12}} \right) + \int_1 \left[d\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) A_1 \right] \right\} J_m$$

RR, A12 removes overlapping subtractions

of subtractions is governed by the jet functions

$$\sigma_{m+2}^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_{m}^{\text{VV}} = \sigma_{m+2}^{\text{NNLO}} + \sigma_{m+1}^{\text{NNLO}} + \sigma_{m}^{\text{NNLO}}$$

$$\sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \left\{ d\sigma_{m+2}^{\text{RR}} J_{m+2} - d\sigma_{m+2}^{\text{RR},\text{A}_2} J_m - \left(d\sigma_{m+2}^{\text{RR},\text{A}_1} J_{m+1} - d\sigma_{m+2}^{\text{RR},\text{A}_{12}} J_m \right) \right\}$$

$$\sigma_{m+1}^{\text{NNLO}} = \int_{m+1} \left\{ \left(d\sigma_{m+1}^{\text{RV}} + \int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) J_{m+1} - \left[d\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) A_1 \right] J_m \right\}$$

$$\sigma_m^{\text{NNLO}} = \int_m \left\{ d\sigma_m^{\text{VV}} + \int_2 \left(d\sigma_{m+2}^{\text{RR},\text{A}_2} - d\sigma_{m+2}^{\text{RR},\text{A}_{12}} \right) + \int_1 \left[d\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) A_1 \right] \right\} J_m$$

RV,A1 regularizes singly-unresolved limits

- Universal IR structure of QCD (squared) matrix elements
 - ϵ -poles of one-loop amplitudes:

$$|\mathcal{M}_{m}^{(1)}(\{p\})\rangle = \mathbf{I}_{0}^{(1)}(\{p\},\epsilon)|\mathcal{M}_{m}^{(0)}(\{p\})\rangle + \mathcal{O}(\epsilon^{0})$$
$$\mathbf{I}_{0}^{(1)}(\{p\},\epsilon) = \frac{\alpha_{s}}{2\pi} \sum_{i} \left[\frac{1}{\epsilon} \gamma_{i} - \frac{1}{\epsilon^{2}} \sum_{k \neq i} \mathbf{T}_{i} \cdot \mathbf{T}_{k} \left(\frac{4\pi\mu^{2}}{s_{ik}}\right)^{\epsilon} \right]$$

Z. Kunszt, ZT 1994, S. Catani, M.H. Seymour 1996, S. Catani, S. Dittmaier, ZT 2000

- Universal IR structure of QCD (squared) matrix elements
 - ϵ -poles of one-loop amplitudes:

 $|\mathcal{M}_{m}^{(1)}(\{p\})\rangle = \mathbf{I}_{0}^{(1)}(\{p\},\epsilon)|\mathcal{M}_{m}^{(0)}(\{p\})\rangle + \mathcal{O}(\epsilon^{0})$

$$\boldsymbol{I}_{0}^{(1)}(\{p\},\epsilon) = \frac{\alpha_{s}}{2\pi} \sum_{i} \left[\frac{1}{\epsilon} \gamma_{i} - \frac{1}{\epsilon^{2}} \sum_{k \neq i} \boldsymbol{T}_{i} \cdot \boldsymbol{T}_{k} \left(\frac{4\pi\mu^{2}}{s_{ik}} \right)^{\epsilon} \right]$$

Z. Kunszt, ZT 1994, S. Catani, M.H. Seymour 1996, S. Catani, S. Dittmaier, ZT 2000

G. Sterman, M.E. Tejeda-Yeomans 2003, S. Moch, M. Mitov 2007

- Universal IR structure of QCD (squared) matrix elements
 - ϵ -poles of one- and two-loop amplitudes
 - soft and collinear factorization of QCD matrix

elements

tree-level 3-parton splitting, double soft current:

J.M. Campbell, E.W.N. Glover 1997, S. Catani, M. Grazzini 1998

V. Del Duca, A. Frizzo, F. Maltoni, 1999, D. Kosower, 2002

one-loop 2-parton splitting, soft gluon current:

L.J. Dixon, D.C. Dunbar, D.A. Kosower 1994 Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt 1998-9 D.A. Kosower, P. Uwer 1999, S. Catani, M. Grazzini 2000

- Universal IR structure of QCD (squared) matrix elements
 - ϵ -poles of one- and two-loop amplitudes
 - soft and collinear factorization of QCD matrix

elements

tree-level 3-parton splitting, double soft current:

J.M. Campbell, E.W.N. Glover 1997, S. Catani, M. Grazzini 1998 V. Del Duca, A. Frizzo, F. Maltoni, 1999, D. Kosower, 2002 one-loop 2-parton splitting, soft gluon current:

L.J. Dixon, D.C. Dunbar, D.A. Kosower 1994 Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt 1998-9 D.A. Kosower, P. Uwer 1999, S. Catani, M. Grazzini 2000

 Simple and general procedure for separating overlapping singularities (using a physical gauge)

Z. Nagy, G. Somogyi, ZT, 2007

- Universal IR structure of QCD (squared) matrix elements
 - ϵ -poles of one- and two-loop amplitudes
 - soft and collinear factorization of QCD matrix elements

tree-level 3-parton splitting, double soft current:

J.M. Campbell, E.W.N. Glover 1997, S. Catani, M. Grazzini 1998 V. Del Duca, A. Frizzo, F. Maltoni, 1999, D. Kosower, 2002 one-loop 2-parton splitting, soft gluon current:

L.J. Dixon, D.C. Dunbar, D.A. Kosower 1994 Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt 1998-9 D.A. Kosower, P. Uwer 1999, S. Catani, M. Grazzini 2000

 Simple and general procedure for separating overlapping singularities (using a physical gauge)

Z. Nagy, G. Somogyi, ZT, 2007

 Extension over whole phase space using momentum mappings (not unique):

$$\{p\}_{n+s} \to \{\tilde{p}\}_n$$

Momentum mappings $\{p\}_{n+s} \to \{\tilde{p}\}_n$

- implement exact momentum conservation
- recoil distributed democratically

 \Rightarrow can be generalized to any number s of unresolved partons

- different mappings for collinear and soft limits
 - collinear limit $p_i || p_r \colon \{p\}_{n+1} \xrightarrow{C_{ir}} \{\tilde{p}\}_n^{(ir)}$

- soft limit $p_s \rightarrow 0$: $\{p\}_{n+1} \xrightarrow{S_s} \{\tilde{p}\}_n^{(s)}$

Momentum mappings $\{p\}_{n+s} \rightarrow \{\tilde{p}\}_n$

- implement exact momentum conservation
- recoil distributed democratically
- different mappings for collinear and soft limits
- lead to phase-space factorization
- can be generalized to any s trivially

Momentum mappings $\{p\}_{n+s} \rightarrow \{\tilde{p}\}_n$

- implement exact momentum conservation
- recoil distributed democratically
- different mappings for collinear and soft limits
- lead to phase-space factorization
- can be generalized to any s trivially

Momentum mappings

define subtractions

$$\sigma_{m+2}^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_{m}^{\text{VV}} = \sigma_{m+2}^{\text{NNLO}} + \sigma_{m+1}^{\text{NNLO}} + \sigma_{m}^{\text{NNLO}}$$

$$\sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \left\{ d\sigma_{m+2}^{\text{RR}} J_{m+2} - d\sigma_{m+2}^{\text{RR},\text{A}_2} J_m - \left(d\sigma_{m+2}^{\text{RR},\text{A}_1} J_{m+1} - d\sigma_{m+2}^{\text{RR},\text{A}_{12}} J_m \right) \right\}$$

$$\sigma_{m+1}^{\text{NNLO}} = \int_{m+1} \left\{ \left(d\sigma_{m+1}^{\text{RV}} + \int_{1} d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) J_{m+1} - \left[d\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_{1} d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) A_1 \right] J_m \right\}$$

$$\sigma_{m}^{\text{NNLO}} = \int_{m} \left\{ d\sigma_{m}^{\text{VV}} + \int_{2} \left(d\sigma_{m+2}^{\text{RR},\text{A}_2} - d\sigma_{m+2}^{\text{RR},\text{A}_{12}} \right) + \int_{1} \left[d\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_{1} d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) A_1 \right] \right\} J_m$$

$$\begin{aligned} & \text{Regularized RR and RV contributions} \\ & \text{can now be computed by numerical Monte} \\ & \text{Carlo integrations} \\ & \text{(implementation for general m in progress)} \\ & \sigma^{\text{NNLO}} = \sigma^{\text{RR}}_{m+2} + \sigma^{\text{RV}}_{m+1} + \sigma^{\text{VV}}_m = \sigma^{\text{NNLO}}_{m+2} + \sigma^{\text{NNLO}}_{m+1} + \sigma^{\text{NNLO}}_m \\ \\ & \sigma^{\text{NNLO}}_{m+2} = \int_{m+2} \left\{ d\sigma^{\text{RR}}_{m+2} J_{m+2} - d\sigma^{\text{RR},A_2}_{m+2} J_m - \left(d\sigma^{\text{RR},A_1}_{m+2} J_{m+1} - d\sigma^{\text{RR},A_1}_{m+2} J_m \right) \right\} \\ & \sigma^{\text{NNLO}}_{m+1} = \int_{m+1} \left\{ \left(d\sigma^{\text{RV}}_{m+1} + \int_1 d\sigma^{\text{RR},A_1}_{m+2} \right) J_{m+1} - \left[d\sigma^{\text{RV},A_1}_{m+1} + \left(\int_1 d\sigma^{\text{RR},A_1}_{m+2} \right) A_1 \right] J_m \right\} \\ & \sigma^{\text{NNLO}}_m = \int_m \left\{ d\sigma^{\text{VV}}_m + \int_2 \left(d\sigma^{\text{RR},A_2}_{m+2} - d\sigma^{\text{RR},A_{12}}_{m+2} \right) + \int_1 \left[d\sigma^{\text{RV},A_1}_{m+1} + \left(\int_1 d\sigma^{\text{RR},A_1}_{m+2} \right) A_1 \right] \right\} J_m \end{aligned}$$

Kinematic singularities cancel

R = subtraction/SME

Integrated approximate xsections

$$\sigma_{m+2}^{\text{NNLO}} = \sigma_{m+2}^{\text{RR}} + \sigma_{m+1}^{\text{RV}} + \sigma_{m}^{\text{VV}} = \sigma_{m+2}^{\text{NNLO}} + \sigma_{m+1}^{\text{NNLO}} + \sigma_{m}^{\text{NNLO}}$$

$$\sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \left\{ d\sigma_{m+2}^{\text{RR}} J_{m+2} - d\sigma_{m+2}^{\text{RR},\text{A}_2} J_m - \left(d\sigma_{m+2}^{\text{RR},\text{A}_1} J_{m+1} - d\sigma_{m+2}^{\text{RR},\text{A}_{12}} J_m \right) \right\}$$

$$\sigma_{m+1}^{\text{NNLO}} = \int_{m+1} \left\{ \left(d\sigma_{m+1}^{\text{RV}} + \int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) J_{m+1} - \left[d\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) A_1 \right] J_m \right\}$$

$$\sigma_m^{\text{NNLO}} = \int_m \left\{ d\sigma_m^{\text{VV}} + \int_2 \left(d\sigma_{m+2}^{\text{RR},\text{A}_2} - d\sigma_{m+2}^{\text{RR},\text{A}_{12}} \right) + \int_1 \left[d\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right) A_1 \right] \right\} J_m$$

After integrating over unresolved momenta & summing over unresolved colors and flavors, the subtraction terms can be written as products of insertion operators (in color space) and lower point cross sections: $\int_{n} d\sigma^{RR,A_{p}} = I_{p}^{(0)}(\{p\}_{n};\epsilon) \otimes d\sigma_{n}^{B}$

Integrated approximate xsections

$$\begin{split} &\int_{p} \mathrm{d}\sigma^{\mathrm{RR},\mathrm{A}_{p}} = \int_{p} \left[\mathrm{d}\phi_{m+2}(\{p\}) \sum_{R} \mathcal{X}_{R}(\{p\}) \right] \\ &= \int_{p} \left[\mathrm{d}\phi_{n}(\{\tilde{p}\}^{(R)}) [\mathrm{d}p_{p}^{(R)}] \sum_{R} \left(8\pi\alpha_{\mathrm{s}}\mu^{2\epsilon} \right)^{p} Sing_{R}(p_{p}^{(R)}) \otimes |\mathcal{M}_{n}^{(0)}(\{\tilde{p}\}_{n}^{(R)})|^{2} \right] \\ &= \left(8\pi\alpha_{\mathrm{s}}\mu^{2\epsilon} \right)^{p} \sum_{R} \left[\int_{p} [\mathrm{d}p_{p}^{(R)}] Sing_{R}(p_{p}^{(R)}) \right] \otimes \mathrm{d}\phi_{n}(\{\tilde{p}\}^{(R)}) |\mathcal{M}_{n}^{(0)}(\{\tilde{p}\}_{n}^{(R)})|^{2} \\ &= \left(8\pi\alpha_{\mathrm{s}}\mu^{2\epsilon} \right)^{p} \sum_{R} \left[\int_{p} [\mathrm{d}p_{p}^{(R)}] Sing_{R}(p_{p}^{(R)}) \right] \otimes \mathrm{d}\sigma_{n}^{\mathrm{B}} \\ & I_{p}^{(0)}(\{p\}_{n};\epsilon) \\ & \text{the integrated counter-terms } [X]_{R} \propto \int_{p} [\mathrm{d}p_{p}^{(R)}] Sing_{R}(p_{p}^{(R)}) \text{ are} \end{split}$$

independent of the process & observable ⇒ need to compute only once (admittedly cumbersome, though)

Summation over unresolved flavors

 integrated counter-terms [X]_{fi...} carry flavor indices of unresolved patrons

⇒ need to sum over unresolved flavors:

technically simple, though tedious, result can be summarized in flavor-summed integrated counterterms

P. Bolzoni, G. Somogyi, ZT arXiv:0905.4390

symbolically:

$$\left(X^{(0)}\right)_{f_{i}...}^{(j,l)...} = \sum \left[X^{(0)}\right]_{f_{k}...}^{(j,l)...}$$

• and precisely, for instance, two-flavor sum: $\sum_{\{m+2\}} \frac{1}{S_{\{m+2\}}} \sum_{t} \sum_{k \neq t} [X_{kt}^{(0)}]_{f_k f_t}^{(...)} \equiv \sum_{\{m\}} \frac{1}{S_{\{m\}}} \left(X_{kt}^{(0)}\right)^{(...)}$

Computing the integrals

See talk by Gabor tomorrow at noon

Status of (287) integrals

Int	status	Int	status	Int	status		Int	status	Int	status
$\mathcal{I}_{1\mathcal{C}}^{(k)}$	V	$\mathcal{I}_{1\mathcal{S},0}$	V	$\mathcal{I}_{1CS,0}$	~		$\mathcal{I}_{12\mathcal{C}}^{(k,l)}$	 ✓ 	$\mathcal{I}_{2\mathcal{S},1}$	v
$\mathcal{T}^{(k)}_{\mu\nu}$	 	$\mathcal{I}_{1\mathcal{S},1}$	 	$\mathcal{I}_{1\mathcal{CS},1}$	~		$\mathcal{T}^{(k,l)}_{(k,l)}$	~	$\mathcal{I}_{2\mathcal{S},2}$	v
$\tau_{1C,1}^{(k)}$	<i>.</i>	$\mathcal{I}_{1\mathcal{S},2}$	$(m > 3) \times$	$\mathcal{I}_{1CS,2}^{(k)}$	~		$\tau_{12C,2}^{(k)}$	~	$\mathcal{I}_{2\mathcal{S},3}$	
$\mathcal{L}_{1\mathcal{C},2}$		$\mathcal{I}_{1\mathcal{S},3}^{(k)}$	 	$\mathcal{I}_{1CS,3}$	~		$\frac{1}{12C},3$		$\mathcal{I}_{2\mathcal{S},4}$	v
$\mathcal{I}_{1\mathcal{C},3}^{(\prime)}$	V	$\mathcal{I}_{1\mathcal{S},4}$	 	$\mathcal{I}_{1CS,4}$	~		$L_{12C,4}^{(\prime)}$	V	$\mathcal{I}_{2\mathcal{S},5}$	v
$\mathcal{I}_{1\mathcal{C},4}^{(\kappa)}$	\checkmark	$\mathcal{I}_{1\mathcal{S},5}$	~				$\mathcal{I}_{12\mathcal{C},5}^{(\kappa)}$	~	$\mathcal{I}_{2\mathcal{S},6}$	v
$\mathcal{I}_{1\mathcal{C},5}^{(k,l)}$	v	$\mathcal{I}_{1\mathcal{S},6}$	 ✓ 				$\mathcal{I}_{12\mathcal{C},6}^{(k)}$	v	$\mathcal{I}_{2\mathcal{S},7}$	
$\mathcal{I}_{1\mathcal{C}}^{(k,l)}$	 ✓ 	$\mathcal{I}_{1\mathcal{S},7}$	v				$\mathcal{I}_{12C}^{(k)}$	v	$\mathcal{I}_{2\mathcal{S},8}$	
$\mathcal{I}_{12}^{(k)}$	 ✓ 						$\mathcal{I}_{122}^{(k)}$	~	$\mathcal{L}_{2\mathcal{S},9}$	
$\mathcal{I}_{\mathcal{I},\mathcal{I}}$	 						$\tau^{(k)}$	~	$\mathcal{I}_{2S,10}$	
210,0							$\mathcal{I}_{12\mathcal{C},9}$ $\mathcal{I}_{(k)}$		$\mathcal{I}_{2S,11}$ $\mathcal{T}_{2S,12}$	
							$L_{12\mathcal{C}},10$	V	$\mathcal{I}_{2S,12}$	v
									$I_{25,15}$ $I_{25,14}$	
Int	status	Int	status	Int		status	s Int	status	$\mathcal{I}_{2S,15}$	v
$\mathcal{I}_{12\mathcal{S},1}^{(k)}$	V	$\mathcal{I}_{12\mathcal{CS},1}^{(k)}$	V	$\mathcal{I}_{2\mathcal{C},1}^{(j,k,l,m)}$)	~	$\mathcal{I}^{(k)}_{2CS,1}$	v	$\mathcal{I}_{2\mathcal{S},16}$	 Image: A start of the start of
$\mathcal{I}_{12S}^{(k)}$	v	$\mathcal{I}_{12CS,2}$	\checkmark	$\mathcal{I}_{2C}^{(j,k,l,m)}$)	~	$\mathcal{I}_{2CS}^{(k)}$	 ✓ 	$\mathcal{I}_{2\mathcal{S},17}$	v
$\mathcal{I}_{120,2}^{(k)}$	~	$\mathcal{I}_{12CS,3}$	V	$\mathcal{I}_{22}^{(j,k,l,m)}$)	~	$\mathcal{I}_{2,2,2}^{(2)}$	✓ / ×	$\mathcal{I}_{2\mathcal{S},18}$	 Image: A start of the start of
$\tau^{(k)}$	~			$\mathcal{T}^{(j,k,l,m)}$)	~	$\tau^{(k)}$	v	$\mathcal{I}_{2\mathcal{S},19}$	v
$\mathcal{L}_{12S,4}$ $\tau(k)$				$\frac{22C}{7},4$,-1,-1)		$\mathcal{I}_{2CS},3$ $\mathcal{T}^{(k)}$		$\mathcal{I}_{2\mathcal{S},20}$	v
$L_{12S,5}$				$L_{2C,5}$		• / •	$\frac{L_{2CS}}{2CS},4$	•	$\mathcal{I}_{2\mathcal{S},21}$	
$\mathcal{L}_{12\mathcal{S},6}$	V			$\mathcal{I}_{2\mathcal{C},6}^{(\kappa,r)}$		~	$\mathcal{I}_{2CS,5}^{(n)}$	V	$\mathcal{I}_{2\mathcal{S},22}$	
$\mathcal{L}_{12S,7}$ $\mathcal{T}_{12S,7}$	· ·								$\mathcal{L}_{2S,23}$	v
$\mathcal{I}_{12S,8}$ $\mathcal{T}_{12S,8}$	~									
$\mathcal{I}_{12S,9}$ $\mathcal{I}_{12S,10}$	· ·									
$\mathcal{I}_{125,10}$ $\mathcal{I}_{125,11}$	✓ √·D	ole co	pefficients	are k	nowr	ו ana	lytical	lly, finite	numer	ically
$\mathcal{I}_{12.5,11}$	· · · P									·
$\mathcal{I}_{12\mathcal{S},13}$	🗸 🗡:ро	le coe	efficients k	nowr	n anal	ytica	lly O([∈⁻'), rest	nume	rically
	_									page 0

Structure of insertion operators recall general form for Born sections $\int_{p} d\sigma^{RR,A_{p}} = \boldsymbol{I}_{p}^{(0)}(\{p\}_{n};\epsilon) \otimes d\sigma_{n}^{B}$

Insertion operators involve all possible color connections with given number of unresolved patrons with kinematic coefficients

for 1 unresolved parton on tree SME $|\mathbf{M}^{(0)}|^2$: $I_1^{(0)}(\{p\}_{m+1};\epsilon) = \frac{\alpha_s}{2\pi}S_\epsilon \left(\frac{\mu^2}{Q^2}\right)^\epsilon \sum_i \left[C_{1,f_i}^{(0)}T_i^2 + \sum_k S_1^{(0),(i,k)}T_iT_k\right]$ kinematic functions contain poles starting from $O(\epsilon^{-2})$ for collinear and from $O(\epsilon^{-1})$ for soft *G*. Somogyi, ZT hep-ph/0609041 Structure of insertion operators recall general form for Born sections $\int_{n} d\sigma^{RR,A_{p}} = I_{p}^{(0)}(\{p\}_{n};\epsilon) \otimes d\sigma_{n}^{B}$

for 2 unresolved patrons on tree SME $|M^{(0)}|^2$: $\boldsymbol{I}_{2}^{(0)}(\{p\}_{m};\epsilon) = \left[\frac{\alpha_{s}}{2\pi}S_{\epsilon}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon}\right]^{2} \left\{\sum_{i}\left[C_{2,f_{i}}^{(0)}\boldsymbol{T}_{i}^{2} + \sum_{i}C_{2,f_{i}f_{k}}^{(0)}\boldsymbol{T}_{k}^{2}\right]\boldsymbol{T}_{i}^{2}\right\}$ $+\sum_{i,l} \left[\mathbf{S}_{2}^{(0),(j,l)} C_{\mathbf{A}} + \sum_{i} \mathbf{C} \mathbf{S}_{2,f_{i}}^{(0),(j,l)} \boldsymbol{T}_{i}^{2} \right] \boldsymbol{T}_{j} \boldsymbol{T}_{l}$ $+\sum \mathrm{S}_{2}^{(0),(i,k)(j,l)}\{\boldsymbol{T}_{i}\boldsymbol{T}_{k},\boldsymbol{T}_{j}\boldsymbol{T}_{l}\}\right\}$ i,k,j,lthe iterated doubly-unresolved has the same color structure, kinematic coefficients differ

G. Somogyi et al arXiv:0905.4390, arXiv:1301.3504, arXiv:1301.3919

Structure of insertion operators general form at one loop

 $\int_{1} \mathrm{d}\sigma_{m+1}^{\mathrm{RV},\mathrm{A}_{1}} = \boldsymbol{I}_{1}^{(0)}(\{p\}_{m};\epsilon) \otimes \mathrm{d}\sigma_{m}^{\mathrm{V}} + \boldsymbol{I}_{1}^{(1)}(\{p\}_{m};\epsilon) \otimes \mathrm{d}\sigma_{m}^{\mathrm{B}}$

for 1 unresolved parton on loop SME $|M^{(1)}|^2$:

$$\boldsymbol{I}_{1}^{(1)}(\{p\}_{m};\epsilon) = \left[\frac{\alpha_{s}}{2\pi}S_{\epsilon}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon}\right]^{2}\sum_{i}\left[C_{1,f_{i}}^{(1)}C_{A}\boldsymbol{T}_{i}^{2} + \sum_{k}S_{1}^{(1),(i,k)}C_{A}\boldsymbol{T}_{i}\boldsymbol{T}_{k}\right] + \sum_{k}S_{1}^{(1),(i,k,l)}\sum_{a,b,c}f_{abc}T_{i}^{a}T_{k}^{b}T_{l}^{c}$$

present for m > 3 (four or more hard partons)

G. Somogyi, ZT arXiv:0807.0509

with only non-abelian contributions on iterated I: $I_{1,1}^{(0,0)}(\{p\}_m;\epsilon) = \left[\frac{\alpha_s}{2\pi}S_{\epsilon}\left(\frac{\mu^2}{Q^2}\right)^{\epsilon}\right]^2 \sum_i \left[C_{1,1,f_i}^{(0,0)}C_A T_i^2 + \sum_k S_{1,2}^{(0,0),(i,k)}C_A T_i T_k\right]$ kinematic functions contain poles starting from $O(\epsilon^{-3})$ only

Structure of insertion operators

- ▶ the color structures are independent of the precise definition of subtractions (momentum mappings), only subleading coefficients of ∈-expansion in kinematic functions may depend
- we computed all insertion operators analytically (defined in our subtraction scheme) up to $O(\epsilon^{-2})$ for arbitrary m

Cancellation of poles

- we checked the cancellation of the leading and first subleading poles (defined in our subtraction scheme) for arbitrary m
- for m=2, see Gabor's talk tomorrow at noon

Cancellation of poles

- we checked the cancellation of the leading and first subleading poles (defined in our subtraction scheme) for arbitrary m
- ▶ for m=2, see Gabor's talk tomorrow at noon Phase space for $e^+e^- \rightarrow q\bar{q}q$
- ▶ for m=3,
 - $y_{13} \simeq 0.0242, y_{23} \simeq 0.0388$ color algebra can be 0.8 $\times y_{13} \simeq 0.33, y_{23} \simeq 0.33$ $\times y_{13} = 0.66, y_{23} = 0.33$ 0.7 performed explicitly: 0.6 $\boldsymbol{T}_1 \boldsymbol{T}_2 = \frac{1}{2} C_{\mathrm{A}} - C_{\mathrm{F}}$ £27 0.5 0.4 $\boldsymbol{T}_1 \boldsymbol{T}_3 = \boldsymbol{T}_2 \boldsymbol{T}_3 = -\frac{1}{2}C_{\mathrm{A}}$ 0.3 0.2 the insertion operators 0.1 depend on 3-jet kinematics: 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 y_{13} $y_{12} = 1 - y_{13} - y_{23}$

1.0

0.9

 $\times y_{13} \simeq 0.758, y_{23} \simeq 0.00318$

$$\begin{aligned} & \mathsf{Example: } e^+e^- \to \mathsf{m}(=3) \mathsf{ jets } \mathsf{at } \mu^2 = \mathsf{s} \\ \sigma_m^{\mathrm{NNLO}} &= \int_m \left\{ \mathrm{d}\sigma_m^{\mathrm{VV}} + \int_2 \left[\mathrm{d}\sigma_{m+2}^{\mathrm{RR},A_2} - \mathrm{d}\sigma_{m+2}^{\mathrm{RR},A_{12}} \right] + \int_1 \left[\mathrm{d}\sigma_{m+1}^{\mathrm{RV},A_1} + \left(\int_1 \mathrm{d}\sigma_{m+2}^{\mathrm{RR},A_1} \right)^{A_1} \right] \right\} J_m \\ & \mathrm{d}\sigma_3^{\mathrm{VV}} = \mathcal{P}oles \left(A_3^{(2\times0)} + A_3^{(1\times1)} \right) + \mathcal{F}inite \left(A_3^{(2\times0)} + A_3^{(1\times1)} \right) \\ & \mathsf{P}oles \left(A_3^{(2\times0)}(1_q, 3_g, 2_{\bar{q}}) + A_3^{(1\times1)}(1_q, 3_g, 2_{\bar{q}}) \right) \\ &= 2 \left[- \left(\mathbf{I}_{q\bar{q}g}^{(1)}(\epsilon) \right)^2 - \frac{\beta_0}{\epsilon} \mathbf{I}_{q\bar{q}g}^{(1)}(\epsilon) \qquad \mathbf{I}_{q\bar{q}g}^{(1)}(\epsilon) = \mathcal{R}e \mathbf{I}_0^{(1)}(p_q, p_{\bar{q}}, p_g; \epsilon) \\ & + e^{-\epsilon\gamma} \frac{\Gamma(1-2\epsilon)}{\Gamma(1-\epsilon)} \left(\frac{\beta_0}{\epsilon} + K \right) \mathbf{I}_{q\bar{q}g}^{(1)}(2\epsilon) + \mathbf{H}_{q\bar{q}g}^{(2)} \right] A_3^0(1_q, 3_g, 2_{\bar{q}}) \\ & + 2 \mathbf{I}_{q\bar{q}g}^{(1)}(\epsilon) A_3^{(1\times0)}(1_q, 3_g, 2_{\bar{q}}) \,. \end{aligned}$$

$$\begin{split} \boldsymbol{H}_{q\bar{q}g}^{(2)} &= \frac{e^{\epsilon\gamma}}{4\,\epsilon\,\Gamma(1-\epsilon)} \Bigg[\left(4\zeta_3 + \frac{589}{432} - \frac{11\pi^2}{72} \right) N^2 + \left(-\frac{1}{2}\zeta_3 - \frac{41}{54} - \frac{\pi^2}{48} \right) \\ &+ \left(-3\zeta_3 - \frac{3}{16} + \frac{\pi^2}{4} \right) \frac{1}{N^2} + \left(-\frac{19}{18} + \frac{\pi^2}{36} \right) NN_F + \left(-\frac{1}{54} - \frac{\pi^2}{24} \right) \frac{N_F}{N} + \frac{5}{27}N_F^2. \Bigg] \,. \end{split}$$
A. Gehrman-De Ridder, T. Gehrmann, E.W.N. Glover, G. Heinrich arXiv:0710.0346

Example:
$$e^+e^- \rightarrow m(=3)$$
 jets at $\mu^2 = s$

$$\sigma_{m}^{\text{NNLO}} = \int_{m} \left\{ \mathrm{d}\sigma_{m}^{\text{VV}} + \int_{2} \left[\mathrm{d}\sigma_{m+2}^{\text{RR},A_{2}} - \mathrm{d}\sigma_{m+2}^{\text{RR},A_{12}} \right] + \int_{1} \left[\mathrm{d}\sigma_{m+1}^{\text{RV},A_{1}} + \left(\int_{1} \mathrm{d}\sigma_{m+2}^{\text{RR},A_{1}} \right)^{A_{1}} \right] \right\} J_{m}$$
$$\mathrm{d}\sigma_{3}^{\text{VV}} = \mathcal{P}oles \left(A_{3}^{(2\times0)} + A_{3}^{(1\times1)} \right) + \mathcal{F}inite \left(A_{3}^{(2\times0)} + A_{3}^{(1\times1)} \right)$$

e.g. in symmetric point:

$$\mathcal{P}oles \left(A_3^{(2\times0)} + A_3^{(1\times1)}\right) \left(y_{13} = \frac{1}{3}, y_{23} = \frac{1}{3}\right) = \mathrm{d}\sigma_3^{\mathrm{B}} \left[\frac{1}{\epsilon^4} \left(-2 + 2N_{\mathrm{c}}^2 + \frac{1}{2N_{\mathrm{c}}^2}\right) + \frac{1}{\epsilon^3} \left(-12.1028 + 13.8111N_{\mathrm{c}}^2 + \frac{2.59861}{N_{\mathrm{c}}^2} - \frac{7}{6}N_{\mathrm{c}}n_{\mathrm{f}} + \frac{7n_{\mathrm{f}}}{12N_{\mathrm{c}}}\right) + \frac{1}{\epsilon^2} \left(-16.9786 + 12.8613N_{\mathrm{c}}^2 + \frac{5.36423}{N_{\mathrm{c}}^2} - 2.79306N_{\mathrm{c}}n_{\mathrm{f}} + \frac{1.16042n_{\mathrm{f}}}{N_{\mathrm{c}}} + \frac{1}{9}n_{\mathrm{f}}^2\right) + \frac{1}{\epsilon} \left(29.6349 - 57.5088N_{\mathrm{c}}^2 - \frac{1.59907}{N_{\mathrm{c}}^2} + 5.04531N_{\mathrm{c}}n_{\mathrm{f}} - 1.51226\frac{n_{\mathrm{f}}}{N_{\mathrm{c}}}\right)\right] + \mathrm{O}\left(\epsilon^0\right)$$

A. Gehrmnn-De Ridder, T. Gehrmann, E.W.N. Glover, G. Heinrich arXiv:0710.0346

$e^+e^- \rightarrow 3$ jets at symmetric point

$$\begin{aligned} \mathcal{P}oles \left(A_{3}^{(2\times0)} + A_{3}^{(1\times1)}\right) \left(y_{13} = \frac{1}{3}, y_{23} = \frac{1}{3}\right) &= \mathrm{d}\sigma_{3}^{\mathrm{B}} \left[\frac{1}{\epsilon^{4}} \left(-2 + 2N_{\mathrm{c}}^{2} + \frac{1}{2N_{\mathrm{c}}^{2}}\right) \right. \\ &+ \frac{1}{\epsilon^{3}} \left(-12.1028 + 13.8111N_{\mathrm{c}}^{2} + \frac{2.59861}{N_{\mathrm{c}}^{2}} - \frac{7}{6}N_{\mathrm{c}}n_{\mathrm{f}} + \frac{7n_{\mathrm{f}}}{12N_{\mathrm{c}}}\right) \\ &+ \frac{1}{\epsilon^{2}} \left(-16.9786 + 12.8613N_{\mathrm{c}}^{2} + \frac{5.36423}{N_{\mathrm{c}}^{2}} - 2.79306N_{\mathrm{c}}n_{\mathrm{f}} + \frac{1.16042n_{\mathrm{f}}}{N_{\mathrm{c}}} + \frac{1}{9}n_{\mathrm{f}}^{2}\right) \\ &+ \frac{1}{\epsilon} \left(29.6349 - 57.5088N_{\mathrm{c}}^{2} - \frac{1.59907}{N_{\mathrm{c}}^{2}} + 5.04531N_{\mathrm{c}}n_{\mathrm{f}} - 1.51226\frac{n_{\mathrm{f}}}{N_{\mathrm{c}}}\right) \right] + O\left(\epsilon^{0}\right) \\ \sum \int \mathrm{d}\sigma^{\mathrm{A}}\left(y_{13} = \frac{1}{3}, y_{23} = \frac{1}{3}\right) &= \mathrm{d}\sigma_{3}^{\mathrm{B}}\left[-\frac{1}{\epsilon^{4}}\left(-2 + 2N_{\mathrm{c}}^{2} + \frac{1}{2N_{\mathrm{c}}^{2}}\right) \\ &- \frac{1}{\epsilon^{3}}\left(-12.1028 + 13.8111N_{\mathrm{c}}^{2} + \frac{2.59861}{N_{\mathrm{c}}^{2}} - \frac{7}{6}N_{\mathrm{c}}n_{\mathrm{f}} + \frac{7n_{\mathrm{f}}}{12N_{\mathrm{c}}}\right) \\ &- \frac{1}{\epsilon^{2}}\left(-16.9786 + 12.8613N_{\mathrm{c}}^{2} + \frac{5.36423}{N_{\mathrm{c}}^{2}} - 2.79306N_{\mathrm{c}}n_{\mathrm{f}} + \frac{1.16042n_{\mathrm{f}}}{12N_{\mathrm{c}}} + \frac{1}{9}n_{\mathrm{f}}^{2}\right) \\ &- \frac{1}{\epsilon}\left(29.6364 - 57.5095N_{\mathrm{c}}^{2} - \frac{1.59905}{N_{\mathrm{c}}^{2}} + 5.04529N_{\mathrm{c}}n_{\mathrm{f}} - 1.51226\frac{n_{\mathrm{f}}}{N_{\mathrm{c}}}\right)\right] + O\left(\epsilon^{0}\right) \end{aligned}$$

$$e^+e^- \rightarrow 3$$
 jets at soft point

$$\begin{aligned} \mathcal{P}oles \left(A_3^{(2\times0)} + A_3^{(1\times1)}\right) (y_{13} = 0.0242, y_{23} = 0.0388) = \mathrm{d}\sigma_3^{\mathrm{B}} \left(\frac{1}{\epsilon^4} \left(-2 + 2N_{\mathrm{c}}^2 + \frac{1}{2N_{\mathrm{c}}^2}\right) \right. \\ &+ \frac{1}{\epsilon^3} \left(-14.8102 + 23.3602N_{\mathrm{c}}^2 + \frac{1.56502}{N_{\mathrm{c}}^2} - \frac{7}{6}N_{\mathrm{c}}n_{\mathrm{f}} + \frac{7n_{\mathrm{f}}}{12N_{\mathrm{c}}}\right) \\ &+ \frac{1}{\epsilon^2} \left(-35.5896 + 101.076N_{\mathrm{c}}^2 + \frac{0.605297}{N_{\mathrm{c}}^2} - 5.18033N_{\mathrm{c}}n_{\mathrm{f}} + \frac{0.643623n_{\mathrm{f}}}{N_{\mathrm{c}}} + \frac{1}{9}n_{\mathrm{f}}^2\right) \\ &+ \frac{1}{\epsilon} \left(-10.0215 + 176.578N_{\mathrm{c}}^2 - \frac{3.75642}{N_{\mathrm{c}}^2} - 4.96733N_{\mathrm{c}}n_{\mathrm{f}} - \frac{0.260912n_{\mathrm{f}}}{N_{\mathrm{c}}}\right) + \mathrm{O}\left(\epsilon^0\right) \\ &\sum \int \mathrm{d}\sigma^{\mathrm{A}}(y_{13} = 0.0242, y_{23} = 0.0388) = \mathrm{d}\sigma_3^{\mathrm{B}} \left(-\frac{1}{\epsilon^4} \left(-2 + 2N_{\mathrm{c}}^2 + \frac{1}{2N_{\mathrm{c}}^2}\right) \right) \\ &- \frac{1}{\epsilon^3} \left(-14.8102 + 23.3602N_{\mathrm{c}}^2 + \frac{1.56502}{N_{\mathrm{c}}^2} - \frac{7}{6}N_{\mathrm{c}}n_{\mathrm{f}} + \frac{7n_{\mathrm{f}}}{12N_{\mathrm{c}}}\right) \\ &- \frac{1}{\epsilon^2} \left(-35.5896 + 101.076N_{\mathrm{c}}^2 + \frac{0.605297}{N_{\mathrm{c}}^2} - 5.18033N_{\mathrm{c}}n_{\mathrm{f}} + \frac{0.643623n_{\mathrm{f}}}{12N_{\mathrm{c}}} + \frac{1}{9}n_{\mathrm{f}}^2\right) \\ &- \frac{1}{\epsilon^2} \left(-35.5896 + 101.076N_{\mathrm{c}}^2 + \frac{0.605297}{N_{\mathrm{c}}^2} - 5.18033N_{\mathrm{c}}n_{\mathrm{f}} + \frac{0.643623n_{\mathrm{f}}}{12N_{\mathrm{c}}} + \frac{1}{9}n_{\mathrm{f}}^2\right) \\ &- \frac{1}{\epsilon} \left(-10.0215 + 176.578N_{\mathrm{c}}^2 - \frac{3.75641}{N_{\mathrm{c}}^2} - 4.96736N_{\mathrm{c}}n_{\mathrm{f}} - 0.260912\frac{n_{\mathrm{f}}}{N_{\mathrm{c}}}\right) + \mathrm{O}\left(\epsilon^0\right) \end{aligned}$$

$e^+e^- \rightarrow 3$ jets at collinear point

$$\begin{aligned} &Poles \left(A_3^{(2\times0)} + A_3^{(1\times1)}\right) (y_{13} = 0.758, y_{23} = 0.00318) = \mathrm{d}\sigma_3^{\mathrm{B}} \left(\frac{1}{\epsilon^4} \left(-2 + 2N_{\mathrm{c}}^2 + \frac{1}{2N_{\mathrm{c}}^2}\right) \right. \\ &+ \frac{1}{\epsilon^3} \left(-16.6015 + 21.4723N_{\mathrm{c}}^2 + \frac{2.93269}{N_{\mathrm{c}}^2} - \frac{7}{6}N_{\mathrm{c}}n_{\mathrm{f}} + \frac{7n_{\mathrm{f}}}{12N_{\mathrm{c}}}\right) \\ &+ \frac{1}{\epsilon^2} \left(-61.1426 + 75.7281N_{\mathrm{c}}^2 + \frac{13.9679}{N_{\mathrm{c}}^2} - 4.70835N_{\mathrm{c}}n_{\mathrm{f}} + 1.32746\frac{n_{\mathrm{f}}}{N_{\mathrm{c}}} + \frac{1}{9}n_{\mathrm{f}}^2\right) \\ &+ \frac{1}{\epsilon} \left(-130.139 + 146.396N_{\mathrm{c}}^2 + \frac{20.8421}{N_{\mathrm{c}}^2} - 4.15223N_{\mathrm{c}}n_{\mathrm{f}} + \frac{3.5162n_{\mathrm{f}}}{N_{\mathrm{c}}}\right) + \mathrm{O}\left(\epsilon^0\right) \\ &\sum \int \mathrm{d}\sigma^{\mathrm{A}}(y_{13} = 0.758, y_{23} = 0.00318) = \mathrm{d}\sigma_3^{\mathrm{B}} \left(-\frac{1}{\epsilon^4} \left(-2 + 2N_{\mathrm{c}}^2 + \frac{1}{2N_{\mathrm{c}}^2}\right) \right) \\ &- \frac{1}{\epsilon^3} \left(-16.6015 + 21.4723N_{\mathrm{c}}^2 + \frac{2.93269}{N_{\mathrm{c}}^2} - \frac{7}{6}N_{\mathrm{c}}n_{\mathrm{f}} + \frac{7n_{\mathrm{f}}}{12N_{\mathrm{c}}}\right) \\ &- \frac{1}{\epsilon^2} \left(-61.1426 + 75.7281N_{\mathrm{c}}^2 + \frac{13.9679}{N_{\mathrm{c}}^2} - 4.70835N_{\mathrm{c}}n_{\mathrm{f}} + 1.32746\frac{n_{\mathrm{f}}}{N_{\mathrm{c}}} + \frac{1}{9}n_{\mathrm{f}}^2\right) \\ &- \frac{1}{\epsilon^2} \left(-61.1426 + 75.7281N_{\mathrm{c}}^2 + \frac{13.9679}{N_{\mathrm{c}}^2} - 4.70835N_{\mathrm{c}}n_{\mathrm{f}} + 1.32746\frac{n_{\mathrm{f}}}{N_{\mathrm{c}}} + \frac{1}{9}n_{\mathrm{f}}^2\right) \\ &- \frac{1}{\epsilon} \left(-130.139 + 146.396N_{\mathrm{c}}^2 + \frac{20.8421}{N_{\mathrm{c}}^2} - 4.15228N_{\mathrm{c}}n_{\mathrm{f}} + \frac{3.5162n_{\mathrm{f}}}{N_{\mathrm{c}}}\right) + \mathrm{O}\left(\epsilon^0\right) \end{aligned}$$

$e^+e^- \rightarrow 3$ jets at diagonal point

$$\begin{aligned} \mathcal{P}oles \left(A_{3}^{(2\times0)} + A_{3}^{(1\times1)}\right) (y_{13} = 0.33, y_{23} = 0.66) = \mathrm{d}\sigma_{3}^{\mathrm{B}} \left(\frac{1}{\epsilon^{4}} \left(-2 + 2N_{\mathrm{c}}^{2} + \frac{1}{2N_{\mathrm{c}}^{2}}\right) \right. \\ &+ \frac{1}{\epsilon^{3}} \left(-18.4429 + 12.465N_{\mathrm{c}}^{2} + \frac{6.10517}{N_{\mathrm{c}}^{2}} - \frac{7}{6}N_{\mathrm{c}}n_{\mathrm{f}} + \frac{7n_{\mathrm{f}}}{12N_{\mathrm{c}}}\right) \\ &+ \frac{1}{\epsilon^{2}} \left(-61.1965 + 5.55521N_{\mathrm{c}}^{2} + \frac{34.2824}{N_{\mathrm{c}}^{2}} - 2.45653N_{\mathrm{c}}n_{\mathrm{f}} + \frac{2.9137n_{\mathrm{f}}}{N_{\mathrm{c}}} + \frac{1}{9}n_{\mathrm{f}}^{2}\right) \\ &+ \frac{1}{\epsilon} \left(-40.4299 - 57.8405N_{\mathrm{c}}^{2} + \frac{102.509}{N_{\mathrm{c}}^{2}} + 5.55926N_{\mathrm{c}}n_{\mathrm{f}} + \frac{1.98203n_{\mathrm{f}}}{N_{\mathrm{c}}}\right) + \mathrm{O}\left(\epsilon^{0}\right) \\ &\sum \int \mathrm{d}\sigma^{\mathrm{A}}(y_{13} = 0.33, y_{23} = 0.66) = \mathrm{d}\sigma_{3}^{\mathrm{B}} \left(-\frac{1}{\epsilon^{4}} \left(-2 + 2N_{\mathrm{c}}^{2} + \frac{1}{2N_{\mathrm{c}}^{2}}\right) \\ &- \frac{1}{\epsilon^{3}} \left(-18.4429 + 12.465N_{\mathrm{c}}^{2} + \frac{6.10517}{N_{\mathrm{c}}^{2}} - \frac{7}{6}N_{\mathrm{c}}n_{\mathrm{f}} + \frac{7n_{\mathrm{f}}}{12N_{\mathrm{c}}}\right) \\ &- \frac{1}{\epsilon^{2}} \left(-61.1965 + 5.55521N_{\mathrm{c}}^{2} + \frac{34.2824}{N_{\mathrm{c}}^{2}} - 2.45653N_{\mathrm{c}}n_{\mathrm{f}} + \frac{2.9137n_{\mathrm{f}}}{12N_{\mathrm{c}}} + \frac{1}{9}n_{\mathrm{f}}^{2}\right) \\ &- \frac{1}{\epsilon^{2}} \left(-61.1965 + 5.55521N_{\mathrm{c}}^{2} + \frac{34.2824}{N_{\mathrm{c}}^{2}} - 2.45653N_{\mathrm{c}}n_{\mathrm{f}} + \frac{19n_{\mathrm{f}}^{2}}{12N_{\mathrm{c}}}\right) \\ &- \frac{1}{\epsilon} \left(-40.4299 + 57.8405N_{\mathrm{c}}^{2} + \frac{102.509}{N_{\mathrm{c}}^{2}} + 5.55924N_{\mathrm{c}}n_{\mathrm{f}} - \frac{1.98203n_{\mathrm{f}}}{N_{\mathrm{c}}}\right) + \mathrm{O}\left(\epsilon^{0}\right) \end{aligned}$$

$$Message:$$

$$\sigma_{3}^{\text{NNLO}} = \int_{3} \left\{ d\sigma_{3}^{\text{VV}} + \sum \int d\sigma^{\text{A}} \right\}_{\epsilon=0} J_{3}$$
indeed finite in d=4 dimensions

✓ Defined a general subtraction scheme for computing NNLO fully differential jet cross sections (presently only for processes with no colored particles in the initial state)

- ✓ Defined a general subtraction scheme for computing NNLO fully differential jet cross sections (presently only for processes with no colored particles in the initial state)
- \checkmark Subtractions are
 - \checkmark fully local
 - ✓ exact and explicit in color (using color state formalism)

- ✓ Defined a general subtraction scheme for computing NNLO fully differential jet cross sections (presently only for processes with no colored particles in the initial state)
- \checkmark Subtractions are
 - \checkmark fully local
 - ✓ exact and explicit in color (using color state formalism)
- ✓ Demonstrated the cancellation of ϵ -poles for m=3

- ✓ Defined a general subtraction scheme for computing NNLO fully differential jet cross sections (presently only for processes with no colored particles in the initial state)
- \checkmark Subtractions are
 - \checkmark fully local
 - ✓ exact and explicit in color (using color state formalism)
- ✓ Demonstrated the cancellation of ϵ -poles for m=3
- ✓ First application: see Gabor's talk tomorrow at noon