QCD jet cross sections at NNLO accuracy

Zoltán Trócsányi

University of Debrecen and MTA-DE Particle Physics Research Group in collaboration with
G. Bevilaqua, R. Derco, V. Del Duca, C. Duhr, A. Kardos, G. Somogyi,
Z. Szőr, D. Tommasini, F. Tramontano, Z. Tulipánt

LHCPhenonet workshop, Berlin November 24, 2014

Outline

- The problem and our goals
- Our method: recipe for a general subtraction scheme at any order in perturbation theory
- Main difficulty: integrating the counter terms
- Light in the tunnel: cancellation of poles
- Conclusions

Problem

$$
\begin{aligned}
\sigma^{\mathrm{NNLO}} & =\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}} \\
& \equiv \int_{m+2} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}+\int_{m+1} \mathrm{~d} \sigma_{m+1}^{\mathrm{RV}} J_{m+1}+\int_{m} \mathrm{~d} \sigma_{m}^{\mathrm{VV}} J_{m}
\end{aligned}
$$

Problem

$$
\begin{aligned}
\sigma^{\mathrm{NNLO}} & =\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}} \\
& \equiv \int_{m+2} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}+\int_{m+1} \mathrm{~d} \sigma_{m+1}^{\mathrm{RV}} J_{m+1}+\int_{m} \mathrm{~d} \sigma_{m}^{\mathrm{VV}} J_{m}
\end{aligned}
$$

- matrix elements are known for $\sigma^{R R}$ and $\sigma^{R V}$ for many processes

Problem

$$
\begin{aligned}
\sigma^{\mathrm{NNLO}} & =\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}} \\
& \equiv \int_{m+2} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}+\int_{m+1} \mathrm{~d} \sigma_{m+1}^{\mathrm{RV}} J_{m+1}+\int_{m} \mathrm{~d} \sigma_{m}^{\mathrm{VV}} J_{m}
\end{aligned}
$$

- matrix elements are known for $\sigma^{R R}$ and $\sigma^{R V}$ for many processes
- $\sigma^{V \mathrm{~V}}$ is known for many $0 \rightarrow 4$ parton, $\mathrm{V}+3$ parton processes - higher multiplicities are on the horizon

Problem

$$
\begin{aligned}
\sigma^{\mathrm{NNLO}} & =\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}} \\
& \equiv \int_{m+2} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}+\int_{m+1} \mathrm{~d} \sigma_{m+1}^{\mathrm{RV}} J_{m+1}+\int_{m} \mathrm{~d} \sigma_{m}^{\mathrm{VV}} J_{m}
\end{aligned}
$$

- matrix elements are known for $\sigma^{R R}$ and $\sigma^{R V}$ for many processes
- $\sigma^{v V}$ is known for many $0 \rightarrow 4$ parton, $\mathrm{V}+3$ parton processes - higher
multiplicities are on the horizon
- the three contributions are separately divergent in $d=4$ dimensions:
- in $\sigma^{R R}$ kinematical singularities as one or two partons become unresolved yielding ϵ-poles at $O\left(\epsilon^{-4}, \epsilon^{-3}, \epsilon^{-2}, \epsilon^{-1}\right)$ after integration over phase space, no explicit ϵ-poles
- in σ^{RV} kinematical singularities as one parton becomes unresolved yielding ϵ-poles at $O\left(\epsilon^{-2}, \epsilon^{-1}\right)$ after integration over phase space + explicit ϵ-poles at $O\left(\epsilon^{-2}, \epsilon^{-1}\right)$
- in $\sigma^{\vee V}$ explicit ϵ-poles at $O\left(\epsilon^{-4}, \epsilon^{-3}, \epsilon^{-2}, \epsilon^{-1}\right)$

Problem

$$
\begin{aligned}
\sigma^{\mathrm{NNLO}} & =\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}} \\
& \equiv \int_{m+2} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}+\int_{m+1} \mathrm{~d} \sigma_{m+1}^{\mathrm{RV}} J_{m+1}+\int_{m} \mathrm{~d} \sigma_{m}^{\mathrm{VV}} J_{m}
\end{aligned}
$$

- matrix elements are known for $\sigma^{R R}$ and $\sigma^{R V}$ for many processes
- $\sigma^{v V}$ is known for many $0 \rightarrow 4$ parton, $\mathrm{V}+3$ parton processes - higher
multiplicities are on the horizon
- the three contributions are separately divergent in $d=4$ dimensions:
- in $\sigma^{R R}$ kinematical singularities as one or two partons become unresolved yielding ϵ-poles at $O\left(\epsilon^{-4}, \epsilon^{-3}, \epsilon^{-2}, \epsilon^{-1}\right)$ after integration over phase space, no explicit ϵ-poles
- in σ^{RV} kinematical singularities as one parton becomes unresolved yielding ϵ-poles at $O\left(\epsilon^{-2}, \epsilon^{-1}\right)$ after integration over phase space + explicit ϵ-poles at $O\left(\epsilon^{-2}, \epsilon^{-1}\right)$
- in $\sigma^{\vee V}$ explicit ϵ-poles at $O\left(\epsilon^{-4}, \epsilon^{-3}, \epsilon^{-2}, \epsilon^{-1}\right)$

How to combine to obtain finite cross section?

Problem

$$
\sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}
$$

$$
\equiv \int_{m+2} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}+\int_{m+1} \mathrm{~d} \sigma_{m+1}^{\mathrm{RV}} J_{m+1}+\int_{m} \mathrm{~d} \sigma_{m}^{\mathrm{VV}} J_{m}
$$

- matrix elements are known for $\sigma^{R R}$ and $\sigma^{R V}$ for many processes
- $\sigma^{V V}$ is known for many $0 \rightarrow 4$ parton, $\mathrm{V}+3$ parton processes - higher
multiplicities are on the horizon
- the three contributions are separately divergent in $d=4$ dimensions:
- in $\sigma^{R R}$ kinematical singularities as one or two partons become unresolved yielding ϵ-poles at $O\left(\epsilon^{-4}, \epsilon^{-3}, \epsilon^{-2}, \epsilon^{-1}\right)$ after integration over phase space, no explicit ϵ-poles
- in $\sigma^{R V}$ kinematical singularities as one parton becomes unresolved yielding ϵ-poles at $O\left(\epsilon^{-2}, \epsilon^{-1}\right)$ after integration over phase space + explicit ϵ-poles at $O\left(\epsilon^{-2}, \epsilon^{-1}\right)$
- in $\sigma^{V V}$ explicit ϵ-poles at $O\left(\epsilon^{-4}, \epsilon^{-3}, \epsilon^{-2}, \epsilon^{-1}\right)$

How to combine to obtain finite cross section?
personal opinion: general solution is not yet available

Approaches

- Sector decomposition

Anastasiou, Melnikov, Petriallo et al 2004-

- Antennae subtraction

Gehrmann, Gehrmann-De Ridder, Glover et al 2004-

- qT-subtraction
S. Catani, M. Grazzini et al 2007-
- Sector-improved phase space for real radiation (STRIPPER)

Czakon et al 2010-

- Completely Local Subtractions for Fully Differential Predictions at NNLO (Colorful NNLO)

Somogyi, TZ et al 2005-

- For details see: NNLO Ante Portas (LHCPhenonet Summer School in Hungary, June 2014)
http://www.Ihcphenonet.eu/debrecen2014/

Several options available - why a new one?

Several options available - why a new one?
Our goal is to devise a subtraction scheme with

Several options available - why a new one?
Our goal is to devise a subtraction scheme with
\checkmark fully local counter-terms
(efficiency and mathematical rigor)

Several options available - why a new one?
Our goal is to devise a subtraction scheme with
\checkmark fully local counter-terms
(efficiency and mathematical rigor)
\checkmark fully differential predictions (with jet functions defined in $d=4$)

Several options available - why a new one?

Our goal is to devise a subtraction scheme with
\checkmark fully local counter-terms
(efficiency and mathematical rigor)
\checkmark fully differential predictions (with jet functions defined in $d=4$)
\checkmark explicit expressions including flavor and color (color space notation is used)

Several options available - why a new one?
Our goal is to devise a subtraction scheme with
\checkmark fully local counter-terms (efficiency and mathematical rigor)
\checkmark fully differential predictions (with jet functions defined in $d=4$)
\checkmark explicit expressions including flavor and color (color space notation is used)
\checkmark completely general construction
(valid in any order of perturbation theory)

Several options available - why a new one?
Our goal is to devise a subtraction scheme with
\checkmark fully local counter-terms (efficiency and mathematical rigor)
\checkmark fully differential predictions (with jet functions defined in $d=4$)
\checkmark explicit expressions including flavor and color (color space notation is used)
\checkmark completely general construction (valid in any order of perturbation theory)
\checkmark option to constrain subtraction near singular regions (important check)

Structure

of subtractions is governed by the jet functions

$$
\begin{aligned}
& \sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}} \\
& \sigma_{m+2}^{\mathrm{NNLO}}= \int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left(\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right)\right\} \\
& \sigma_{m+1}^{\mathrm{NNLO}}= \int_{m+1}\left\{\left(\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\iint_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}\right\} \\
& \sigma_{m}^{\mathrm{NNLO}}= \int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left(\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right)+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right]\right\} J_{m}
\end{aligned}
$$

Structure

of subtractions is governed by the jet functions

$$
\begin{gathered}
\sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}} \\
\sigma_{m+2}^{\mathrm{NNLO}}=\int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left(\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right)\right\} \\
\sigma_{m+1}^{\mathrm{NNLO}}=
\end{gathered} \int_{m+1}\left\{\left(\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) \mathrm{A}_{1}\right] J_{m}\right\}, ~ \$
$$

$$
\begin{aligned}
\sigma_{m}^{\mathrm{NNLO}}= & \int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left(\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right)+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}}\right.\right.\right. \\
& \mathrm{RR}, \boldsymbol{A}_{2} \text { regularizes doubly-unresolved limits }
\end{aligned}
$$

G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043 G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042 Z. Nagy, G. Somogyi, ZT hep-ph/0702273

Structure

of subtractions is governed by the jet functions

$$
\begin{gathered}
\sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}} \\
\sigma_{m+2}^{\mathrm{NNLO}}=\int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left(\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right)\right\} \\
\sigma_{m+1}^{\mathrm{NNLO}}=\int_{m+1}\left\{\left(\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) \mathrm{A}_{1}\right] J_{m}\right\} \\
\sigma_{m}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left(\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right)+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) \mathrm{A}_{1}\right]\right\}
\end{gathered}
$$

$R R, A_{1}$ regularizes singly-unresolved limits
G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043
G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042
Z. Nagy, G. Somogyi, ZT hep-ph/0702273

Structure

of subtractions is governed by the jet functions

$$
\begin{aligned}
& \sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}} \\
& \sigma_{m+2}^{\mathrm{NNLO}}= \int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left(\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right)\right\} \\
& \sigma_{m+1}^{\mathrm{NNLO}}= \int_{m+1}\left\{\left(\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}\right\} \\
& \sigma_{m}^{\mathrm{NNLO}}= \int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left(\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right)+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right\} J_{m}\right.
\end{aligned}
$$

RR, A_{12} removes overlapping subtractions
G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043
G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042 Z. Nagy, G. Somogyi, ZT hep-ph/0702273

Structure

of subtractions is governed by the jet functions

$$
\begin{gathered}
\sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}} \\
\sigma_{m+2}^{\mathrm{NNLO}}=\int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left(\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right)\right\} \\
\sigma_{m+1}^{\mathrm{NNLO}}=\int_{m+1}\left\{\left(\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}\right\} \\
\sigma_{m}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left(\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right)+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right]\right\} J_{m}
\end{gathered}
$$

RV, A1 regularizes singly-unresolved limits
G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043
G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042
Z. Nagy, G. Somogyi, ZT hep-ph/0702273

Use known ingredients

- Universal IR structure of QCD (squared) matrix elements
- ϵ-poles of one-loop amplitudes:

$$
\begin{gathered}
\left|\mathcal{M}_{m}^{(1)}(\{p\})\right\rangle=\boldsymbol{I}_{0}^{(1)}(\{p\}, \epsilon)\left|\mathcal{M}_{m}^{(0)}(\{p\})\right\rangle+\mathrm{O}\left(\epsilon^{0}\right) \\
\boldsymbol{I}_{0}^{(1)}(\{p\}, \epsilon)=\frac{\alpha_{\mathrm{s}}}{2 \pi} \sum_{i}\left[\frac{1}{\epsilon} \gamma_{i}-\frac{1}{\epsilon^{2}} \sum_{k \neq i} \boldsymbol{T}_{i} \cdot \boldsymbol{T}_{k}\left(\frac{4 \pi \mu^{2}}{s_{i k}}\right)^{\epsilon}\right]
\end{gathered}
$$

Z. Kunszt, ZT 1994, S. Catani, M.H. Seymour 1996, S. Catani, S. Dittmaier, ZT 2000

Use known ingredients

- Universal IR structure of QCD (squared) matrix elements
- ϵ-poles of one-loop amplitudes:

$$
\begin{gathered}
\left|\mathcal{M}_{m}^{(1)}(\{p\})\right\rangle=\boldsymbol{I}_{0}^{(1)}(\{p\}, \epsilon)\left|\mathcal{M}_{m}^{(0)}(\{p\})\right\rangle+\mathrm{O}\left(\epsilon^{0}\right) \\
\boldsymbol{I}_{0}^{(1)}(\{p\}, \epsilon)=\frac{\alpha_{\mathrm{s}}}{2 \pi} \sum_{i}\left[\frac{1}{\epsilon} \gamma_{i}-\frac{1}{\epsilon^{2}} \sum_{k \neq i} \boldsymbol{T}_{i} \cdot \boldsymbol{T}_{k}\left(\frac{4 \pi \mu^{2}}{s_{i k}}\right)^{\epsilon}\right]
\end{gathered}
$$

Z. Kunszt, ZT 1994, S. Catani, M.H. Seymour 1996, S. Catani, S. Dittmaier, ZT 2000

- ϵ-poles of two-loop amplitudes:
$\left|\mathcal{M}_{m}^{(2)}(\{p\}, \epsilon)\right\rangle=\boldsymbol{I}_{0}^{(1)}(\{p\})\left|\mathcal{M}_{m}^{(1)}(\{p\})\right\rangle+\boldsymbol{I}_{0}^{(2)}(\{p\})\left|\mathcal{M}_{m}^{(0)}(\{p\})\right\rangle+\mathrm{O}\left(\epsilon^{0}\right)$

$$
\begin{align*}
\boldsymbol{I}_{\mathrm{RS}}^{(2)}\left(\epsilon, \mu^{2} ;\{p\}\right) & =-\frac{1}{2} \boldsymbol{I}^{(1)}\left(\epsilon, \mu^{2} ;\{p\}\right)\left(\boldsymbol{I}^{(1)}\left(\epsilon, \mu^{2} ;\{p\}\right)+4 \pi \beta_{0} \frac{1}{\epsilon}\right) \\
& +\frac{e^{+\epsilon \psi(1)} \Gamma(1-2 \epsilon)}{\Gamma(1-\epsilon)}\left(2 \pi \beta_{0} \frac{1}{\epsilon}+K\right) \boldsymbol{I}^{(1)}\left(2 \epsilon, \mu^{2} ;\{p\}\right) \tag{19}\\
& +\boldsymbol{H}_{\mathrm{RS} .}^{(2)}\left(\epsilon, \mu^{2} ;\{p\}\right),
\end{align*}
$$

Use known ingredients

- Universal IR structure of QCD (squared) matrix elements
- ϵ-poles of one- and two-loop amplitudes
- soft and collinear factorization of QCD matrix elements
tree-level 3-parton splitting, double soft current:
J.M. Campbell, E.W.N. Glover 1997, S. Catani, M. Grazzini 1998
V. Del Duca, A. Frizzo, F. Maltoni, 1999, D. Kosower, 2002
one-loop 2-parton splitting, soft gluon current:
L.J. Dixon, D.C. Dunbar, D.A. Kosower 1994
Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt 1998-9
D.A. Kosower, P. Uwer 1999, S. Catani, M. Grazzini 2000

Use known ingredients

- Universal IR structure of QCD (squared) matrix elements
- ϵ-poles of one- and two-loop amplitudes
- soft and collinear factorization of QCD matrix elements
tree-level 3-parton splitting, double soft current:
J.M. Campbell, E.W.N. Glover 1997, S. Catani, M. Grazzini 1998
V. Del Duca, A. Frizzo, F. Maltoni, 1999, D. Kosower, 2002
one-loop 2-parton splitting, soft gluon current:
L.J. Dixon, D.C. Dunbar, D.A. Kosower 1994
Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt 1998-9
D.A. Kosower, P. Uwer 1999, S. Catani, M. Grazzini 2000
- Simple and general procedure for separating overlapping singularities (using a physical gauge)
Z. Nagy, G. Somogyi, ZT, 2007

Use known ingredients

- Universal IR structure of QCD (squared) matrix elements
- ϵ-poles of one- and two-loop amplitudes
- soft and collinear factorization of QCD matrix elements
tree-level 3-parton splitting, double soft current:
J.M. Campbell, E.W.N. Glover 1997, S. Catani, M. Grazzini 1998
V. Del Duca, A. Frizzo, F. Maltoni, 1999, D. Kosower, 2002
one-loop 2-parton splitting, soft gluon current:
L.J. Dixon, D.C. Dunbar, D.A. Kosower 1994
Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt 1998-9
D.A. Kosower, P. Uwer 1999, S. Catani, M. Grazzini 2000
- Simple and general procedure for separating overlapping singularities (using a physical gauge)
Z. Nagy, G. Somogyi, ZT, 2007
- Extension over whole phase space using momentum mappings (not unique):

$$
\{p\}_{n+s} \longrightarrow\{\tilde{p}\}_{n}
$$

Momentum mappings

$$
\{p\}_{n+s} \rightarrow\{\tilde{p}\}_{n}
$$

- implement exact momentum conservation
- recoil distributed democratically
\Rightarrow can be generalized to any number s of unresolved partons
- different mappings for collinear and soft limits
- collinear limit pillpr: $\{p\}_{n+1} \xrightarrow{\mathrm{C}_{i r}}\{\tilde{p}\}_{n}^{(i r)}$
- soft limit $p_{s} \rightarrow 0$:

$$
\{p\}_{n+1} \xrightarrow{S_{s}}\{\tilde{p}\}_{n}^{(s)}
$$

Momentum mappings

$$
\{p\}_{n+s} \rightarrow\{\tilde{p}\}_{n}
$$

- implement exact momentum conservation
- recoil distributed democratically
- different mappings for collinear and soft limits
- lead to phase-space factorization
- can be generalized to any s trivially

Momentum mappings

$$
\{p\}_{n+s} \rightarrow\{\tilde{p}\}_{n}
$$

- implement exact momentum conservation
- recoil distributed democratically
- different mappings for collinear and soft limits
- lead to phase-space factorization
- can be generalized to any s trivially

Momentum mappings

define subtractions

$$
\begin{gathered}
\sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}} \\
\sigma_{m+2}^{\mathrm{NNLO}}=\int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left(\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right)\right\} \\
\sigma_{m+1}^{\mathrm{NNLO}}=\int_{m+1}\left\{\left(\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}\right\} \\
\sigma_{m}^{\mathrm{NNLO}}= \\
\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left(\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right)+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) \mathrm{A}_{1}\right]\right\} J_{m} \\
\text { G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043 }
\end{gathered} \quad \begin{array}{r}
\text { G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042 } \\
\text { Z. Nagy, G. Somogyi, ZT hep-ph/0702273 }
\end{array}
$$

Regularized RR and RV contributions

can now be computed by numerical Monte Carlo integrations
(implementation for general m in progress)

$$
\sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}}
$$

$$
\begin{aligned}
& \sigma_{m+2}^{\mathrm{NNLO}}=\int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left(\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right)\right\} \\
& \sigma_{m+1}^{\mathrm{NNLO}}=\int_{m+1}\left\{\left(\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}\right\} \\
& \sigma_{m}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left(\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right)+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) \mathrm{A}_{1}\right]\right\} J_{m}
\end{aligned}
$$

G. Somogyi, ZT hep-ph/0609041, hep-ph/0609043
G. Somogyi, ZT, V. Del Duca hep-ph/0502226, hep-ph/0609042 Z. Nagy, G. Somogyi, ZT hep-ph/0702273

Kinematic singularities cancel

$R=$ subtraction/SME

Integrated approximate xsections

$$
\begin{gathered}
\sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}} \\
\sigma_{m+2}^{\mathrm{NNLO}}=\int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left(\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right)\right\} \\
\sigma_{m+1}^{\mathrm{NNLO}}=\int_{m+1}\left\{\left(\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}\right\} \\
\sigma_{m}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left(\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right)+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right]\right\} J_{m}
\end{gathered}
$$

After integrating over unresolved momenta \& summing over unresolved colors and flavors, the subtraction terms can be written as products of insertion operators (in color space) and lower point cross sections:

$$
\int_{p} \mathrm{~d} \sigma^{\mathrm{RR}, \mathrm{~A}_{p}}=I_{p}^{(0)}\left(\{p\}_{n} ; \epsilon\right) \otimes \mathrm{d} \sigma_{n}^{\mathrm{B}}
$$

Integrated approximate xsections

$$
\begin{aligned}
& \int_{p} \mathrm{~d} \sigma^{\mathrm{RR}, \mathrm{~A}_{p}}=\int_{p}\left[\mathrm{~d} \phi_{m+2}(\{p\}) \sum_{R} \mathcal{X}_{R}(\{p\})\right] \\
& =\int_{p}\left[\mathrm{~d} \phi_{n}\left(\{\tilde{p}\}^{(R)}\right)\left[\mathrm{d} p_{p}^{(R)}\right] \sum_{R}\left(8 \pi \alpha_{\mathrm{s}} \mu^{2 \epsilon}\right)^{p} \operatorname{Sing}_{R}\left(p_{p}^{(R)}\right) \otimes\left|\mathcal{M}_{n}^{(0)}\left(\{\tilde{p}\}_{n}^{(R)}\right)\right|^{2}\right] \\
& =\left(8 \pi \alpha_{\mathrm{s}} \mu^{2 \epsilon}\right)^{p} \sum_{R}\left[\int_{p}\left[\mathrm{~d} p_{p}^{(R)}\right] \operatorname{Sing}_{R}\left(p_{p}^{(R)}\right)\right] \otimes \mathrm{d} \phi_{n}\left(\{\tilde{p}\}^{(R)}\right)\left|\mathcal{M}_{n}^{(0)}\left(\{\tilde{p}\}_{n}^{(R)}\right)\right|^{2} \\
& =\underbrace{\left(8 \pi \alpha_{\mathrm{s}} \mu^{2 \epsilon}\right)^{p} \sum_{R}\left[\int_{p}\left[\mathrm{~d} p_{p}^{(R)}\right] \operatorname{Sing} g_{R}\left(p_{p}^{(R)}\right)\right]} \otimes \mathrm{d} \sigma_{n}^{\mathrm{B}} \\
& \boldsymbol{I}_{p}^{(0)}\left(\{p\}_{n} ; \epsilon\right)
\end{aligned}
$$

the integrated counter-terms $[X]_{R} \propto \int_{p}\left[\mathrm{~d} p_{p}^{(R)}\right] \operatorname{Sing}_{R}\left(p_{p}^{(R)}\right)$ are independent of the process \& observable
\Rightarrow need to compute only once (admittedly cumbersome, though)

Summation over unresolved flavors

- integrated counter-terms [X]fi... carry flavor indices of unresolved patrons
\Rightarrow need to sum over unresolved flavors:
technically simple, though tedious, result can be summarized in flavor-summed integrated counterterms
P. Bolzoni, G. Somogyi, ZT arXiv:0905.4390
- symbolically:

$$
\left(X^{(0)}\right)_{f_{i} \ldots}^{(j, l) \ldots}=\sum\left[X^{(0)}\right]_{f_{k} \ldots}^{(j, l) \ldots}
$$

- and precisely, for instance, two-flavor sum:

$$
\sum_{\{m+2\}} \frac{1}{S_{\{m+2\}}} \sum_{t} \sum_{k \neq t}\left[X_{k t}^{(0)}\right]_{f_{k} f_{t}}^{(\ldots)} \equiv \sum_{\{m\}} \frac{1}{S_{\{m\}}}\left(X_{k t}^{(0)}\right)^{(\ldots)}
$$

Computing the integrals

See talk by Gabor tomorrow at noon

Status of (287) integrals

Structure of insertion operators

 recall general form for Born sections$$
\int_{p} \mathrm{~d} \sigma^{\mathrm{RR}, \mathrm{~A}_{p}}=\boldsymbol{I}_{p}^{(0)}\left(\{p\}_{n} ; \epsilon\right) \otimes \mathrm{d} \sigma_{n}^{\mathrm{B}}
$$

Insertion operators involve all possible color connections with given number of unresolved patrons with kinematic coefficients
for 1 unresolved parton on tree SME $\left|M^{(0)}\right|^{2}$:

$$
\boldsymbol{I}_{1}^{(0)}\left(\{p\}_{m+1} ; \epsilon\right)=\frac{\alpha_{\mathrm{s}}}{2 \pi} S_{\epsilon}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon} \sum_{i}\left[\mathrm{C}_{1, f_{i}}^{(0)} \boldsymbol{T}_{i}^{2}+\sum_{k} \mathrm{~S}_{1}^{(0),(i, k)} \boldsymbol{T}_{i} \boldsymbol{T}_{k}\right]
$$

kinematic functions contain poles starting from
$O\left(\epsilon^{-2}\right)$ for collinear and from $O\left(\epsilon^{-1}\right)$ for soft
G. Somogyi, ZT hep-ph/0609041

Structure of insertion operators

recall general form for Born sections

$$
\int_{p} \mathrm{~d} \sigma^{\mathrm{RR}, \mathrm{~A}_{p}}=\boldsymbol{I}_{p}^{(0)}\left(\{p\}_{n} ; \epsilon\right) \otimes \mathrm{d} \sigma_{n}^{\mathrm{B}}
$$

for 2 unresolved patrons on tree SME $\left|M^{(0)}\right|^{2}$:

$$
\begin{aligned}
\boldsymbol{I}_{2}^{(0)}\left(\{p\}_{m} ; \epsilon\right)=\left[\frac{\alpha_{s}}{2 \pi} S_{\epsilon}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon}\right]^{\epsilon} & \left\{\sum_{i}\left[\mathrm{C}_{2, f_{i}}^{(0)} \boldsymbol{T}_{i}^{2}+\sum_{k} \mathrm{C}_{2, f_{i} f_{k}}^{(0)} \boldsymbol{T}_{k}^{2}\right] \boldsymbol{T}_{i}^{2}\right. \\
& +\sum_{j, l}\left[\mathrm{~S}_{2}^{(0),(j, l)} C_{\mathrm{A}}+\sum_{i} \mathrm{CS}_{2, f_{i}}^{(0)(j, l)} \boldsymbol{T}_{i}^{2}\right] \boldsymbol{T}_{j} \boldsymbol{T}_{l} \\
& \left.+\sum_{i, k, j, l} \mathrm{~S}_{2}^{(0),(i, k)(j, l)}\left\{\boldsymbol{T}_{i} \boldsymbol{T}_{k}, \boldsymbol{T}_{j} \boldsymbol{T}_{l}\right\}\right\}
\end{aligned}
$$

the iterated doubly-unresolved has the same color structure, kinematic coefficients differ
G. Somogyi et al arXiv:0905.4390, arXiv:1301.3504, arXiv:1301.3919

Structure of insertion operators

 general form at one loop$$
\int_{1} \mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}=\boldsymbol{I}_{1}^{(0)}\left(\{p\}_{m} ; \epsilon\right) \otimes \mathrm{d} \sigma_{m}^{\mathrm{V}}+\boldsymbol{I}_{1}^{(1)}\left(\{p\}_{m} ; \epsilon\right) \otimes \mathrm{d} \sigma_{m}^{\mathrm{B}}
$$

for 1 unresolved parton on loop SME $\left|M^{(1)}\right|^{2}$:

present for $m>3$ (four or more hard partons)
G. Somogyi, ZT arXiv:0807.0509

Structure of insertion operators

singly-unresolved integrated singly unresolved:
$\int_{1}\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{1}}\right)^{\mathrm{A}_{1}}=\left[\frac{1}{2}\left\{\boldsymbol{I}_{1}^{(0)}\left(\{p\}_{m} ; \epsilon\right), \boldsymbol{I}_{1}^{(0)}\left(\{p\}_{m} ; \epsilon\right)\right\}+\boldsymbol{I}_{1,1}^{(0,0)}\left(\{p\}_{m} ; \epsilon\right)\right] \otimes \mathrm{d} \sigma_{m}^{\mathrm{B}}$
with only non-abelian contributions on iterated I :

$$
\boldsymbol{I}_{1,1}^{(0,0)}\left(\{p\}_{m} ; \epsilon\right)=\left[\frac{\alpha_{\mathrm{s}}}{2 \pi} S_{\epsilon}\left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon}\right]^{2} \sum_{i}\left[\mathrm{C}_{1,1, f_{i}}^{(0,0)} C_{\mathrm{A}} \boldsymbol{T}_{i}^{2}+\sum_{k} \mathrm{~S}_{1,2}^{(0,0),(i, k)} C_{\mathrm{A}} \boldsymbol{T}_{i} \boldsymbol{T}_{k}\right]
$$

kinematic functions contain poles starting from $O\left(\epsilon^{-3}\right)$ only

Structure of insertion operators

- the color structures are independent of the precise definition of subtractions (momentum mappings), only subleading coefficients of ϵ expansion in kinematic functions may depend
- we computed all insertion operators analytically (defined in our subtraction scheme) up to $O\left(\epsilon^{-2}\right)$ for arbitrary m

Light in the tunnel

Cancellation of poles

- we checked the cancellation of the leading and first subleading poles (defined in our subtraction scheme) for arbitrary m
- for $m=2$, see Gabor's talk tomorrow at noon

Cancellation of poles

- we checked the cancellation of the leading and first subleading poles (defined in our subtraction scheme) for arbitrary m
- for $m=2$, see Gabor's talk tomorrow at noon
- for $m=3$,
- color algebra can be performed explicitly:

$$
\begin{aligned}
& \boldsymbol{T}_{1} \boldsymbol{T}_{2}=\frac{1}{2} C_{\mathrm{A}}-C_{\mathrm{F}} \\
& \boldsymbol{T}_{1} \boldsymbol{T}_{3}=\boldsymbol{T}_{2} \boldsymbol{T}_{3}=-\frac{1}{2} C_{\mathrm{A}}
\end{aligned}
$$

- the insertion operators depend on 3-jet kinematics:

Example: $e^{+} e^{-} \rightarrow m(=3)$ jets at $\mu^{2}=s$

$$
\begin{gathered}
\sigma_{m}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left[\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right]+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right]\right\} J_{m} \\
\mathrm{~d} \sigma_{3}^{\mathrm{VV}}=\mathcal{P} \text { oles }\left(A_{3}^{(2 \times 0)}+A_{3}^{(1 \times 1)}\right)+\mathcal{F} \text { inite }\left(A_{3}^{(2 \times 0)}+A_{3}^{(1 \times 1)}\right)
\end{gathered}
$$

$$
\begin{align*}
& \text { Poles }\left(A_{3}^{(2 \times 0)}\left(1_{q}, 3_{g}, 2_{\bar{q}}\right)+A_{3}^{(1 \times 1)}\left(1_{q}, 3_{g}, 2_{\bar{q}}\right)\right) \\
& =2\left[-\left(\boldsymbol{I}_{q \bar{q} g}^{(1)}(\epsilon)\right)^{2}-\frac{\beta_{0}}{\epsilon} \boldsymbol{I}_{q \bar{q} g}^{(1)}(\epsilon) \quad \boldsymbol{I}_{q \bar{q} g}^{(1)}(\epsilon)=\mathcal{R} e \boldsymbol{I}_{0}^{(1)}\left(p_{q}, p_{\bar{q}}, p_{g} ; \epsilon\right)\right. \\
& \\
& \left.\quad+e^{-\epsilon \gamma} \frac{\Gamma(1-2 \epsilon)}{\Gamma(1-\epsilon)}\left(\frac{\beta_{0}}{\epsilon}+K\right) \boldsymbol{I}_{q \bar{q} g}^{(1)}(2 \epsilon)+\boldsymbol{H}_{q \bar{q} g}^{(2)}\right] A_{3}^{0}\left(1_{q}, 3_{g}, 2_{\bar{q}}\right) \tag{4.59}\\
& \\
& \quad+2 \boldsymbol{I}_{q \bar{q} g}^{(1)}(\epsilon) A_{3}^{(1 \times 0)}\left(1_{q}, 3_{g}, 2_{\bar{q}}\right) .
\end{align*}
$$

$$
\begin{align*}
\boldsymbol{H}_{q q 9}^{(2)}= & \frac{e^{\epsilon \gamma}}{4 \epsilon \Gamma(1-\epsilon)}\left[\left(4 \zeta_{3}+\frac{589}{432}-\frac{11 \pi^{2}}{72}\right) N^{2}+\left(-\frac{1}{2} \zeta_{3}-\frac{41}{54}-\frac{\pi^{2}}{48}\right)\right. \\
& \left.+\left(-3 \zeta_{3}-\frac{3}{16}+\frac{\pi^{2}}{4}\right) \frac{1}{N^{2}}+\left(-\frac{19}{18}+\frac{\pi^{2}}{36}\right) N N_{F}+\left(-\frac{1}{54}-\frac{\pi^{2}}{24}\right) \frac{N_{F}}{N}+\frac{5}{27} N_{F}^{2} .\right] . \tag{4.61}
\end{align*}
$$

A. Gehrmnn-De Ridder, T. Gehrmann, E.W.N. Glover, G. Heinrich arXiv:0710.0346

Example: $e^{+} e^{-} \rightarrow m(=3)$ jets at $\mu^{2}=s$

$$
\begin{gathered}
\sigma_{m}^{\mathrm{NNLO}}=\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left[\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right]+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right]\right\}_{J_{m}} \\
\mathrm{~d} \sigma_{3}^{m \mathrm{~V}}=\mathcal{P} \text { oles }\left(A_{3}^{(2 \times 0)}+A_{3}^{(1 \times 1)}\right)+\mathcal{F} \text { inite }\left(A_{3}^{(2 \times 0)}+A_{3}^{(1 \times 1)}\right)
\end{gathered}
$$

e.g. in symmetric point:

$$
\begin{aligned}
& \text { Poles }\left(A_{3}^{(2 \times 0)}+A_{3}^{(1 \times 1)}\right)\left(y_{13}=\frac{1}{3}, y_{23}=\frac{1}{3}\right)=\mathrm{d} \sigma_{3}^{\mathrm{B}}\left[\frac{1}{\epsilon^{4}}\left(-2+2 N_{\mathrm{c}}^{2}+\frac{1}{2 N_{\mathrm{c}}^{2}}\right)\right. \\
& \quad+\frac{1}{\epsilon^{3}}\left(-12.1028+13.8111 N_{\mathrm{c}}^{2}+\frac{2.59861}{N_{\mathrm{c}}^{2}}-\frac{7}{6} N_{\mathrm{c}} n_{\mathrm{f}}+\frac{7 n_{\mathrm{f}}}{12 N_{\mathrm{c}}}\right) \\
& \quad+\frac{1}{\epsilon^{2}}\left(-16.9786+12.8613 N_{\mathrm{c}}^{2}+\frac{5.36423}{N_{\mathrm{c}}^{2}}-2.79306 N_{\mathrm{c}} n_{\mathrm{f}}+\frac{1.16042 n_{\mathrm{f}}}{N_{\mathrm{c}}}+\frac{1}{9} n_{\mathrm{f}}^{2}\right) \\
& \left.\quad+\frac{1}{\epsilon}\left(29.6349-57.5088 N_{\mathrm{c}}^{2}-\frac{1.59907}{N_{\mathrm{c}}^{2}}+5.04531 N_{\mathrm{c}} n_{\mathrm{f}}-1.51226 \frac{n_{\mathrm{f}}}{N_{\mathrm{c}}}\right)\right]+\mathrm{O}\left(\epsilon^{0}\right)
\end{aligned}
$$

A. Gehrmnn-De Ridder, T. Gehrmann, E.W.N. Glover, G. Heinrich arXiv:0710.0346

$e^{+} e^{-} \rightarrow 3$ jets at symmetric point

$$
\begin{aligned}
& \text { Poles }\left(A_{3}^{(2 \times 0)}+A_{3}^{(1 \times 1)}\right)\left(y_{13}=\frac{1}{3}, y_{23}=\frac{1}{3}\right)=\mathrm{d} \sigma_{3}^{\mathrm{B}}\left[\frac{1}{\epsilon^{4}}\left(-2+2 N_{\mathrm{c}}^{2}+\frac{1}{2 N_{\mathrm{c}}^{2}}\right)\right. \\
& \quad+\frac{1}{\epsilon^{3}}\left(-12.1028+13.8111 N_{\mathrm{c}}^{2}+\frac{2.59861}{N_{\mathrm{c}}^{2}}-\frac{7}{6} N_{\mathrm{c}} n_{\mathrm{f}}+\frac{7 n_{\mathrm{f}}}{12 N_{\mathrm{c}}}\right) \\
& \quad+\frac{1}{\epsilon^{2}}\left(-16.9786+12.8613 N_{\mathrm{c}}^{2}+\frac{5.36423}{N_{\mathrm{c}}^{2}}-2.79306 N_{\mathrm{c}} n_{\mathrm{f}}+\frac{1.16042 n_{\mathrm{f}}}{N_{\mathrm{c}}}+\frac{1}{9} n_{\mathrm{f}}^{2}\right) \\
& \left.\quad+\frac{1}{\epsilon}\left(29.6349-57.5088 N_{\mathrm{c}}^{2}-\frac{1.59907}{N_{\mathrm{c}}^{2}}+5.04531 N_{\mathrm{c}} n_{\mathrm{f}}-1.51226 \frac{n_{\mathrm{f}}}{N_{\mathrm{c}}}\right)\right]+\mathrm{O}\left(\epsilon^{0}\right) \\
& \sum \int \mathrm{d} \sigma^{\mathrm{A}}\left(y_{13}=\frac{1}{3}, y_{23}=\frac{1}{3}\right)=\mathrm{d} \sigma_{3}^{\mathrm{B}}\left[-\frac{1}{\epsilon^{4}}\left(-2+2 N_{\mathrm{c}}^{2}+\frac{1}{2 N_{\mathrm{c}}^{2}}\right)\right. \\
& \quad-\frac{1}{\epsilon^{3}}\left(-12.1028+13.8111 N_{\mathrm{c}}^{2}+\frac{2.59861}{N_{\mathrm{c}}^{2}}-\frac{7}{6} N_{\mathrm{c}} n_{\mathrm{f}}+\frac{7 n_{\mathrm{f}}}{12 N_{\mathrm{c}}}\right) \\
& \quad-\frac{1}{\epsilon^{2}}\left(-16.9786+12.8613 N_{\mathrm{c}}^{2}+\frac{5.36423}{N_{\mathrm{c}}^{2}}-2.79306 N_{\mathrm{c}} n_{\mathrm{f}}+\frac{1.16042 n_{\mathrm{f}}}{N_{\mathrm{c}}}+\frac{1}{9} n_{\mathrm{f}}^{2}\right) \\
& \left.\quad-\frac{1}{\epsilon}\left(29.6364-57.5095 N_{\mathrm{c}}^{2}-\frac{1.59905}{N_{\mathrm{c}}^{2}}+5.04529 N_{\mathrm{c}} n_{\mathrm{f}}-1.51226 \frac{n_{\mathrm{f}}}{N_{\mathrm{c}}}\right)\right]+\mathrm{O}\left(\epsilon^{0}\right)
\end{aligned}
$$

$e^{+} e^{-} \rightarrow 3$ jets at soft point

$$
\begin{aligned}
& \text { Poles }\left(A_{3}^{(2 \times 0)}+A_{3}^{(1 \times 1)}\right)\left(y_{13}=0.0242, y_{23}=0.0388\right)=\mathrm{d} \sigma_{3}^{\mathrm{B}}\left(\frac{1}{\epsilon^{4}}\left(-2+2 N_{\mathrm{c}}^{2}+\frac{1}{2 N_{\mathrm{c}}^{2}}\right)\right. \\
& \quad+\frac{1}{\epsilon^{3}}\left(-14.8102+23.3602 N_{\mathrm{c}}^{2}+\frac{1.56502}{N_{\mathrm{c}}^{2}}-\frac{7}{6} N_{\mathrm{c}} n_{\mathrm{f}}+\frac{7 n_{\mathrm{f}}}{12 N_{\mathrm{c}}}\right) \\
& \quad+\frac{1}{\epsilon^{2}}\left(-35.5896+101.076 N_{\mathrm{c}}^{2}+\frac{0.605297}{N_{\mathrm{c}}^{2}}-5.18033 N_{\mathrm{c}} n_{\mathrm{f}}+\frac{0.643623 n_{\mathrm{f}}}{N_{\mathrm{c}}}+\frac{1}{9} n_{\mathrm{f}}^{2}\right) \\
& \quad+\frac{1}{\epsilon}\left(-10.0215+176.578 N_{\mathrm{c}}^{2}-\frac{3.75642}{N_{\mathrm{c}}^{2}}-4.96733 N_{\mathrm{c}} n_{\mathrm{f}}-\frac{0.260912 n_{\mathrm{f}}}{N_{\mathrm{c}}}\right)+\mathrm{O}\left(\epsilon^{0}\right) \\
& \sum \int \mathrm{d} \sigma^{\mathrm{A}}\left(y_{13}=0.0242, y_{23}=0.0388\right)=\mathrm{d} \sigma_{3}^{\mathrm{B}}\left(-\frac{1}{\epsilon^{4}}\left(-2+2 N_{\mathrm{c}}^{2}+\frac{1}{2 N_{\mathrm{c}}^{2}}\right)\right. \\
& \\
& \quad-\frac{1}{\epsilon^{3}}\left(-14.8102+23.3602 N_{\mathrm{c}}^{2}+\frac{1.56502}{N_{\mathrm{c}}^{2}}-\frac{7}{6} N_{\mathrm{c}} n_{\mathrm{f}}+\frac{7 n_{\mathrm{f}}}{12 N_{\mathrm{c}}}\right) \\
& \quad-\frac{1}{\epsilon^{2}}\left(-35.5896+101.076 N_{\mathrm{c}}^{2}+\frac{0.605297}{N_{\mathrm{c}}^{2}}-5.18033 N_{\mathrm{c}} n_{\mathrm{f}}+\frac{0.643623 n_{\mathrm{f}}}{N_{\mathrm{c}}}+\frac{1}{9} n_{\mathrm{f}}^{2}\right) \\
& \quad-\frac{1}{\epsilon}\left(-10.0215+176.578 N_{\mathrm{c}}^{2}-\frac{3.75641}{N_{\mathrm{c}}^{2}}-4.96736 N_{\mathrm{c}} n_{\mathrm{f}}-0.260912 \frac{n_{\mathrm{f}}}{N_{\mathrm{c}}}\right)+\mathrm{O}\left(\epsilon^{0}\right)
\end{aligned}
$$

$e^{+} e^{-} \rightarrow 3$ jets at collinear point

$$
\begin{aligned}
& \mathcal{P o l e s}\left(A_{3}^{(2 \times 0)}+A_{3}^{(1 \times 1)}\right)\left(y_{13}=0.758, y_{23}=0.00318\right)=\mathrm{d} \sigma_{3}^{\mathrm{B}}\left(\frac{1}{\epsilon^{4}}\left(-2+2 N_{\mathrm{c}}^{2}+\frac{1}{2 N_{\mathrm{c}}^{2}}\right)\right. \\
& \quad+ \frac{1}{\epsilon^{3}}\left(-16.6015+21.4723 N_{\mathrm{c}}^{2}+\frac{2.93269}{N_{\mathrm{c}}^{2}}-\frac{7}{6} N_{\mathrm{c}} n_{\mathrm{f}}+\frac{7 n_{\mathrm{f}}}{12 N_{\mathrm{c}}}\right) \\
& \quad+\frac{1}{\epsilon^{2}}\left(-61.1426+75.7281 N_{\mathrm{c}}^{2}+\frac{13.9679}{N_{\mathrm{c}}^{2}}-4.70835 N_{\mathrm{c}} n_{\mathrm{f}}+1.32746 \frac{n_{\mathrm{f}}}{N_{\mathrm{c}}}+\frac{1}{9} n_{\mathrm{f}}^{2}\right) \\
& \quad+ \frac{1}{\epsilon}\left(-130.139+146.396 N_{\mathrm{c}}^{2}+\frac{20.8421}{N_{\mathrm{c}}^{2}}-4.15223 N_{\mathrm{c}} n_{\mathrm{f}}+\frac{3.5162 n_{\mathrm{f}}}{N_{\mathrm{c}}}\right)+\mathrm{O}\left(\epsilon^{0}\right) \\
& \sum \int \mathrm{d} \sigma^{\mathrm{A}}\left(y_{13}=0.758, y_{23}=0.00318\right)=\mathrm{d} \sigma_{3}^{\mathrm{B}}\left(-\frac{1}{\epsilon^{4}}\left(-2+2 N_{\mathrm{c}}^{2}+\frac{1}{2 N_{\mathrm{c}}^{2}}\right)\right. \\
&-\frac{1}{\epsilon^{3}}\left(-16.6015+21.4723 N_{\mathrm{c}}^{2}+\frac{2.93269}{N_{\mathrm{c}}^{2}}-\frac{7}{6} N_{\mathrm{c}} n_{\mathrm{f}}+\frac{7 n_{\mathrm{f}}}{12 N_{\mathrm{c}}}\right) \\
&-\frac{1}{\epsilon^{2}}\left(-61.1426+75.7281 N_{\mathrm{c}}^{2}+\frac{13.9679}{N_{\mathrm{c}}^{2}}-4.70835 N_{\mathrm{c}} n_{\mathrm{f}}+1.32746 \frac{n_{\mathrm{f}}}{N_{\mathrm{c}}}+\frac{1}{9} n_{\mathrm{f}}^{2}\right) \\
&-\frac{1}{\epsilon}\left(-130.139+146.396 N_{\mathrm{c}}^{2}+\frac{20.8421}{N_{\mathrm{c}}^{2}}-4.15228 N_{\mathrm{c}} n_{\mathrm{f}}+\frac{3.5162 n_{\mathrm{f}}}{N_{\mathrm{c}}}\right)+\mathrm{O}\left(\epsilon^{0}\right)
\end{aligned}
$$

$e^{+} e^{-} \rightarrow 3$ jets at diagonal point

$$
\begin{aligned}
& \text { Poles }\left(A_{3}^{(2 \times 0)}+A_{3}^{(1 \times 1)}\right)\left(y_{13}=0.33, y_{23}=0.66\right)=\mathrm{d} \sigma_{3}^{\mathrm{B}}\left(\frac{1}{\epsilon^{4}}\left(-2+2 N_{\mathrm{c}}^{2}+\frac{1}{2 N_{\mathrm{c}}^{2}}\right)\right. \\
& \quad+\frac{1}{\epsilon^{3}}\left(-18.4429+12.465 N_{\mathrm{c}}^{2}+\frac{6.10517}{N_{\mathrm{c}}^{2}}-\frac{7}{6} N_{\mathrm{c}} n_{\mathrm{f}}+\frac{7 n_{\mathrm{f}}}{12 N_{\mathrm{c}}}\right) \\
& \quad+\frac{1}{\epsilon^{2}}\left(-61.1965+5.55521 N_{\mathrm{c}}^{2}+\frac{34.2824}{N_{\mathrm{c}}^{2}}-2.45653 N_{\mathrm{c}} n_{\mathrm{f}}+\frac{2.9137 n_{\mathrm{f}}}{N_{\mathrm{c}}}+\frac{1}{9} n_{\mathrm{f}}^{2}\right) \\
& \quad+\frac{1}{\epsilon}\left(-40.4299-57.8405 N_{\mathrm{c}}^{2}+\frac{102.509}{N_{\mathrm{c}}^{2}}+5.55926 N_{\mathrm{c}} n_{\mathrm{f}}+\frac{1.98203 n_{\mathrm{f}}}{N_{\mathrm{c}}}\right)+\mathrm{O}\left(\epsilon^{0}\right) \\
& \sum \int \mathrm{d} \sigma^{\mathrm{A}}\left(y_{13}=0.33, y_{23}=0.66\right)=\mathrm{d} \sigma_{3}^{\mathrm{B}}\left(-\frac{1}{\epsilon^{4}}\left(-2+2 N_{\mathrm{c}}^{2}+\frac{1}{2 N_{\mathrm{c}}^{2}}\right)\right. \\
& \\
& \quad-\frac{1}{\epsilon^{3}}\left(-18.4429+12.465 N_{\mathrm{c}}^{2}+\frac{6.10517}{N_{\mathrm{c}}^{2}}-\frac{7}{6} N_{\mathrm{c}} n_{\mathrm{f}}+\frac{7 n_{\mathrm{f}}}{12 N_{\mathrm{c}}}\right) \\
& \quad-\frac{1}{\epsilon^{2}}\left(-61.1965+5.55521 N_{\mathrm{c}}^{2}+\frac{34.2824}{N_{\mathrm{c}}^{2}}-2.45653 N_{\mathrm{c}} n_{\mathrm{f}}+\frac{2.9137 n_{\mathrm{f}}}{N_{\mathrm{c}}}+\frac{1}{9} n_{\mathrm{f}}^{2}\right) \\
& \quad-\frac{1}{\epsilon}\left(-40.4299+57.8405 N_{\mathrm{c}}^{2}+\frac{102.509}{N_{\mathrm{c}}^{2}}+5.55924 N_{\mathrm{c}} n_{\mathrm{f}}-\frac{1.98203 n_{\mathrm{f}}}{N_{\mathrm{c}}}\right)+\mathrm{O}\left(\epsilon^{0}\right)
\end{aligned}
$$

Message:
 $$
\sigma_{3}^{\mathrm{NNLO}}=\int_{3}\left\{\mathrm{~d} \sigma_{3}^{\mathrm{VV}}+\sum \int \mathrm{d} \sigma^{\mathrm{A}}\right\}_{\epsilon=0} J_{3}
$$
 $$
\text { indeed finite in } d=4 \text { dimensions }
$$

Conclusions

Conclusions

\checkmark Defined a general subtraction scheme for computing NNLO fully differential jet cross sections (presently only for processes with no colored particles in the initial state)

Conclusions

\checkmark Defined a general subtraction scheme for computing NNLO fully differential jet cross sections (presently only for processes with no colored particles in the initial state)
\checkmark Subtractions are
\checkmark fully local
\checkmark exact and explicit in color (using color state formalism)

Conclusions

\checkmark Defined a general subtraction scheme for computing NNLO fully differential jet cross sections (presently only for processes with no colored particles in the initial state)
\checkmark Subtractions are
\checkmark fully local
\checkmark exact and explicit in color (using color state formalism)
\checkmark Demonstrated the cancellation of ϵ-poles for $m=3$

Conclusions

\checkmark Defined a general subtraction scheme for computing NNLO fully differential jet cross sections (presently only for processes with no colored particles in the initial state)
\checkmark Subtractions are
\checkmark fully local
\checkmark exact and explicit in color (using color state formalism)
\checkmark Demonstrated the cancellation of ϵ-poles for $m=3$
\checkmark First application: see Gabor's talk tomorrow at noon

