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2 motivations for boosted studies:

Something heavy (e.g. Z’) decays to something light
(t/W/Z/H/...), which is then naturally boosted

A new light particle (H/x°/...) emerges more clearly
above backgrounds in the small fraction of events where
it's produced boosted

7/SLHC > mgw makes both of these relevant
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Jet substructure review (p. 4)
Introduction

Basics
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L introduction Boosted massive particles, e.g.: EW bosons

Hadronically decaying EW boson at high p; # two jets

-
- \
-

1 - v
boosted X ,single o om 1
/’ Jet ~ Pt \/Z(].—Z)

—= (1,
-

Rules of thumb: m = 100 GeV, p; = 500 GeV
2m .

» R < —: always resolve two jets R<04
pt
3m . . 0 1 7

» R 2 —: resolve one jet in 75% of cases (5 < z < ) R > 0.6

Pt
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Introduction

Jet mass

1/N dN/dm [GeV™Y]

0.01

0.008

0.006

0.004

0.002

QCD Jet Mass Distribution

Herwig 6.5 + Jimmy

>1TeV -
pp, 14 TeV

Pt.gen

C/A alg, R=0.5
FastJet 2.4

50 100 150 200 250 300
mie; [GeV]

For boosted heavy object, obvi-
ous thing to tag on is the jet
mass.

But QCD jets also have masses
— large backgrounds, sometimes
peaked in same mass region as
signal.

So how can do we do better?
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U introduction 3 principles can help us

» Heavy-object decays share energy symmetrically, QCD background
events with same mass share energy asymmetrically
Measuring energy-sharing inside jet gives clue as to origin

» QCD radiation from a colour-neutral heavy-object decay is limited
by angular ordering Tells us where to “look for the right mass”
Radiation outside that region may hint that jet is background

» QCD radiation from Higgs decay products is point-like, noise (UE,
piIeup) is diffuse Helps us get the right mass
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U introduction QCD principle: soft divergence
Signal Background
1
— (-Z\ —_—
2) (13
Splitting probability for Higgs: Splitting probability for quark:
P(z) x 1 1+ 22
P
(2) o< T

1/(1 — z) divergence enhances background
Remove divergence in bkdg with cut on z
Can choose cut analytically so as to maximise S/v/B

Originally: cut on (related) k;-distance
Butterworth, Cox & Forshaw '02
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- Higgs

Higgs searches
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L Higes H — bb boosted search channel at LHC

v

Hint of H — bb in SUSY searches Butterworth, Ellis & Raklev '07

v

Proposal that boosted regime recovers WH & ZH channels at LHC
Butterworth, Davison, Rubin & GPS '08

v

Confirmation that this works with realistic detector simulation
ATLAS '09

v

Proposal that boosted H recovers ttH channel
Plehn, GPS & Spannowsky '09

Possibility of H — bb discovery in SUSY events
Kribs, Martin, Roy & Spannowsky '09-'10

v

» Optimising H — bb significance over bkdg by combining filtering /
pruning / trimming Soper & Spannowsky '10
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L Higes Early declustering methods

6 2 10
%'s t Seymour 93 E Butterworth, Cox W
@® b - 2 !
t : & Forshaw '02
12 | . -
‘ £
L 5 2 [ ]
e : 3z 10 A
0.4
of 7 defmom . 3 LY
10 !
<o0s "
4
-0.8
4
10
-t.2
ol b b b b 1
-1.6 o \ ! ) ) . ) 02 04 06 08 1 12 14 16 18 2
—t HT T s T os o [ S T S S log (WPTxVy)
Azimuth
b Colorimeter cells

Fig. 2. A hadronic W decay, as seen at calorimeter level, a without,
and b with, particles from the underlying event. Box sizes are
logarithmic in the cell energy, lines show the borders of the sub-jets
for infinitely soft emission according to the cluster {solid) and cone
(dashed) algorithms

Use k;: jet-algorithm’s hierarchy to
split the jets
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L Higes Early declustering methods
g [ 2 10"
% ISeymour 93 E Butterworth, Cox W
b ' > & Forshaw '02
< 10 A
T
a L
10 .'
'I
A
10"
P AT AT NS AT ATEr A AR 1

PRSI i L L [ TN
-1.6 -1.2 -0.8 ~0.4 o 0.4 0.8 12 1.8

Aziruth
b CGolorimeter cells

Fig. 2. A hadronic W decay, as seen at calorimeter level, a without,
and b with, particles from the underlying event. Box sizes are
logarithmic in the cell energy, lines show the borders of the sub-jets
for infinitely soft emission according to the cluster {solid) and cone
(dashed) algorithms

Use k;: jet-algorithm’s hierarchy to
split the jets

02 04 06 08 1 12 14 16 18 2
log(WPTxVy)

Use k; alg.’s distance measure (rel.
trans. mom.) to cut out QCD bkgd:
ke _ o020 2 2
dit = mm(pt,-,ptj)AR,-j
Y-splitter only partially
correlated with mass
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L tiggs The Cambridge/Aachen algorithm

The Cambridge/Aachen jet alg. Dokshitzer et al '97
Wengler & Wobisch '98

Work out AR2 Ayu + AqS between all pairs of objects i, j;
Recombine the closest pair;
Repeat until all objects separated by AR;; > R. [in FastJet]

Gives “hierarchical” view of the event; work through it backwards to analyse jet
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L Higes The Cambridge/Aachen algorithm

The Cambridge/Aachen jet alg. Dokshitzer et al '97
Wengler & Wobisch '98

Work out AR2 Ayu + AqS between all pairs of objects i, j;
Recombine the closest pair;
Repeat until all objects separated by AR;; > R. [in FastJet]

Gives “hierarchical” view of the event; work through it backwards to analyse jet

k; algorithm Cam/Aachen algorithm

afd

Allows you to “dial” the correct R to
keep perturbative radiation. but throw out UE
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e pp — ZH — visbb, @14 TeV, my=115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

p. [GeV] [ all jets, default R = 1.2
t o " >
90
80
70
60
50
40
30
209~

Cluster event, C/A, R=1.2
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e pp — ZH — visbb, @14 TeV, my=115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

b, [GeV] [ éll |§ts, default R =1.2 .

90

80
70
60
50
40}

Fill it in, — show jets more clearly
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e pp — ZH — visbb, @14 TeV, my=115GeV

SIGNAL
Herwig 6.510 + Jimmy 4.31 + FastJet 2.3 g 00 Pz =280 GeV
p, [GeV] [ Hardest jef, ptf246.211 m=1§0.465 oa | ]
90 o I N A
807 . m . 0.05 ~ ]
i N
GOE ) ~
50 o b=/ . ‘
1 80 100 120 140 160
403 . - I L - my, [GeV]
304 - _ R
209 ' ' w : Zbb BACKGROUND
104 — 200 < p < 250 GeV
i 0.008 : .
0.006 | /\/\ |
0.004 | ) 77\7 ]
y 0.002 | 3
Consider hardest jet, m = 150 GeV © 4o 150 150 130 Teo
my, [GeV]

arbitrary norm.
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I—Higgs

pp — ZH — vibb, @14 TeV, my=115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

p,[GeV] |

Drop step 1; Delta R = 1.03129; pt1=243.291 m1=139.158; pt2=3.944 m2=5.24475

90

80
70
60
50

split: m = 150 GeV, W = 0.92 — repeat

SIGNAL

200 < pyz < 250 GeV

0.05

0 == " "
80 100 120 140 160

Zbb

0.008
0.006
0.004

0.002

my [GeV]

BACKGROUND

200 < p < 250 GeV

o
80 100 120 140 160

my, [GeV]

arbitrary norm.



Ch ™™™ by s ZH — visbb, @14 TeV, my=115GeV
SIGNAL |

200 < pyz < 250 GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3 015
pt [GSV] | Drop step 2; Delta R = 0.87699; pt1=1.:45.536 m1=52.3423; pt2=102.622 m2=27.7967 o1 I ]
90+ S R A
80 ) . - ) L 0.05 | | 1
705 _ = . B
604 . - " ] - / ~
504 - o (A1 et IR o bt
E| = ) . - 80 100 120 140 160
my [GeV]
Zbb BACKGROUND

200 < p < 250 GeV

0.008

0.006

0.004

0 . -4
6 y 0.002 g

R e -

100 120 140 160

split: m =139 GeV, W =0.37 — mass drop ~ “eo o o]

arbitrary norm.
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e ' pp — ZH — visbb, @14 TeV, my=115GeV

Principle #1:

Signal splittings more syummetric than bkgd
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e ' pp — ZH — visbb, @14 TeV, my=115GeV

Principle #1:

Signal splittings more syummetric than bkgd

Principle #2:

Radiation from bb contained
in 2 cones of size Ry;,.
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e pp — ZH — visbb, @14 TeV, my=115GeV

SIGNAL

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3 g 00 Pz =280 GeV
pt [GgV] | Drop step 2; Delta R = 0.87699; pt1=1.:45.536 m1=52.3423; pt2=102.622 m2=27.7967 o1 | 1
9072 “‘“‘“\\\
80 0.05 | / 4
-
60 /" ~
507 ob—~ . .
| 80 100 120 140 160
40 E my [GeV]
309
209 Zbb BACKGROUND
104 200 < py < 250 GeV
0.008 T T
0.006 ~
0.004 q
0.002 - B ~
- \/’\/777/// ~_
check: y1p ~ % ~ 0.7 — OK + 2 b-tags (anti-QCD)  °s5 100 150 140 160

my, [GeV]

arbitrary norm.
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e pp — ZH — visbb, @14 TeV, my=115GeV

SIGNAL
Herwig 6.510 + Jimmy 4.31 + FastJet 2.3 g 00 Pz =280 GeV
b, [GeV] [ Rfilt = 0.3 o | 1
90 S I A
80 "’ : ) 0.05 | / ,
705
60 ’/ ~
50 o =—— . ‘
| 80 100 120 140 160
40 E my [GeV]
304
204 Zbb BACKGROUND
104 200 < py < 250 GeV
0.008 T T
0.006 B
0.004 —
0.002 B
’7\/’\/777/// ~_
Rfl’t — 0'3 O80 100 120 140 160

my, [GeV]

arbitrary norm.
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Higgs

pp — ZH — vibb, @14 TeV, my=115GeV

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

p,[GeV] |

90
80
70
60
50
407
303
209~
103~

Final filtered result, pt=227.257 m=117.211

R = 0.3: take 3 hardest, m = 117 GeV

SIGNAL

200 < pyz < 250 GeV

0.05 -

== B S

o
80

100 120 140 160
my [GeV]

Zbb BACKGROUND

0.008

0.006

0.004

0.002

200 < p < 250 GeV

o
80 100 120 140 160

my, [GeV]

arbitrary norm.
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e ' pp — ZH — visbb, @14 TeV, my=115GeV

Principle #3:

Perturbative radiation from H — bb more
“pointlike” than underlying event & pileup
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L Higgs Noise removal

I—FiItering/Pruning/Trimming

UE adds A ~ 10 — 15 GeV of noise per unit rapidity. For a jet of size R,
effect on jet mass goes as

2 R m* D ta, M
dm~) ~ App— ~ 4N— asgupta, Magnea
< 3
4 p: & GPS '07

Filtering, Pruning & Trimming are all intended to reduce this noise.
Viewing the jet on some smaller scale Ry, throw out softest subjets:

» Filtering: break jet into subjets on angular scale Ry, take ng; hardest
subjets Butterworth, Davison, Rubin & GPS '08

» Trimming: break jet into subjets on angular scale Ryim, take all subjets
with pt sub > €4rimPt jet Krohn, Thaler & Wang '09

» Pruning: as you build up the jet, if the two subjets about to be
recombined have AR > Rprune and min(pe1, pr2) < €prune(Pe1 + pe2),
discard the softer one. Ellis, Vermilion & Walsh '09
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L Higgs Noise removal

Filtering/Pruning/Trimming

These techniques matter most for moderate p; objects

(And also for high-mass resonances — jets)
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- Higgs
I—FiItering/Pruning/Trimming

Optimising “jet cleaning”

Analytically optimize filtering as a function of p;, amount of pileup, etc.

Put together QCD resummations, modelling of UE/PU, understanding of

jet areas, etc.

Best Rt/ Rbb Vs. piH

S s S  S 0 S S 8 80
S R

Nopt

B R R R R R Y
=3 GeV/area n=2 RXZZZA
R et 3 e
N=5 NTaNw

700 800 900 1000

0
200 300 400 500 600
Py, (GeV)

Rubin '10
Also Soyez '10 for choice of jet radius

Best Rt/ Rpp vs. pileup

pue=3 GeV/area rr]'fg ]
08 P, =200 Gev n:é —
n=

Nopt
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L Higes Combining tools on ZH events

I—FiItering/Pruning/Trimming

Filtering, Pruning, Trimming: do they all do the same thing?
Soper & Spannowsky '10

Signal masses more strongly correlated between different methods than are
background masses. Helps reject background more effectively / increase
significance.

160 _ 160 _
% 150 le-01 % % 150 le-01 %
2 2
= 140 2 = 140 2
_ =) _ )
T 35130 = 32130 —
= le02%2f = le02%f
1 - ~ 1 - ~
o S| o S
£ Ss £ sz
c < = 3
5 = 3 3
a = a =
3 3
990 100 110 120 130 140 150 160 +&03 990 100 110 120 130 140 150 160 +&03
e ) ilteri ()
Filtering - M)/ [GeV] Filtering - M)/ [GeV]

But not clear what physics is driving this?
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L Higes ' Buried Higgs": H — 2n — 4g

- Buried

m, < 10 GeV < 2my, implies n — 2g
Bellazzini, Csaki, Falkowski & Weiler '09

Very difficult to observe at LHC (or Tevatron?) with usual methods.

Two groups have tackled this with “boosted” methods:
Chen, Nojiri & Sreethawong '10
Falkowski et al '10

» Even for Higgs at rest, 7 is produced boosted

» 7 is colour-neutral; using a veto on radiation in its neighbourhood helps
kill backgrounds (and it's rare for a jet to be so light)
Related “superstructure” ideas used in other contexts by
Gallicchio & Schwartz '09; Almeida et al '10
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L Higes H — 2n — 4g results

Buried

WH ttH
Chen, Nojiri & Sreethawong '10 Falkowski et al "10
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I—Top

Top
Many new-physics models involve signals of high-p; tops
(KK resonance— tt, tt — tt+MET, etc.)

Compared to W/H/Z, two extra handles to tag on:

3-body decay structure

Presence of W mass among subjets
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I—Top

Tagging boosted top-quarks

Many papers on top tagging in '08-'10: jet mass + something extra.

Questions

» What efficiency for tagging top?
» What rate of fake tags for normal jets?

Rough results for top quark with p; ~ 1 TeV

“Extra” eff. fake
[from T&W] just jet mass 50% 10%
Brooijmans '08 3,4 k; subjets, deyt 45% 5%
Thaler & Wang '08 2,3 k: subjets, z,r + various 40% 5%
Kaplan et al. '08 3,4 C/A subjets, zeye + 65 40% 1%
Ellis et al. '09 C/A pruning 10% | 0.05%
ATLAS '09 3,4 k; subjets, dc,: MC likelihood 90% 15%
Chekanov & P. '10 Jet shapes 60% 10%
Almeida et al. '08-'10 | Template + shapes 13% | 0.02%
Plehn et al. '09-'10 C/A MD, 6y/Dalitz [busy evs, p; ~ 300] | 35% 2%
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L top New top developments 2010
New ways of pulling out the W Template methods
Together with filtering for low-p; top Almeida et al. '10

Build catalog of all possible par-
tonic top-decay configurations.

Look to see if there's a template
that gives a good match to the
current event. That tells you if
you've tagged a top.

Underlying similarlity to cut-based
methods? Angular limits placed on
the “acceptable” templates.

LI el B oL T SRR
0 0.5 1 1.5
arctan m;5/m,

Plehn et al '10
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L Top Measuring efficiencies

Efficiencies / fake-rates depend a lot on how you measure them.
Numbers quoted before taken/deduced straight from papers

Take example of Johns Hopkins (JH) top tagger
Kaplan, Rehermann, Schwartz & Tweedie '08

Generate Herwig 6.5 & Pythia 6.4 samples with p; o, > 1 TeV. Use JH
tagger with fixed R = 0.5. Look at hardest jet.

HW 65 PY 6.4 | HW65 PY 6.4

Efficiencies Fake Rates
mass cuts

145 < m; <205, 65 < myy <95
160 < m; <190, 73 < myy <89

40% 40% 1.2% 0.6%
30% 30% 0.4% 0.2%
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L top Measuring efficiencies

What's a reasonable mass range?

Which MC is closer to the truth?
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L Top Fake rate beyond MC

Two non-MC ways to determine true fake rates:

» Experimentally: to know what will happen for 1 TeV jets at LHC14,
examine LHC7 data for 500 GeV jets (¢ ~ 50 pb~!) with all dimensionful
cuts in the top-taggers scaled by factor %

Scale down cuts even further to increase cross-section

» From QCD: run top-tagger on hadronic side of high-p; NLO W+3jet
events Could use BlackHat and/or Rocket programs
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I—Top

Outlook
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L outook Conclusions/Outlook

The subject has seen a high level of activity in the past two years.

Boosted objects will undoubtedly be part of the scene for LHC searches.
Anytime you do a search you should keep an eye on substructure

Open questions?

» Mostly, so far, developments have been based on a mixture of inspiration
and trial+error. Can we give our methods a more quantitative
foundation? Will this be of concrete benefit?

E.g. flat backgrounds of x° search in Butterworth et al. '09

» There's still wok to be done in comparing tools (quoted numbers not
always comparable) Public code for all tools would help

» Coming year offers much promise for first studies with early data. Studies
need to be formulated so that data tells us both about efficiencies and
fake rates.
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Extras

Extras
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L Extras R-parity violating SUSY

Neutralino search

As an example, a search for neutralinos in R-parity violating supersymmetry.

Normal SPS1A type SUSY scenario, except that neutralino is not LSP, but
instead decays, )2(1) — qqq.
Jet combinatorics makes this a tough channel for discovery

» Produce pairs of squarks, mg ~ 500 GeV.

» Each squark decays to quark + neutralino,
mgo ~ 100 GeV
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L Extras R-parity violating SUSY

Neutralino search

As an example, a search for neutralinos in R-parity violating supersymmetry.

Normal SPS1A type SUSY scenario, except that neutralino is not LSP, but
instead decays, )2(1) — qqq.
Jet combinatorics makes this a tough channel for discovery

» Produce pairs of squarks, mg ~ 500 GeV.

» Each squark decays to quark + neutralino,
mgo ~ 100 GeV

» Neutralino is somewhat boosted — jet
with substructure

Butterworth, Ellis, Raklev & GPS '09
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L Euas Analytics (back-of-the-enveolope)

Neutralino search

Subjet decomposition procedures are not just trial and error.
Mass distribution for undecomposed jet:
1dN  2CasInRpe/m 12 Rpe/ m---
_——~ ¢
N dm m
Strongly shaped, with Sudakov peak, etc.

Mass distribution for hardest (largest Jade distance) substructure within
C/A jet that satisfies a symmetry cut (z > zpin):

i di ~ Me—casln Rp:/m+---

N dm m
Clos(R
~ E05RR) 11 1 2y — ') g In Rpefm + O (02 107)]
m S———

partial cancellation

Procedure gives nearly flat distribution in mdN/dm J

Neutralino procedure involves 2 hard substructures, but ideas are similar
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Extras

Neutralino search

RPV SUSY, SPS1a, 1 fb! [14 TeV]

70000

60000

50000

40000

30000

20000

m,/(100GeV) dN/dbin per fb*

10000

0

signal + background

Keep it simple:

background (just dijets)

signal

200

Look at mass of leading jet

> Plot 155°cev dm N for hardest jet
(p: > 500 GeV)



g e ) RPV SUSY, SPS1a, 1 fb~! [14 TeV]

Neutralino search

8000 : : w Keep it simple:
signal + background

background (just dijets)
6000 | signal

Look at mass of leading jet

> Plot 155°cev dm N for hardest jet

(p: > 500 GeV)

m,/(100GeV) dN/dbin per fo

4000 | ;
» Require 3-pronged substructure
2000 | 1
Cam/Aachen + filt, R=0.7
Py > 500 GeV, zgyj > 0.15, my,e > 0.25 My,
0 Herwig 6.5 + Jimm

0 50 100 150 200
m, [GeV]
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Extras

Neutralino search

RPV SUSY, SPS1a, 1 fb! [14 TeV]

m,/(100GeV) dN/dbin per fo

4000

3000

2000

1000

Keep it simple:

signal + background

background (just dijets)
signal

Cam/Aachen + filt, R=0.7

Py > 500 GeV, zgyj 3 0.15, my,e > 0.25 My,
Herwig 6.5 + Jimmy 4. > 100 GeV
M | I

50 100 150
m, [GeV]

200

Look at mass of leading jet

> Plot 155°cev dm N for hardest jet

(p: > 500 GeV)
» Require 3-pronged substructure
» And third jet
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Extras

Neutralino search

RPV SUSY, SPS1a, 1 fb! [14 TeV]

m,/(100GeV) dN/dbin per fo

2000

1000

signal + background ——

background (just dijets)
signal

Cam/Aachen + filt, R=0.7

Py > 500 GeV, zgyj > 0.15, my,e > 0.25 My,

Keep it simple:
Look at mass of leading jet

> Plot 155°cev dm N for hardest jet

(p: > 500 GeV)
» Require 3-pronged substructure
» And third central jet
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Extras

Neutralino search

RPV SUSY, SPS1a, 1 fb! [14 TeV]

800

600 [

400

200

m,/(100GeV) dN/dbin per fo™

Keep it simple:

signal + background
background (just dijets)
signal

Cam/Aachen + filt, R=0.7

py > 500 GeV, z .15, my. > 0.25 my,,.
P3: Prg > {100

50 100 150
m, [GeV]

Look at mass of leading jet

> Plot 155Gey dm
(pe > 500 GeV)

» Require 3-pronged substructure
» And third central jet

N for hardest jet

» And fourth central jet
99% background rejection
scale-invariant procedure
so remaining bkgd is flat



Jet substructure review (p. 29)
Extras

Neutralino search

RPV SUSY, SPS1a, 1 fb! [14 TeV]

dn/d(20 GeV) per bt

Keep it simple:

150 : :
90 <m, <105
75<m; <90 ——
105<m; <120 ——
100 f 1

a
o

Look at mass of leading jet

> Plot 155Gey dm
(pe > 500 GeV)

» Require 3-pronged substructure
» And third central jet

N for hardest jet

» And fourth central jet
99% background rejection
scale-invariant procedure
so remaining bkgd is flat

Once you’ve found neutralino:

» Look at my4 using events with
my in neutralino peak and in
sidebands

Out comes the squark!



	Introduction
	Higgs
	Filtering/Pruning/Trimming
	Buried

	Top
	Outlook
	Extras
	Neutralino search


