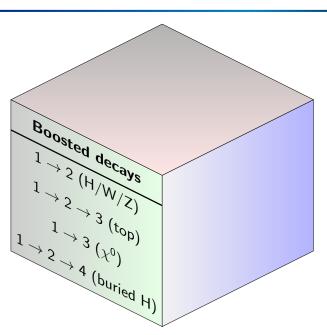
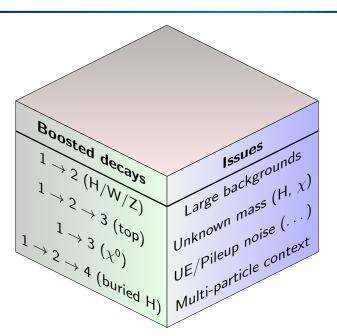
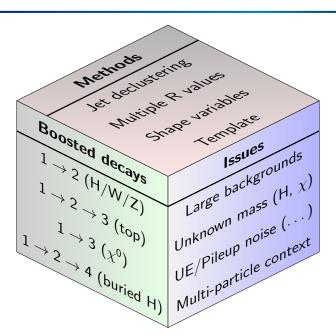


Theory review: hadronic jets with substructure

Gavin P. Salam LPTHE, UPMC Paris 6 & CNRS

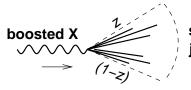

Boost 2010 Oxford, UK, 22–25 June 2010


2 motivations for boosted studies:


Something heavy (e.g. Z') decays to something light (t/W/Z/H/...), which is then naturally boosted

A new light particle $(H/\chi^0/\ldots)$ emerges more clearly above backgrounds in the small fraction of events where it's produced boosted

 $\sqrt{s_{LHC}} \gg m_{EW}$ makes both of these relevant



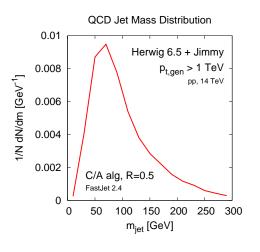
Jet substructure review (p. 4)
LIntroduction

Basics

Boosted massive particles, e.g.: EW bosons

Hadronically decaying EW boson at high $p_t \neq two$ jets

single jet
$$R \gtrsim \frac{m}{p_t} \frac{1}{\sqrt{z(1-z)}}$$


Rules of thumb:

$$m=100~{
m GeV},~p_t=500~{
m GeV}$$

$$ightharpoonup R < \frac{2m}{p_t}$$
: always resolve **two** jets

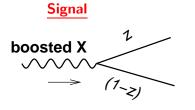
$$ightharpoonup R \gtrsim \frac{3m}{p_t}$$
: resolve **one** jet in 75% of cases $(\frac{1}{8} < z < \frac{7}{8})$

$$R \gtrsim 0.6$$

For boosted heavy object, obvious thing to tag on is the jet mass.

But QCD jets also have masses \rightarrow large backgrounds, sometimes peaked in same mass region as signal.

So how can do we do better?


3 principles can help us

► Heavy-object decays share energy symmetrically, QCD background events with same mass share energy asymmetrically

Measuring energy-sharing inside jet gives clue as to origin

- QCD radiation from a colour-neutral heavy-object decay is limited by angular ordering
 Tells us where to "look for the right mass"
 Radiation outside that region may hint that jet is background
- QCD radiation from Higgs decay products is point-like, noise (UE, pileup) is diffuse
 Helps us get the right mass

QCD principle: soft divergence

Background

quark 1

Splitting probability for Higgs:

$$P(z) \propto 1$$

Splitting probability for quark:

$$P(z) \propto \frac{1+z^2}{1-z}$$

1/(1-z) divergence enhances background

Remove divergence in bkdg with cut on z Can choose cut analytically so as to maximise S/\sqrt{B}

> Originally: cut on (related) k_t -distance Butterworth, Cox & Forshaw '02

Higgs searches

▶ Hint of $H \rightarrow b\bar{b}$ in SUSY searches

- Butterworth, Ellis & Raklev '07
- Proposal that boosted regime recovers WH & ZH channels at LHC Butterworth, Davison, Rubin & GPS '08
- ► Confirmation that this works with realistic detector simulation

ATLAS '09

- ▶ Proposal that boosted *H* recovers ttH channel
 - Plehn, GPS & Spannowsky '09
- ▶ Possibility of $H \rightarrow b\bar{b}$ discovery in SUSY events

Kribs, Martin, Roy & Spannowsky '09-'10

 $lackbox{ Optimising $H o bar b$ significance over bkdg by combining filtering / pruning / trimming Soper & Spannowsky '10$

Early declustering methods

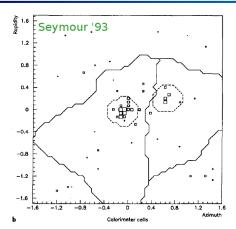
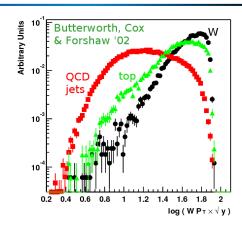



Fig. 2. A hadronic W decay, as seen at calorimeter level, a without, and b with, particles from the underlying event. Box sizes are logarithmic in the cell energy, lines show the borders of the sub-jets for infinitely soft emission according to the cluster (solid) and cone (dashed) algorithms

Use k_t jet-algorithm's hierarchy to split the jets

Use k_t alg.'s distance measure (rel. trans. mom.) to cut out QCD bkgd:

$$d_{ij}^{k_t} = \min(p_{ti}^2, p_{tj}^2) \Delta R_{ij}^2$$

Y-splitter

only partially correlated with mass

Early declustering methods

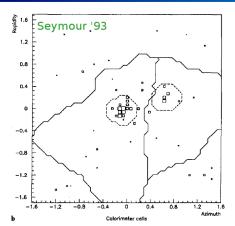
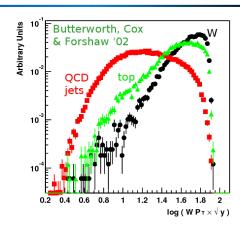



Fig. 2. A hadronic W decay, as seen at calorimeter level, a without, and b with, particles from the underlying event. Box sizes are logarithmic in the cell energy, lines show the borders of the sub-jets for infinitely soft emission according to the cluster (solid) and cone (dashed) algorithms

Use k_t jet-algorithm's hierarchy to split the jets

Use k_t alg.'s distance measure (rel. trans. mom.) to cut out QCD bkgd:

$$d_{ij}^{k_t} = \min(p_{ti}^2, p_{tj}^2) \Delta R_{ij}^2$$

Y-splitter only partially correlated with mass

The Cambridge/Aachen algorithm

The Cambridge/Aachen jet alg.

Dokshitzer et al '97 Wengler & Wobisch '98

[in FastJet]

Work out $\Delta R_{ii}^2 = \Delta y_{ii}^2 + \Delta \phi_{ii}^2$ between all pairs of objects i, j;

Recombine the closest pair;

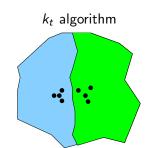
Repeat until all objects separated by $\Delta R_{ii} > R$.

Gives "hierarchical" view of the event; work through it backwards to analyse jet

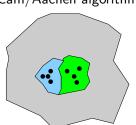
The Cambridge/Aachen algorithm

The Cambridge/Aachen jet alg.

Dokshitzer et al '97 Wengler & Wobisch '98


Work out $\Delta R_{ii}^2 = \Delta y_{ii}^2 + \Delta \phi_{ii}^2$ between all pairs of objects i, j;

Recombine the closest pair;


Repeat until all objects separated by $\Delta R_{ii} > R$.

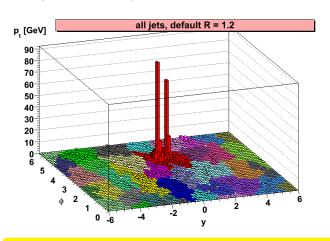
[in FastJet]

Gives "hierarchical" view of the event; work through it backwards to analyse jet

Allows you to "dial" the correct R to keep perturbative radiation, but throw out UE

SIGNAL

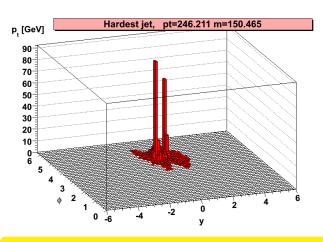
Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

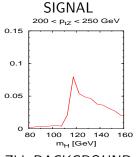


Zbb BACKGROUND

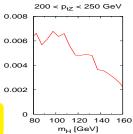
Cluster event, C/A, R=1.2

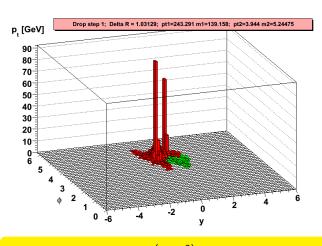
SIGNAL

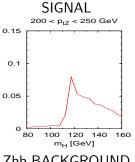

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

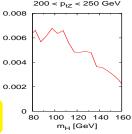

Zbb BACKGROUND

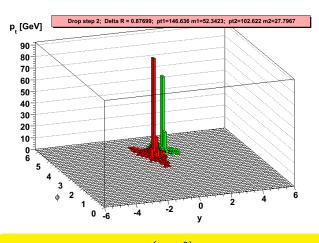
Fill it in, \rightarrow show jets more clearly

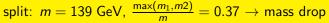

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

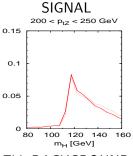

Consider hardest jet, m = 150 GeV

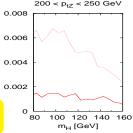


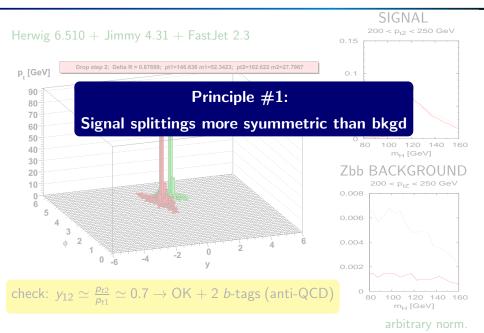

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

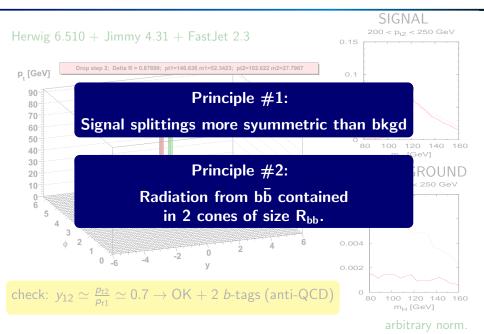

split: m=150 GeV, $\frac{\max(m_1,m_2)}{m}=0.92
ightarrow \text{repeat}$

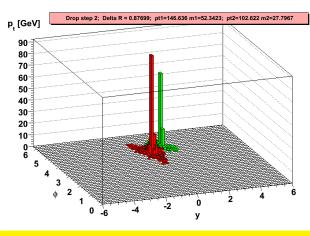


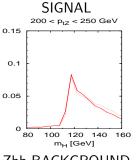

Zbb BACKGROUND

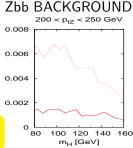

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3





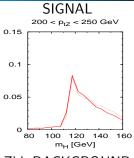

Zbb BACKGROUND

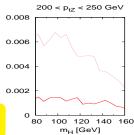


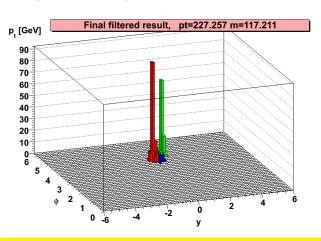


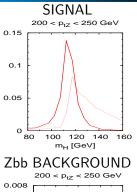
Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

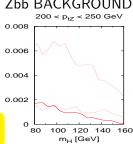
check: $y_{12} \simeq \frac{p_{t2}}{p_{t1}} \simeq 0.7 \rightarrow \text{OK} + 2 \text{ b-tags (anti-QCD)}$



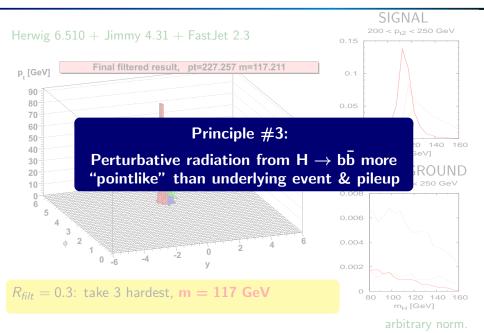

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3


 $R_{filt} = 0.3$


Zbb BACKGROUND



Herwig 6.510 + Jimmy 4.31 + FastJet 2.3



 $R_{filt} = 0.3$: take 3 hardest, $\mathbf{m} = 117 \text{ GeV}$

 $pp \rightarrow ZH \rightarrow \nu \bar{\nu} b \bar{b}$, @14 TeV, $m_H = 115$ GeV

UE adds $\Lambda \simeq 10-15$ GeV of noise per unit rapidity. For a jet of size R, effect on jet mass goes as

$$\langle \delta m^2 \rangle \simeq \Lambda p_t \frac{R^4}{4} \sim 4\Lambda \frac{m^4}{p_t^3}$$

Dasgupta, Magnea & GPS '07

Filtering, Pruning & Trimming are all intended to reduce this noise. Viewing the jet on some smaller scale R_{sub} , throw out softest subjets:

- ► Filtering: break jet into subjets on angular scale R_{filt}, take n_{filt} hardest subjets
 Butterworth, Davison, Rubin & GPS '08
- ▶ Trimming: break jet into subjets on angular scale R_{trim} , take all subjets with $p_{t,sub} > \epsilon_{trim}p_{t,jet}$ Krohn, Thaler & Wang '09
- **Pruning**: as you build up the jet, if the two subjets about to be recombined have $\Delta R > R_{prune}$ and $\min(p_{t1}, p_{t2}) < \epsilon_{prune}(p_{t1} + p_{t2})$, discard the softer one. Ellis, Vermilion & Walsh '09

UE adds $\Lambda \simeq 10-15$ GeV of noise per unit rapidity. For a jet of size R, effect on jet mass goes as

$$\langle \delta m^2 \rangle \simeq \Lambda p_t \frac{R^4}{4} \sim 4\Lambda \frac{m^4}{p_t^3}$$

Dasgupta, Magnea & GPS '07

Filtering, Pruning & Trimming are all intended to reduce this noise. Viewing the jet on some smaller scale R_{sub} , throw out softest subjets:

These techniques matter most for moderate p_t objects

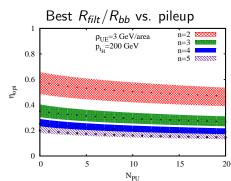
(And also for high-mass resonances \rightarrow jets)

with $p_{t,sub} > \epsilon_{trim} p_{t,jet}$

Krohn, I haler & Wang 09

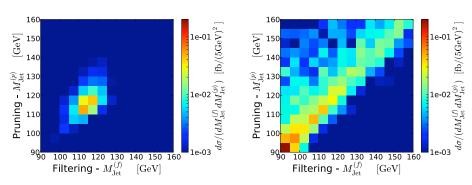
Pruning: as you build up the jet, if the two subjets about to be recombined have $\Delta R > R_{prune}$ and $\min(p_{t1}, p_{t2}) < \epsilon_{prune}(p_{t1} + p_{t2})$, discard the softer one.

Put together QCD resummations, modelling of UE/PU, understanding of iet areas, etc.


Rubin '10

Best R_{filt}/R_{bb} vs. p_{tH} 0.8

0.4


0.2 $\rho_{UE}=3 \text{ GeV/area}$ $\rho_{UE}=3 \text{ MeV}$ $\rho_{UE}=3 \text{ GeV/area}$ ρ_{UE

Also Soyez '10 for choice of jet radius

Soper & Spannowsky '10

Signal masses more strongly correlated between different methods than are background masses. Helps reject background more effectively / increase significance.

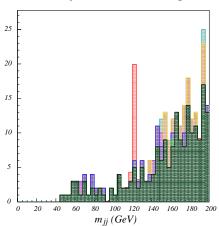
But not clear what physics is driving this?

"Buried Higgs": $H \rightarrow 2\eta \rightarrow 4g$

$$m_{\eta} \lesssim 10 \text{ GeV} < 2m_b \text{ implies } \eta \rightarrow 2g$$

Bellazzini, Csáki, Falkowski & Weiler '09

Very difficult to observe at LHC (or Tevatron?) with usual methods.


Two groups have tackled this with "boosted" methods:

Chen, Nojiri & Sreethawong '10 Falkowski et al '10

- \blacktriangleright Even for Higgs at rest, η is produced boosted
- $ightharpoonup \eta$ is colour-neutral; using a *veto* on radiation in its neighbourhood helps kill backgrounds (and it's rare for a jet to be so light)

Related "superstructure" ideas used in other contexts by Gallicchio & Schwartz '09; Almeida et al '10

WH
Chen, Nojiri & Sreethawong '10

ttH Falkowski et al '10 0.45 Signal Signal Background 0.4 Cross Section [fb/10-GeV 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 70 120 130 140 60 Mass [GeV] $m_n = 8 \text{ GeV}$ in both cases

Top

Many new-physics models involve signals of high-p_t tops (KK resonance $\rightarrow t\bar{t}, \ \tilde{t}\bar{\tilde{t}} \rightarrow t\bar{t} + \text{MET}, \text{ etc.}$)

Compared to W/H/Z, two extra handles to tag on:

3-body decay structure

Presence of W mass among subjets

Chekanov & P. '10

Plehn et al. '09-'10

Almeida et al. '08-'10

Tagging boosted top-quarks

60%

13%

35%

10%

2%

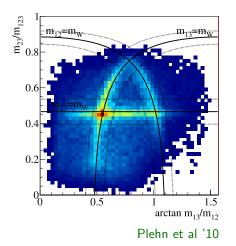
0.02%

Many papers on top tagging in '08-'10: jet mass + something extra.

Questions

- What efficiency for tagging top?
- ▶ What rate of fake tags for normal jets?

	"Extra"	eff.	fake
[from T&W]	just jet mass	50%	10%
Brooijmans '08	$3,4 k_t$ subjets, d_{cut}	45%	5%
Thaler & Wang '08	2,3 k_t subjets, z_{cut} + various	40%	5%
Kaplan et al. '08	3,4 C/A subjets, $z_{cut} + \theta_h$	40%	1%
Ellis et al. '09	C/A pruning	10%	0.05%
ATLAS '09	3,4 k_t subjets, d_{cut} MC likelihood	90%	15%


C/A MD, θ_h /Dalitz [busy evs, $p_t \sim 300$]

Jet shapes

Template + shapes

Rough results for top quark with $p_t \sim 1 \text{ TeV}$

New ways of pulling out the WTogether with filtering for low- p_t top

Template methods

Almeida et al. '10

Build catalog of all possible partonic top-decay configurations.

Look to see if there's a template that gives a good match to the current event. That tells you if you've tagged a top.

Underlying similarlity to cut-based methods? Angular limits placed on the "acceptable" templates.

Efficiencies / fake-rates depend a lot on how you measure them.

Numbers quoted before taken/deduced straight from papers

Take example of Johns Hopkins (JH) top tagger

Kaplan, Rehermann, Schwartz & Tweedie '08

Generate Herwig 6.5 & Pythia 6.4 samples with $p_{t,top} > 1$ TeV. Use JH tagger with fixed R = 0.5. Look at hardest jet.

	Efficiencies HW 6.5 PY 6.4		Fake Rates	
mass cuts	HW 6.5	PY 6.4	HW 6.5	PY 6.4
$145 < m_t < 205, \ 65 < m_W < 95$	40%	40%	1.2%	0.6%
$160 < m_t < 190, 73 < m_W < 89$	30%	30%	0.4%	0.2%

Measuring efficiencies

Efficiencies / fake-rates depend a lot on how you measure them.

Numbers quoted before taken/deduced straight from papers

What's a reasonable mass range?

Which MC is closer to the truth?

Use JH tagger with fixed R = 0.5. Look at hardest jet.

	Efficiencies		Fake Rates HW 6.5 PY 6.4	
mass cuts	HW 6.5	PY 6.4	HW 6.5	PY 6.4
$145 < m_t < 205, 65 < m_W < 95$	40%	40%	1.2%	0.6%
$160 < m_t < 190, 73 < m_W < 89$	30%	30%	0.4%	0.2%

NB: could use recent NLO W+3jet results to get non-MC numbers

Two non-MC ways to determine true fake rates:

Experimentally: to know what will happen for 1 TeV jets at LHC14, examine LHC7 data for 500 GeV jets ($\sigma \sim 50~{\rm pb}^{-1}$) with all dimensionful cuts in the top-taggers scaled by factor $\frac{1}{2}$.

Scale down cuts even further to increase cross-section

From QCD: run top-tagger on hadronic side of high- p_t NLO W+3jet events Could use BlackHat and/or Rocket programs

Outlook

The subject has seen a high level of activity in the past two years.

Boosted objects will undoubtedly be part of the scene for LHC searches.

Anytime you do a search you should keep an eye on substructure

Open questions?

Mostly, so far, developments have been based on a mixture of inspiration and trial+error. Can we give our methods a more quantitative foundation? Will this be of concrete benefit?

E.g. flat backgrounds of χ^0 search in Butterworth et al. '09

- There's still wok to be done in comparing tools (quoted numbers not always comparable)
 Public code for all tools would help
- Coming year offers much promise for first studies with early data. Studies need to be formulated so that data tells us both about efficiencies and fake rates.

Extras

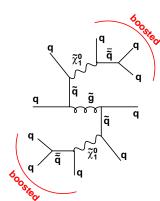
As an example, a search for neutralinos in R-parity violating supersymmetry.

Normal SPS1A type SUSY scenario, *except* that neutralino is not LSP, but instead decays, $\tilde{\chi}^0_1 \to qqq$.

Jet combinatorics makes this a tough channel for discovery

- ▶ Produce pairs of squarks, $m_{\tilde{q}} \sim 500$ GeV.
- ullet Each squark decays to quark + neutralino, $m_{ ilde{\chi}^0_1} \sim 100~ ext{GeV}$
- Neutralino is somewhat boosted → jet with substructure

Butterworth, Ellis, Raklev & GPS '09


As an example, a search for neutralinos in R-parity violating supersymmetry.

Normal SPS1A type SUSY scenario, *except* that neutralino is not LSP, but instead decays, $\tilde{\chi}^0_1 \to qqq$.

Jet combinatorics makes this a tough channel for discovery

- ▶ Produce pairs of squarks, $m_{\tilde{q}} \sim 500$ GeV.
 - Each squark decays to quark + neutralino, $m_{ ilde{\chi}^0_1} \sim 100 \; {
 m GeV}$
- Neutralino is somewhat boosted → jet with substructure

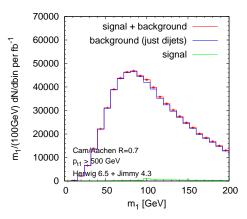
Butterworth, Ellis, Raklev & GPS '09

Analytics (back-of-the-enveolope)

Subjet decomposition procedures are not just trial and error.

Mass distribution for undecomposed jet:

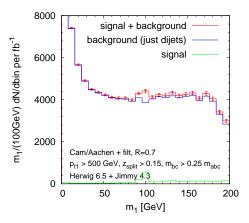
$$rac{1}{N}rac{dN}{dm}\simrac{2Clpha_{
m s}\ln Rp_{
m t}/m}{m}e^{-Clpha_{
m s}\ln^2 Rp_{
m t}/m+\cdots}$$


Strongly shaped, with Sudakov peak, etc.

Mass distribution for hardest (largest Jade distance) substructure within C/A jet that satisfies a symmetry cut $(z > z_{min})$:

$$\begin{split} \frac{1}{N}\frac{dN}{dm} &\sim \frac{C'\alpha_{\rm s}(m)}{m}e^{-C'\alpha_{\rm s}\ln Rp_t/m+\cdots} \\ &\sim \frac{C'\alpha_{\rm s}(Rp_t)}{m}\left[1+\underbrace{\left(2b_0-C'\right)}_{\rm partial\ cancellation}\alpha_{\rm s}\ln Rp_t/m+\mathcal{O}\left(\alpha_{\rm s}^2\ln^2\right)\right] \end{split}$$

Procedure gives nearly flat distribution in *mdN/dm*

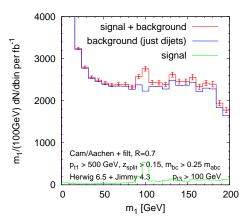

Neutralino procedure involves 2 hard substructures, but ideas are similar

Keep it simple:

Look at mass of leading jet

- ▶ Plot $\frac{m}{100 \text{ GeV}} \frac{dN}{dm}$ for hardest jet $(p_t > 500 \text{ GeV})$
- Require 3-pronged substructure
- And third jet
- And fourth central jet
 - scale-invariant procedure
- Once you've found neutralino:
- Look at m₁₄ using events with m₁ in neutralino peak and in sidebands

Keep it simple:


Look at mass of leading jet

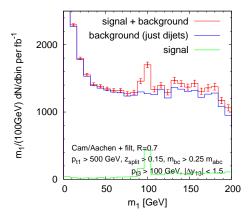
- ▶ Plot $\frac{m}{100 \text{ GeV}} \frac{dN}{dm}$ for hardest jet $(p_t > 500 \text{ GeV})$
- Require 3-pronged substructure
- ► And third jet
- And fourth central jet

99% background rejection scale-invariant procedure so remaining bkgd is flat

Once you've found neutralino:

 Look at m₁₄ using events with m₁ in neutralino peak and in sidebands

Keep it simple:


Look at mass of leading jet

- ▶ Plot $\frac{m}{100 \text{ GeV}} \frac{dN}{dm}$ for hardest jet $(p_t > 500 \text{ GeV})$
- Require 3-pronged substructure
- And third jet
 - And fourth central jet

99% background rejection scale-invariant procedure so remaining bkgd is flat

Once you've found neutralino:

 Look at m₁₄ using events with m₁ in neutralino peak and in sidebands

Keep it simple:

Look at mass of leading jet

- ▶ Plot $\frac{m}{100 \text{ GeV}} \frac{dN}{dm}$ for hardest jet $(p_t > 500 \text{ GeV})$
- Require 3-pronged substructure
- And third central jet
- And fourth central jet 99% background rejection scale-invariant procedure so remaining bkgd is flat

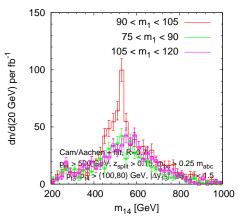
Once you've found neutralino:

 Look at m₁₄ using events with m₁ in neutralino peak and in sidebands

Keep it simple:

Look at mass of leading jet

- ▶ Plot $\frac{m}{100 \text{ GeV}} \frac{dN}{dm}$ for hardest jet $(\rho_t > 500 \text{ GeV})$
- Require 3-pronged substructure
- And third central jet
- ➤ And fourth central jet


 99% background rejection

 scale-invariant procedure

 so remaining bkgd is flat

Once you've found neutralino:

► Look at m₁₄ using events with m₁ in neutralino peak and in sidebands

Keep it simple:

Look at mass of leading jet

- ▶ Plot $\frac{m}{100 \text{ GeV}} \frac{dN}{dm}$ for hardest jet $(p_t > 500 \text{ GeV})$
- Require 3-pronged substructure
- And third central jet
- And fourth central jet
 99% background rejection
 scale-invariant procedure
 so remaining bkgd is flat

Once you've found neutralino:

▶ Look at m₁₄ using events with m₁ in neutralino peak and in sidebands