Finding Higgs — bb in Boosted Final States

Terascale Monte Carlo School 2014, DESY Hamburg
2014-03-13

1 Introduction

In this tutorial we will discuss boosted final states, using the example of a Standard Model Higgs boson
decaying to two b-jets. You may work in groups, where each member generates predictions from a
different event generator. Ideally, you will have a selection of people who already know “their” generator
from using it in the first tutorial. For instructions on how to exchange results, please review yesterday’s
tutorial worksheet.

2 General considerations

In this tutorial we are going to look at a boosted Higgs boson analysis. We will follow the analysis
presented in [1], which aims at isolating the Higgs boson signal in the reaction pp — V H, with the Higgs
decaying to a pair of b-jets. The fact that the Higgs is boosted is essential in reducing backgrounds. The
analyses are adapted from those used in [2].

Both background and signal samples are difficult to generate within the time frame of the tutorial, and
they have therefore been prepared for you. Your task now is to isolate the signal from the background,
first using cuts, and then some (primitive) boosted techniques. We will use Rivet as analysis tool. Start
with defining cuts on the non-merged samples. Use the same cuts on the merged background samples,
and then also on the merged signal samples. Then, move to the more sophisticated boosted techniques
to isolate the signal.

3 Analysing the event samples

First you need to build the Rivet analysis plugins. Change to the directory ~/tutorials/boost/analysis/
and run

make

This will build a Rivet plugin library from the source files in this directory. Your task is to fill this
skeleton with life by modifying the source code at a later time.

3.1 Running rivet on the event samples

The backgrounds we are going to consider are pp — V + jets and pp — tt + jets, where V can stand for
either W* or Z. The signal sample contains pp — bbV + jets events. Various types of (background and
signal) samples are available:

A Non-merged samples, in which all jet activity is produced through parton showering:
pp2v_nonmerged.hepmc.bz2, a sample with pp — V + jets events,
pp2vv_nonmerged.hepmc.bz2, a sample with pp — V'V + jets events,
pp2tt_nonmerged.hepmc.bz2, a sample with pp — tf + jets events, with fully leptonic decays
pp2hv_nonmerged.hepmc.bz2, a sample with pp — HV + jets events (signal sample);

B Matched samples, in which the Born states are described at NLO accuracy:
pp2v_matched.hepmc.bz2, a sample with pp — V + jets events,
pp2vv_matched.hepmc.bz2, a sample with pp — V'V 4 jets events;

C Merged samples, in which multiple jets are described with tree-level accuracy
pp2tt_merged central.hepmc.bz2, a sample with pp — tt+ jets events, with fully leptonic decays,
and pf = flr = Uhard B
pp2tt_merged_high.hepmc.bz2, a sample with pp — tt + jets events, with fully leptonic decays,
and Hf = Hr = 2phard B
pp2tt_merged_low.hepmc.bz2, a sample with pp — tf+ jets events, with fully leptonic decays, and
Hf = Hr = %/Lhard
pp2v_merged_short.hepmc.bz2 and pp2v_merged.hepmc.bz2, samples with pp — V + jets events,
with 10K (100K) events,
pp2vv_merged_short.hepmc.bz2 and pp2vv_merged.hepmc.bz2, samples with pp — V'V + jets
events, with 10K (100K) events,
pp2hv_merged_short.hepmc.bz2 and pp2hv_merged.hepmc.bz2, samples with pp — HV + jets
events, with 10K (100K) events (signal sample).

All samples have been produced at the hadron level (i.e. including MPI and hadronisation). The samples
are available on an external file server. To get access, execute the “/tutorials/mountSamples.sh script
with

sudo ~/tutorials/mountSamples.sh

Now the samples are mounted in ~/tutorials/samples/. Change to this directory. In order not to
expand the large file, we use a fifo pipe, which is created as

mkfifo events
Now you can unzip the event file and, at the same time, run rivet to analyse the events, e.g.

bzcat pp2v_nonmerged.hepmc.bz2 > events & \
rivet -a HIGGS_ANALYSIS -H pp2v_nonmerged.aida events

You can shorten it by analysing fewer events (consider the help options of Rivet for a way to do that),

but your final plots may have insufficient statistics in this case.

3.2 Cut-based analysis
The analysis code (HIGGS_ANALYSIS.cc) contains three histograms:

_h Hmass gives the mass of the hardest jet (with jets defined in the anti-k; algorithm with R =
0.5, Pljmin = 30 GeV);

_h_H mass_btag gives the mass of the hardest b-tagged jet (assumming a b-tagging efficiency of 100%
and a uniform mistag probability of 2%);

_h_sigmacut gives the cut flow, i.e. how the cross section changes upon selection cuts.

Why does it make sense to histogram the mass of the hardest jet? Can you think of other useful
histograms?

As already mentioned above, you should start with defining cuts on the non-merged samples. The
analysis code already contains one very simple selection:

Selection A: Veto on events with more than two charged leptons.

Think about the structure of the signal final state, and devise new selection criteria. Some possible
choices could be

Selection B: An ete™ pair or u™ ™ pair with an invariant mass close to the Z-boson mass, possibly
with a high transverse momentum;

Selection C: A large missing transverse momentum;

Selection D: Missing transverse momentum and a lepton with transverse momentum consistent with a
W boson of nominal W-boson mass, possibly with p¥ > 200 GeV.

Note that some of these selections will also influence your signal efficiency.

Then, use the same cuts on the merged background samples. What do you see? Finally, use the
merged signal samples. How does this influence the efficiency of your cuts? Do not spend too much time
on optimising the cuts, and instead move on to the more sophisticated boosted techniques to isolate the
signal.

3.3 Trimming, Pruning and Filtering

Jet substructure studies has in recent years developed into a vibrant and productive field. Here, we
cannot possibly cover all developments. Instead, we give very basic suggestions, and hope that you’ll fill
the gaps creatively.

Since a standard Rivet installation contains Fastjet, you can use different powerful jet substructure
tools right away. So far your analysis only contained selection cuts. Now try the more sophisticated
methods. The natural place where to employ such methods in the hasCandidateHiggs function, where
the filtered jet (filteredJets) is defined.

Let’s begin with trimming. Trimming basically tries to remove soft radiation and underlying event
contamination by discarding soft particles. Replace the line

filteredJet = tagged_jet;

with
// Trimming.
double r_filter = 0.3;
fastjet::Selector sel_above_ptfrac = fastjet::SelectorPtFractionMin(0.05);
fastjet::Filter trimmer(r_filter,sel_above_ptfrac);
filteredJet = trimmer(tagged_jet);

This leads to sub-jets that carry less than 5% of the jet’s transverse momentum are removed. After this
change, you will have to recompile the analysis, see Sec. 3. Can you find differences between trimmed
and non-trimmed results? What process is most affected?

Another common method is pruning. On top of rejecting soft jets, pruning also introduces a “pruning
radius”, which can lead to merging soft jets with harder jets. To use pruning, remove the trimming lines,
and instead add

// Pruning.

double zcut =0.1;

double rcut_factor = 0.5;

fastjet: :Pruner pruner(fastjet::cambridge_algorithm,zcut,rcut_factor);
filteredJet = pruner(tagged_jet);

if (filteredJet == 0 || filteredJet.pieces().size() < 1) return false;

Then recompile. Given the choice, would you choose pruning or trimming, and why?

Finally, we will look at the mass drop method. This method is, in a fashion, independent of the
previous ones, since it can be used in combination with these methods. However, it is often used in
conjunction with “filtering”. The first step in the mass drop method is to replace the jet tagger

const fastjet::PseudoJet& tagged_jet = fastjet::PseudoJet(ptJets[0]);

by the more sophisticated

// Better tagger: Mass drop

fastjet: :MassDropTagger mdtagger(0.67,0.09);

const fastjet::PseudoJet& tagged_jet = mdtagger(ptJets[0]);
// Return if no jet has been tagged.

if (tagged_jet == 0) return false;

This checks if there is a significant drop in mass of the jet when combining subjets. If so, a heavy
intermediate particle is likely, and thus the jet is tagged. You can apply filtering on top of this improved
tagger by removing the pruning (and trimming) lines, and instead adding

// Filtering.
const std::vector<fastjet::PseudoJet>%& tagged_pieces = tagged_jet.pieces();

double r_filter = min(0.3,0.5*tagged_pieces[0] .delta_R(tagged_pieces[1]));
fastjet::Filter filter(r_filter,fastjet::SelectorNHardest(3));
filteredJet = filter(tagged_jet);

Again, you need to recompile. What differences do you find between the primitive and the mass-drop
tagger?

References

[1] J. M. Butterworth, A. R. Davison, M. Rubin and G. P. Salam, Phys. Rev. Lett. 100 (2008) 242001
[arXiv:0802.2470 [hep-ph]].

[2] P. Richardson and D. Winn, Eur. Phys. J. C 72 (2012) 2178 [arXiv:1207.0380 [hep-ph]].

