General-Purpose Event Generators

Calculate Everything = solve QCD — requires compromise!

Improve lowest-order perturbation theory,
by including the ‘most significant’ corrections
— complete events (can evaluate any observable you want)

The Workhorses

PYTHIA : Successor to JETSET (begun in 1978). Originated in hadronization studies: Lund String.
HERWIG : Successor to EARWIG (begun in 1984). Originated in coherence studies: angular ordering.
SHERPA : Begun in 2000. Originated in "matching” of matrix elements to showers: CKKW-L.

+ MORE SPECIALIZED: ALPGEN, MADGRAPH, HELAC, ARIADNE, VINCIA, WHIZARD, (a)MC@NLO, POWHEG, HEJ, PHOJET,
EPOS, QGSJET, SIBYLL, DPMJET, LDCMC, DIPSY, HIJING, CASCADE, GOSAM, BLACKHAT, ...
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PYTHIA anno 1978
(then called JETSET)

LU TP 78-18
November, 1978 }

A Monte Carlo Program for Quark Jet
Generation

T. Sjostrand, B. Soderberg

A Monte Carlo computer program is
presented, that simulates the
fragmentation of a fast parton into a |
jet of mesons. It uses an iterative !
scaling scheme and is compatible with '
the jet model of Field and Feynman.

PR — “————

Note:
Field-Feynman was an early fragmentation model
Now superseded by the String (in PYTHIA) and
Cluster (in HERWIG & SHERPA) models.
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GUBROUTINE JETGENIN)
COMMON /JET/ K(10G:2D» P{1084+52

EREGs WFIN: IFLBEG

PMAS{19)

COMMON /PAR/ PUDs PS1: SQIGMAs CXZ2.
COMMON /DATA1/ MESQ(?4+2) s CHMIXihL312)s
IFLEGN=(10-1FLBEG)Y/S

W=2.%EBEG

1=0

IPD=0

4 FLAVGUR AND PT FOR FIRST GUARK
IFL1=1ARSCIFLBEG?
PT1=SIGMA*S@RT(~ALOG{RANF{D)}J
PUIA=4,2832%RANF (D)
PY4=PT1#COS(PHI1?

PY{=PT1#8IN{PHI1)

100 I=1+1

= F1AVOUR AND PT FOR NEXT ANTIGUARK
IFLZ=1+INT{RANF (0} /RUD
PszSIGMA*SQRT(~ALOG{RANF(D)))
PHIZ=& . 2832%RANF (D2
PY2=PT2+COG{PHIZ)

PYZ=PTZ#8IN(PHIZ)

I MESON FORMED, SPIN ADDED AND FLAYVOUR MIXED
KCIs1}:NESQCS*{XFL1~13+IFL21IFLSGN3
ISPIN=INT{P31+RANF (022
KIT+2)=14F#IGPIN+K(I:1)
IFCK(Is1Y . LE. &Y GOTO 110
TMIX=RANF ({2}

KM=K (112 -5+3ISFIN o
H(I;2)=8+9*ISPIN+1NTiTMIX+cMIX(HMs1}3+1NT(TMIX+CM1X(NN;2})
4 MESON MASS FROM TABLE: PT FROM CONSTITUENTS
4140 P{I151=PMAS{(K{Is2)]
PCI1)=PX1+PX2
BP(1,21=PY1+PY2 ‘
PMTS=P{1s1)**2+P(I42}**E+P(155)**2

5 RANDOM CHOICE OF X=€E+PZ)MESON£{E+PE}AVAILABLE GIVES E AND PZ
X=RANF (03
IE(RANF(OY .LT.CXZD ¥, -X¥%(1,/3.3
PeIsT1=(XXW~PHTS/ (XEUII/Z,
Pelshr=CXRU+PHTE/ (X*UIY/ 2,

& IF UNSTABLE, DECAY CHAIN INTOD

170 IPD=IPD+1
IF{K¢IPDs2).GE.B) CALL DECAY(IPD: 1D
IECIPD.LT.I.AND.2.LE.Z6) GoTo 120

7 TLAVOUR AND PT OF GUARK FORMED IN PAIR WITH ANTIQUARK ABOVE
IFL1=IFLZ '

PXt=-PXZ 8]
EY4=-PYZ b

8 1F ENOUSH E+PZ LEFT: Go To 2

W=(4 ., -XY#U .
IF(N.GT.NFIN.AND,I.LE.?S} GOTD 100
M=l

RETURN

STABLE FARTICLES

END




(PYTHIA)

PYTHIA anno 2013 ~ 100,000 lines of C++
(now called PYTHIA 8) What a modern MC generator has inside:

LU TP 07-28 (CPC 178 (2008) 852) e Hard Processes (internal, inter-
October, 2007 faced, or via Les Houches events)
A Brief Introduction to PYTHIA 8.1 1 ~ BSM (internal or via interfaces)

® PDFs (internal or via interfaces)

e Showers (internal or inherited)

e Multiple parton interactions
e Beam Remnants

e String Fragmentation

e Decays (internal or via interfaces)
e Examples and Tutorial

T. Sjostrand, S. Mrenna, P. Skands

(The Pythia program is a standard tool o
for the generation of high-energy
collisions, comprising a coherent set
of physics models for the evolution
from a few-body hard process to a
complex multihadronic final state. It
contains a library of hard processes
and models for initial- and final-state
parton showers, multiple parton-parton

interactions, beam remnants, string ’ e Online HTML / PHP Manual
fragmentation and particle decays. It | N :

also has a set of utilities and e Utilities and interfaces to
kinterfaces to external programs. [..] external programs

—




Divide and Conquer

Factorization — Split the problem into many (nested) pieces
+ Quantum mechanics — Probabilities = Random Numbers

7Deve]m: — 7Dhaurd Y 7)dec X 7DISR X 7DFSR Y 7DMPI Y 7;‘Had Q...

Hard Process & Decays:
| }} I |ﬁ| Use (N)LO matrix elements
— Sets “hard” resolution scale for process: Qmax
7 [ N

Initial- & Final-State Radiation (ISR & FSR):
Altarelli-Parisi equations — differential evolution, dP/dQ?, as
function of resolution scale; run from Qmax to ~ 1 GeV (This Lecture)

MPI (Multi-Parton Interactions)
Additional (soft) parton-parton interactions: LO matrix elements

— Additional (soft) “Underlying-Event” activity

1
.
("
o1
T
\.

Hadronization
Non-perturbative model of color-singlet parton systems — hadrons

P. Skands



Recall: Jets ~ Fractals

Most bremsstrahlung is driven
by divergent propagators —
simple structure

Amplitudes factorize in
singular limits (- universal
“conformal” or “fractal” structure)

Partons ab — P(z) = DGLAP splitting kernels, with z = energy fraction = Ea/(Ea+Eb)
“collinear™: P
2 allb 9 (2) 2
Mpia(ooyarb, . )2 W g2 Mp(...,a+b,...)
2(pa : pb)
Gluon J — “soft"": Coherence — Parton j really emitted by (i,k) “colour antenna”

Mpii(onoi ik 2730 g3 PiPE) ik )

o vialation: o2 2
+ scaling violation: g — 4mas(Q?) Can apply this
) o
See: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389 nested factoniE



http://arxiv.org/abs/arXiv:1207.2389
http://arxiv.org/abs/arXiv:1207.2389

Bremsstrahlung

For any basic process dox = V (calculated process by process)

P. Skands 6



Bremsstrahlung

For any basic process dox = V (calculated process by process)
0.4 ds;1 dsq;
o US51 US1y
o ~ dgxqq_mJPWjQQS dOX’
+ —~ Si1  S1j
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Bremsstrahlung

For any basic process dox = V (calculated process by process)
O/ ds;1 ds;
2 11 19
O dO‘X_|_1 ~ N02gs do x v
‘4, Te— Si1  S1j
7
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J
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Bremsstrahlung

For any basic process dox = V (calculated process by process)
de_dSl'
do dO‘X_|_1 ~ N02g§ ’ J do x v
* —_— Si1  S1j
72
ds;o dss;
dox 2 ~ NC29,§ 2 2_‘7 dox4+1 ¥

\\\ Si2 82
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Bremsstrahlung

For any basic process dox = V (calculated process by process)
ds;1 ds;
2 11 19
O’o dox+1 ~ Nc2g, dox v
* —_— Si1  S1j
72
ds;o dss;
2 12 29
dox 2 ~ Nc2g; dox4+1 ¥
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Bremsstrahlung

For any basic process dox = V (calculated process by process)
ds;1 dsq;
do dO‘X_|_1 ~ N02g§ 1l J do x v
* —_— Si1  S1j
%
2 dSZQ d82
dox 2 ~ NC295 dUX+1 v
\\\ Si2 S92,
dS '3 d83
dO'X+3 ~/ NCQQS - dO'X+2
$i3 S35

Factorization in Soft and Collinear Limits

P(z) : “DGLAP Splitting Functions”

2 i P(z) )
My P W 2o TE )
ij
2 Jg—0 28k 2
IM(...,pi,pjpK--)|° "= g¢2C IM(...,pi,Dk,---)
Sijsjk

“Soft Eikonal” : generalizes to Dipole/Antenna Functions (more later)

P. Skands 6



Bremsstrahlung

For any basic process dox = V (calculated process by process)
ds;1 dsi;
2 11 19
O’o dox+1 ~ Nc2g, dox v
* —_— Si1  S1j
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Singularities: mandated by gauge theory
Non-singular terms: process-dependent




Bremsstrahlung

For any basic process dox = V (calculated process by process)
ds;1 dsi;
2 11 19
O’o dox+1 ~ Nc2g, dox v
* —_— Si1  S1j
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\\\ Si2 S92,
d8'3 d83 '
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Singularities: mandated by gauge theory
Non-singular terms: process-dependent
SOFT COLLINEAR
IM(Z° = 4;9;0k)|? 9 [ 28k 1 (Sij 3jk>]
= g2 2C + +
M2 = qra) 2 TF ik Sij

‘M(HO — %9;‘%)‘2 2 [ 28k 1 <3ij Sik )]
— = g. 2C + — + + 2
IM(H® = qrdk)|? J d SijSik  SIK \ Sjk Sij
SOFT COLLINEAR+F



Bremsstrahlung

For any basic process dox = V (calculated process by process)
ds;1 ds;
2 11 19
O’o dox+1 ~ Nc2g, dox v
* —_— Si1  S1j
72
ds;o dss;
2 12 29
dox 2 ~ Nc2g; dox4+1 ¥
\\\ Si2 S92,
ds;3 dssz;
2 13 37
dO'X+3 ~/ NCQQS dO'X_|_2
Si3  83;

Iterated factorization
Gives us a universal approximation to o0-order tree-level cross sections.

Exact in singular (strongly ordered) limit.
Finite terms (non-universal) = Uncertainties for non-singular (hard) radiation
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Bremsstrahlung

For any basic process dox = V (calculated process by process)
ds;1 ds;
2 11 19
O’o dox+1 ~ Nc2g, dox v
* —_— Si1  S1j
72
ds;o dss;
2 12 27
dox 2 ~ Nc2g; dox4+1 ¥
\\\ Si2 S92,
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2 13 37
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Iterated factorization
Gives us a universal approximation to o0-order tree-level cross sections.
Exact in singular (strongly ordered) limit.

Finite terms (non-universal) = Uncertainties for non-singular (hard) radiation

But something is not right ... Total 0 would be infinite ...

P. Skands 8



Loops and Legs

Coefficients of the Perturbative Series

X2 X+

X X+ () X+20) X+3(1)

Loops

Universality

+] @ X+20-X+30@-—  (scaling)

Jet-within-a-jet-within-a-jet-...

Legs



Loops and Legs

Coefficients of the Perturbative Series

The corrections from
X® X+1@ Quantum Loops are
missing

X+ X+20) X+3(1)

Universality
+] @ X+20-X+30@-—  (scaling)

Jet-within-a-jet-within-a-jet-...

Legs



Evolution

Q ~ Qx

@ Leading Order B “Experiment”
100 s 100 s
75 75
% %
of LO 50 of ot 50
25 25
0 0
Born +1 +2 Born (exc) +I (exc) +2 (inc)

Exclusive = n and only n jets

Inclusive = n or more jets

P. Skands
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Born

@ Leading Order

Evolution

Qx
“A few”

Q) ~
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75
%

of Otot 50

25

Born (exc) +1 (exc)

B “Experiment”
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Exclusive = n and only n jets
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Evolution

Q< Qx

@ Leading Order B “Experiment”
400 ] 100
300 75
% %

of LO 200 of Otot 50
100 25
0 0

Born +1 +2 Born (exc) + | (exc) + 2 (inc)

Cross Section Remains = Total (IR safe)
Number of Partons Diverges (IR unsafe)

Cross Section Diverges



Evolution

Q< Qx

@ Leading Order
100

75

%

Otot 50

25

)/ & 0
Born Born (exc) + | (exc) + 2 (inc)

Cross Section Remains = Total (IR safe)

Cross Section Diverges Number of Partons Diverges (IR unsafe)




Unitarity — Evolution

When (X) branches to (X+1):
Kinoshita-Lee-Nauenberg: Gain one (X+1). Loose one (X).

(sum over degenerate quantum states = finite)

dox +1
_ — evolution equation with kernel
Loop = - Int(Tree) + F dox
Parton Showers neglect F Evolve in some measure of resolution

: oy . ~ hardness, 1/time ... ~ fractal scale
— Leading-Logarithmic (LL) Approximation

— includes both real (tree) and virtual (loop) corrections

» Interpretation: the structure evolves! (example: X = 2-jets)
* Take a jet algorithm, with resolution measure “Q”, apply it to your events
* At a very crude resolution, you find that everything is 2-jets
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When (X) branches to (X+1):
Kinoshita-Lee-Nauenberg: Gain one (X+1). Loose one (X).
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P Oyior = SUM (Oyi0123. exar ) = INt(dOy)



Evolution Equations




Evolution Equations

What we need is a differential equation
Boundary condition: a few partons defined at a high scale (QF)

Then evolves (or “runs”) that parton system down to a low
scale (the hadronization cutoff ~ 1 GeV) — It's an evolution
equation in Qrf

P. Skands




Evolution Equations

What we need is a differential equation
Boundary condition: a few partons defined at a high scale (QF)

Then evolves (or “runs”) that parton system down to a low
scale (the hadronization cutoff ~ 1 GeV) — It's an evolution
equation in Qrf

Close analogue: nuclear decay

Evolve an unstable nucleus. Check if it decays + follow chains

of decays.
Probability to remain undecayed in the time

Decay constant interval [1;,1]

dP(t) b2
t1
Decay probability per unit time =1—cnyAt+O(ck)
dPeo(t)  —dA
= —— = A(ty,t
dt dt CN ( 1, )

[A(thtz) : “Sudakov Factor”]

(requires that the nucleus did not already decay)

P. Skands




Nuclear Decay

Nuclei remaining undecayed _ At ) =exp (— [ dt dP
after time t b ;

100 %

Sec_pnd"”"""'
~__—Order

50 %
All Orders
Exponential
Early [ 1 ~ Late
Third Order
Fi rstGrde r
-50 %

-100 %




The Sudakov Factor

4 )

In nuclear decay, the Sudakov factor counts:
How many nuclei remain undecayed after a time t

Probability to remain undecayed in the time interval [#,1:]

t2
A(ty,t2) = exp (—/ CN dt) = exp (—cy At)
t1

P. Skands




The Sudakov Factor

-

In nuclear decay, the Sudakov factor counts:
How many nuclei remain undecayed after a time t

Probability to remain undecayed in the time interval [#,1:]

t2
A(ty,t2) = exp (—/ CN dt) = exp (—cy At)
t1

-

.
The Sudakov factor for a parton system counts:

The probability that the parton system doesn’t
evolve (branch) when we run the factorization scale
(~1/time) from a high to a low scale

Evolution probability per unit “time”

dPes(t)  —dA

dt dt

— CN A(tl, t)

(replace t by shower evolution scale)

(replace cn by proper shower evolution kernels)

\_

P. Skands




What's the evolution kernel?

DGLAP splitting functions
Can be derived from collinear limit of MEs (ppb+pc)? — O
+ evolution equation from invariance with respect to Qr @ RGE

DGLAP | 22
(E.g., PYTHIA) Poqg(2) = Cro—

abc 1 — 2(] — 2))2
dP Zab a—>bc )dtdZ g—)gg(Z) — NC( Z<1(_Z) )) |

v

C Pyqa(2) = Tr(z"+(1—2)%),
L} ) 1+ 22
a b Poay(2) = € 11— °
Pb = < Pa |+ 2
Pe = (1-2) pa PE—W(Z) — 63 ;
1—2z
4 )
dQ2 ... with Q% some measure of “hardness”
dt = = dIn Q* = event/jet resolution
Q2 measuring parton virtualities / formation time / ...
\_ J

Note: there exist now also alternatives to AP kernels (with same collinear limits!): dipoles, antennae, ...



Coherence

QED: Chudakov effect (mid-fifties)

—p e+
UVAVAVAVAVAVAVAVAVA Y S
cosmic ray v atom
Illustration by T. Sjéstrand
emulsion plate rreduced _nhormal
lonization lonization
QCD: colour coherence for soft gluon emission
2 2

— an example of an interference effect that can be treated probabilistically

More interference effects can be included by matching to full matrix elements

P. Skands




Coherence

QED: Chudakov effect (mid-fifties)

— e+
AVAVAVAVAVAVAVAVAVAY o
. — e
cosmic ray v atom
Approximations to
C e e e e e Coherence:
Illustration by T. Sjéstrand Angular Ordering (HERWIG)
: Angular Vetos (PYTHIA
emulsion plate rreduced _nhormal LI e | )
lonization lonization Coherent Dipoles/Antennae
(ARIADNE, Catani-Seymour, VINCIA)
QCD: colour coherence for soft gluon emission
2 2

— an example of an interference effect that can be treated probabilistically

More interference effects can be included by matching to full matrix elements

P. Skands




Coherence at Work

Example taken from: Ritzmann, Kosower, PS, PLB718 (2013) 1345

Example: quark-quark scattering in hadron collisions
Consider one specific phase-space point (eg scattering at 45°)
2 possible colour flows: a and b

a) “forward”
colour flow

> <

b) “backward”
colour flow

> <

T

Another good recent example is the SM contribution to the Tevatron top-quark forward-
backward asymmetry from coherent showers, see: PS, Webber, Winter, JHEP 1207 (2012) 151

P. Skands


http://arxiv.org/abs/arXiv:1210.6345
http://arxiv.org/abs/arXiv:1210.6345

Coherence at Work

Example taken from: Ritzmann, Kosower, PS, PLB718 (2013) 1345

Example: quark-quark scattering in hadron collisions
Consider one specific phase-space point (eg scattering at 45°)
2 possible colour flows: a and b
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ﬁo\a\ colour flow

> <
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colour flow
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Coherence at Work

Example taken from: Ritzmann, Kosower, PS, PLB718 (2013) 1345

Example: quark-quark scattering in hadron collisions

Consider one specific phase-space point (eg scattering at 45°)
2 possible colour flows: a and b

a) “forward”

ﬁo\a\ colour flow 180° |

> <

TN i

b) “backward” 0° 45° 90° 135° 180°
colour flow 0 (gluon, beam)

Pemit

> = Figure 4: Angular distribution of the first gluon emission in
qq — qq scattering at 45°, for the two different color flows.
The light (red) histogram shows the emission density for the

forward flow, and the dark (blue) histogram shows the emis-
sion density for the backward flow.

Another good recent example is the SM contribution to the Tevatron top-quark forward-
backward asymmetry from coherent showers, see: PS, Webber, Winter, JHEP 1207 (2012) 151

P. Skands
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Initial-State vs Final-State Evolution

Virtualities are Virtualities are
Timelike: p%>0 Spacelike: p?<0
B Start at Q2 = Qf?
“Start at Q* = QFZ. . Constrained backwards evolution
Forwards evolution

towards boundary condition = proton

Separation meaningful for collinear radiation, but not for soft ...

P. Skands



(Initial-State Evolution)

DGLAP for Parton Density

U g e (5)

— Sudakov for ISR

, tmax dz’ S O ;. (1) L
_ _ / ! —
A(T, tmax, t) = ©XP <\ /t dt ;/ v folz,t) 2w Fabe (x’)
4 t e b t/ / . ,,t/
_ exp<—/ dt’Z/dz&b()Paﬁbc(z)$f(x ,)},
t a,c )




(Initial-State Evolution)

DGLAP for Parton Density

U g e (5)

— Sudakov for ISR

, tmax dz’ S O ;. (1) L
_ _ / ! —
A(T, tmax, t) = ©XP <\ /t dt ;/ v folz,t) 2w Fabe (x’)
4 t e b t/ / . ,,t/
_ exp<—/ dt’Z/dz&b()PaﬁbC(z)$f(x ,)},
t a,c )




Initial-Final Interference

Who emitted that gluon?

Real QFT = sum over amplitudes, then square — interference (IF

coherence)
Respected by dipole/antenna languages (and by angular
ordering), but not by conventional DGLAP (- all PDFs are “wrong”)

Separation meaningful for collinear radiation, but not for soft ...




Bootstrapped Perturbation Theory

Start from an arbitrary lowest-order process (green = QFT amplitude squared)

Parton showers generate the bremsstrahlung terms of the rest of the
perturbative series (approximate infinite-order resummation)

§ +0Q— +|©@ o Universality (scaling)

—_—
3 . Jet-within-a-jet-within-a-jet-...
RN
=5 | | | | %
s | +0)—+](D—+2()—43(1) 2%,
35T =
2% T T T | R
o Cancellation of real & virtual singularities
§ + | 0)— +2(O)—>+3(0) T Exponentiation

fluctuations within fluctuations

No. of Bremsstrahlung Emissions

(real corrections)




Bootstrapped Perturbation Theory

Start from an arbitrary lowest-order process (green = QFT amplitude squared)

Parton showers generate the bremsstrahlung terms of the rest of the
perturbative series (approximate infinite-order resummation)

§ +0Q— +|©@ o Universality (scaling)

—_—
3 . Jet-within-a-jet-within-a-jet-...
RN
=5 | | | | %
s | +0)—+](D—+2()—43(1) 2%,
35T =
2% T T T | R
o Cancellation of real & virtual singularities
§ + | 0)— +2(0)—’+3(0) T Exponentiation

fluctuations within fluctuations

But # full QCD! Only LL Approximation (— matching)

(real corrections)




The Shower Operator

H = Hard process

Born dO {p} : partons

But instead of evaluating O directly on the Born final state,
first insert a showering operator

P. Skands




0 H = Hard process
= [a@y M 50 ~ O({p}n)
Born

Born do {p} : partons

But instead of evaluating O directly on the Born final state,
first insert a showering operator

{p} : partons

BOI‘I’] dO‘H (0)2
S — /dq)H |MH | 8({p}H7 O) S : showering operator

+ shower dO
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; H = Hard process
— [avu M1 50 - O({p}m))

Born dO {p} : partons

Born

But instead of evaluating O directly on the Born final state,
first insert a showering operator

{p} : partons

BOI‘I’] dO‘H (0)2
S — /dq)H |MH | 8({p}H7 O) S : showering operator

+ shower dO

Unitarity: to first order, S does nothing
S({piu,0) =0(0 - O{pta)) + Ofas)
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The Shower Operator

To ALL Orders

S({prx; O) = Altstart; thaa)0(O—O({pix))

“Nothing Happens” — “Evaluate Observable”

thad dA .
- [Tt D0
tstart dt

“Something Happens” — "“Continue Shower”

All-orders Probability that nothing happens

2 qp (Exponentiation)
A(th tz) =exp | — / dt E Analogous to nuclear decay
t1

N(t) = N(O) exp(-ct)



The Shower Operator

To ALL Orders (Markov Chain)

S({prx; O) = Altstart; thaa)0(O—O({pix))

“Nothing Happens” — “Evaluate Observable”

thad dA .
- [Tt D0
tstart dt

“Something Happens” — "“Continue Shower”

All-orders Probability that nothing happens

2 qp (Exponentiation)
A(th tz) =exp | — / dt E Analogous to nuclear decay
t1

N(t) = N(O) exp(-ct)



A Shower Algorithm

Note: on this slide, I use results from the theory of Random numbers, interesting in itself but would need more time to give details

1. Generate Random Number, R € [0,1]

Solve equation R = A(tla t) for ¢ (with starting scale f;)

Analytically for simple splitting kernels,
else numerically (or by trial+veto)
— t scale for next branching

P. Skands

Yi = Sii/Sik = 1-Xk
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A Shower Algorithm

Note: on this slide, I use results from the theory of Random numbers, interesting in itself but would need more time to give details

1.0‘
1. Generate Random Number, R € [0,1]
Solve equation R = A(tla t) for ¢ (with starting scale f;) %Zj |
Analytically for simple splitting kernels, < ) jg_ 5
else numerically (or by trial+veto) ’ 5%“;__
— t scale for next branching %0 0z 04 06 08 10

Yi = Sii/Sik = 1-Xk

2. Generate another Random Number, Rz € [0,1]

To find second (linearly independent) phase-space invariant

Solve equation R, = I(z,1) for z (at scale 7)
I (#max(t), ?)
z /
With the “primitive function” I.(z,t) = / dz da (,t )
Zmin(t) dt t’'=t

P. Skands




A Shower Algorithm

Note: on this slide, I use results from the theory of Random numbers, interesting in itself but would need more time to give details

10—
% L

1. Generate Random Number, R € [0,1]

Solve equation R = A(tla t) for ¢ (with starting scale f;) §Zj
Analytically for simple splitting kernels, N L_ 4
else numerically (or by trial+veto) 5%“;_ N
— t scale for next branching %0 0z 04 06 08 10

Yii = Si/Sik = 1-Xx

2. Generate another Random Number, Rz € [0,1]

To find second (linearly independent) phase-space invariant

Solve equation R, = I(z,1) for z (at scale 7)
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z /
With the “primitive function” I.(z,t) = / dz da (,t )
Zmin(t) dt t’'=t
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A Shower Algorithm

Note: on this slide, I use results from the theory of Random numbers, interesting in itself but would need more time to give details

10—
% L

1. Generate Random Number, R € [0,1]

Solve equation R = A(th t) for ¢ (with starting scale t;) QOS B -

F 0.4 (S
Analytically for simple splitting kernels, = ( 1 <
. . 2t O <
else numerically (or by trial+veto) L N,
i 00*& L 1 ; L - ‘ e o
— t scale for next branching 00 02 04 06 08 10

Yii = Si/Sik = 1-Xx

2. Generate another Random Number, Rz € [0,1]

To find second (linearly independent) phase-space invariant

Solve equation R, = I(z,1) for z (at scale 7)
I (#max(t), ?)
z /
With the “primitive function” I.(z,t) = / dz da (,t )
Zmin(t) dt t’'=t

3. Generate a third Random Number, Rp € [0,1]

Solve equation R, = ¢/27 for ¢ = Can now do 3D branching
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Perturbative Ambiguities

The final states generated by a shower
algorithm will depend on

. Ordering & Evolution-
1. The choice of perturbative evolution variable(s) ¢l y scale choices

2. The choice of phase-space mapping d@ghl /d®,,. <«—— Recoils, kinematics

3. The choice of radiation functions a;, as a function of the phase-space variables.

\ Non-singular terms,
Reparametrizations,

4. The choice of renormalization scale function up. Subleading Colour

Phase-space limits / suppressions for
hard radiation and choice of
hadronization scale

5. Choices of starting and ending scales.



Perturbative Ambiguities

The final states generated by a shower
algorithm will depend on

. Ordering & Evolution-
1. The choice of perturbative evolution variable(s) ¢l y scale choices

2. The choice of phase-space mapping d@ghl /d®,,. <«—— Recoils, kinematics

3. The choice of radiation functions a;, as a function of the phase-space variables.

\ Non-singular terms,
. . . . Reparametrizations,
4. The choice of renormalization scale function up. 55 blrea din gZCO: our

Phase-space limits / suppressions for
hard radiation and choice of
hadronization scale

5. Choices of starting and ending scales.

— gives us additional handles for uncertainty estimates, beyond just uz
(+ ambiguities can be reduced by including more pQCD — matching!)




Jack of All Orders, Master of None?

Nice to have all-orders solution

But it is only exact in the singular (soft & collinear) limits

— gets the bulk of bremsstrahlung corrections right, but
fails equally spectacularly: for hard wide-angle radiation:
visible, extra jets

... Which is exactly where fixed-order calculations work!

So combine them!

See also: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

P. Skands
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Jack of All Orders, Master of None?

Nice to have all-orders solution
But it is only exact in the singular (soft & collinear) limits

— gets the bulk of bremsstrahlung corrections right, but
fails equally spectacularly: for hard wide-angle radiation:
visible, extra jets

... Which is exactly where fixed-order calculations work!

So combine them!
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Nice to have all-orders solution
But it is only exact in the singular (soft & collinear) limits

— gets the bulk of bremsstrahlung corrections right, but
fails equally spectacularly: for hard wide-angle radiation:
visible, extra jets

... Which is exactly where fixed-order calculations work!
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Summary: Two ways to compute Quantum Corrections

Standard Paradigm: consider a single physical
system; a single physical process
Explicit solutions (to given perturbative order)

Standard-Model: typically NLO or NNLO LO: Leading Order (Born)
Beyond-SM: typically LO or NLO NLO = Next-to-LO, ...

Limited generality

Event generators: consider all possible physical
processes (within perturbative QFT)
Approximate solutions
Process-dependence = subleading correction (— matching)
Maximum generality
Emphasis is on universalities; physics

Common property of all processes is, for instance, limits in
which they factorize!

P. Skands




Summary: Parton Showers

Aim: generate events in as much detail as mother nature

— Make stochastic choices ~ as in Nature (Q.M.) = Random
numbers

Factor complete event probability into separate universal pieces,
treated independently and/or sequentially (Markov-Chain MC)

Improve lowest-order perturbation theory by including 'most
significant’ corrections

Resonance decays (e.g., t=bW*, W—qq’, HO=vyo°, Z0—pu*u, ...)
Bremsstrahlung (FSR and ISR, exact in collinear and soft” limits)
Hard radiation (matching, discussed tomorrow)

Hadronization (strings/clusters, discussed tomorrow)

Additional Soft Physics: multiple parton-parton interactions, Bose-
Einstein correlations, colour reconnections, hadron decays, ...

Coherence*
Soft radiation = Angular ordering or Coherent Dipoles/Antennae

See also: 1) MCnet Review (long): Phys.Rept. 504 (2011) 145-233 and/or 2) PDG Review

on Monte Carlo Event Generators, and/or 3) PS, TASI Lectures (short): arXiv:1207.2389
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Jets vs Parton Showers

Jet clustering algorithms

Map event from low E-resolution scale (i.e., with many
partons/hadrons, most of which are soft) to a higher E-
resolution scale (with fewer, hard, IR-safe, jets)

Jet Clustering

Many soft particles (Deterministic™) > A few hard jets
(Winner-takes-all)
Q~Ar~mg Q ~ Qhad QN Ecm
1 ~ 150 Mev ~ 1 GeV ~Myx [

Parton Showering
(Probabilistic)

Hadronization <€ Born-level ME

Parton shower algorithms

Map a few hard partons to many softer ones

Probabilistic = closer to nature.
Not uniquely invertible by any jet algorithm™

(" See “Qjets” for a probabilistic jet algorithm, arXiv:1201.1914)

(" See “Sector Showers” for a deterministic shower, arXiv:|1109.3608)
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