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Short-distance observables

We know that QCD is an asymptotically free theory

We can safely apply perturbation theory to observables dominated by large 
momentum scales: how do we find such observables?



Short-distance observables

Consider a simple counting observable in e+ e- annihilation, the ratio



Short-distance observables

R in general is a function of the centre of mass energy squared  , of the quark 
masses      , and of the QCD coupling            , where       is the QCD 
renormalisation scale  

In massless QCD, we can compute safely the quantity

The partonic quantity      admits an expansion in powers of  



Short-distance observables

Under the assumption that the sum over all partonic final states is the same as that 
over hadronic final states (local parton-hadron duality), the existence of a massless limit 
implies  

Renormalisation group analysis (the fact that R does not depend on   )  gives us 

The formal solution of this equation is 

If    is sufficiently large the use of perturbation theory is legitimate 



Short-distance observables

Perturbation theory really works, except close to hadronic resonances, where local 
parton-hadron duality is not a reasonable assumption 



Soft and collinear divergences

In the partonic ratio    , IRC singularities cancel in the inclusive sum of real and 
virtual contributions 

    is and example of an infrared and collinear safe observable.

Furthermore, it exhibits a complete cancellation of soft and collinear emission 
contributions, i.e. is insensitive to all emissions up to the scale

The origin of this complete cancellation is due to

1. real and virtual matrix elements are equal but opposite in sign

2. the observable assigns the same weight to real and virtual corrections



Soft and collinear divergences

The applicability of perturbation theory is deeply related to the existence of the 
massless limit of partonic observables

Divergences can occur whenever a propagator goes on shell

Emission of a gluon (energy    ) off a hard quark (energy    ) 

singular for soft (           ) and collinear (          ) emissions

Infrared (IR) and collinear (together IRC) singularities are present in both real and 
virtual corrections



Factorisation of collinear divergences

The massless limit of the one hadron inclusive cross section does not exist     
dependence on the quark masses is not power suppressed

The dependence on           reflects the structure of the collinear divergences, i.e. it 
is logarithmic

pick up any hadron and bin 
the energy fraction



Factorisation of collinear divergences

Luckily, for the one hadron inclusive cross section, collinear singularities factorise

· The coefficient function                          has a massless limit, hence can be 
computed at all orders in perturbation theory

· The fragmentation function                                 is universal (does not depend on 
the hard process) and contains all dependence on the quark masses  

Factorisation of collinear singularities require the introduction of a factorisation scale, 
that separates short distances (            )  from long distances (               )



Factorisation of collinear divergences

If                      the fragmentation function cannot be computed in perturbation theory, 
because the QCD coupling runs in the infrared. Nevertheless, the dependence on       
can be computed via the DGLAP equation



Factorisation of collinear divergences

If                       the fragmentation function can be computed in perturbation theory

Each coefficient       contains logarithmically enhanced contributions, at most    

Even if               is small, if                 we can have                                        , thus 
spoiling the validity of perturbation theory      all order resummation needed

Resummation of collinear logarithms is provided by the DGLAP equation    

Note. One can eliminate these logs by choosing               , but this introduces large 
logarithms                in the coefficient function   



Two-scale problems

A case similar to the fragmentation function is when we want the invariant mass of any 
jet to be small, i.e. only pencil-like events are allowed

The fraction of events for which any jet mass is below       depends on two scales 

This observable has a massless limit, but one can expect large logarithms



Collinear splitting

The matrix elements for collinear splitting factorise from hard matrix elements, 
and depend only on the nature of the splitting

The occurrence of large logarithms is deeply related to IR and collinear divergences

Example: collinear radiation of a gluon from a hard quark of energy E

collinear divergence soft divergence



Collinear splitting

Similarly, we can associate to any splitting process a splitting probability



Resummation of collinear logarithms for the fragmentation function can be performed 
with the DGLAP equation. For a single splitting we have 

where we have introduced the plus distribution

Introducing a cutoff    to avoid the soft singularity we obtain 

Collinear branching



Collinear branching

Introducing the Sudakov form factor

the DGLAP equation with a cutoff can be rewritten as

This equation can be recast in an integral form



Collinear branching

The evolution of the fragmentation function has a probabilistic interpretation

no splitting occurs a splitting occurs at 

The ratio of Sudakov form factors                                        is the probability of not emitting 
anything between       and  



Sudakov form factor

The Sudakov form factor contains virtual corrections and unresolved real emissions 
up to the scale  

The properties of the Sudakov form factor are

·                                   inclusive real-virtual cancellation, the sum of real and virtual 
corrections give the total cross section

·                                it is impossible to find any quark or gluon without perturbative 
radiation 



Emission probability

Using the Sudakov form factor we can construct an actual splitting probability that is 
the basis of exclusive QCD studies and Monte Carlo parton shower event generators

The total emission probability is not normalised to 1 because we do not allow any 
radiation below the scale 

From this probability one can construct iteratively a sequence of soft/collinear 
emissions ordered in the variable 



Sudakov logarithms

The Sudakov form factor is deeply related to resummation. 

At first order a jet is made up of a single gluon. Then the fraction of events for 
which the invariant mass of any jet is less than        is given by 

two jets invariant mass of each jet



Sudakov logarithms

In the soft limit we can approximate             whenever possible 

Performing the integral gives the leading order mass distribution

The double log arises from an incomplete cancellation of real and virtual corrections 

Large logarithms appear at all orders and need to be resummed 



Leading logarithmic resummation

At all orders, the invariant mass distribution is just the probability that in any jet there are 
no resolved collinear splitting above the scale 

But this probability is just the product of two Sudakov form factors, one for each jet



Leading logarithmic resummation

In the soft limit, using                                  and               we obtain  

This gives us that the invariant mass distribution is just the exponentiated version of 
the one-gluon result

This expression resums the leading logarithms: it implicitly assumes that all emissions 
are strongly ordered in the invariant mass



Leading logarithmic resummation

This leading logarithmic behaviour is reflected qualitatively in actual data

fixed order regionSudakov suppression



Leading logarithmic resummation

Exercise 1. Compute the Sudakov form factor with the full splitting function

Exercise 2. Compute the Sudakov form factor with the running coupling 

Hint: use the one loop expression for the running coupling and express the result as a 
function of 



Resummation accuracy
The peak of the invariant mass distribution corresponds to               , where                               

Resummation is the reorganisation of the perturbative series in the region 

Only the leading logarithms are required to exponentiate, the subleading logarithms have to 
factorise, and give rise to a well-defined perturbative series



Summary

In this lecture we have learnt

· IRC collinear safety is the property that makes it possible to use safely QCD 
perturbation theory

· QCD has soft and collinear divergences, whose incomplete cancellation leads 
to large logarithms that need to be resummed

· Resummation of collinear logarithms (DGLAP) can be seen as a probabilistic 
process. From that the Sudakov form factor emerges as the probability of 
having no emissions between two scales

· The Sudakov form factor gives a straightforward handle to perform the all-
order resummation of double logarithms


