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Theoretical uncertainties: fixed order

For fixed-order calculations we have two natural handles to evaluate theoretical
uncertainties, the renormalisation and factorisation scales uz and g

oy (zur) = of + (nfolnz) o™ (ur)

By varying these scales we generate a higher-order contribution

The relevant questions here are
« What is the default choice for pp and pp?
« What is the range over which we should vary these scales?

« How should we add uncertainties?



Theoretical uncertainties: fixed order

For fixed-order calculations we have two natural handles to evaluate theoretical
uncertainties, the renormalisation and factorisation scales uz and g

oy (zpr) = oy + (nfolnz) o (ur)

By varying these scales we generate a higher-order contribution

The relevant questions here are
« What is the default choice for pp and pp?
« What is the range over which we should vary these scales?

« How should we add uncertainties?

Unfortunately, there is no theoretically sound answer to any of these questions



Theoretical uncertainties: central value

For an observable characterised by a single scale the dependence on the
renormalisation scale appears in virtual corrections

R (as(u), %) =1+ Ryo,(p?) + (Rlﬁg In l% + Rg) a?(u?) + O(a?)
Choosing u? = s gets rid of the term In(u?/s)

For an observable with multiple scales at LO, like a jet cross section, one has
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1. The choice that cancels that logarithm is u2 = (81 82... s.“)l/”

2. Itis not guaranteed that choosing that scale leads to a series that behaves better

perturbatively. There might be for instance further scales coming from jet resolution
parameters, kinematical cuts, etc.



Theoretical uncertainties: central scale

Since for one emission s = as(k¢) , a good practice is to try to estimate the typical
scale for gluon radiation: this might depend on the observable
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One can find an "optimal"” scale for the fixed order by requiring that the K-factors are
minimised, this gives the choice m /2



Theoretical uncertainties: scale variation

Only after one has identified a "central” scale does it make sense to take scale
variations of a factor of two, so as not to generate large logarithms

oy (zur) = oy + (n foInz) o (ur)
Is it a robust method? It is if the prediction at the next order overlaps with the

uncertainty band at the previous order. This is not always the case, especially with
large K-factors. This is why having higher orders is so important

pp~H+X
T | T T T T | T T T

T | T T T T

Vs = 14 TeV
m; = 120 GeV
MRST2001 pdis

m,;/2 £ pu = 2m,

o [pb]

...........




Theoretical uncertainties: scale variation

Scale uncertainties are however able to highlight pathological behaviours of cross
sections, for instance infrared sensitivity
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The cancellation of two large effects gives a spurious vanishing of scale uncertainties at
low values of the jet-veto resolution p§**

A vanishing scale uncertainty is clearly not a good estimate of missing higher orders...



Higgs production with a jet-veto

The main interest in jet-veto cross sections is to establish whether the new boson found at the
LHC is the Standard Model Higgs
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Higgs production with a jet-veto

In order to suppress the large top-antitop background to H —+ WW we require that all jets
have a transverse momentum less that a threshold value pt,veto
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This works: the zero-jet cross section gg_jet is least contaminated by the huge
(yellow) top-antitop background



Jet-veto as a two-scale problem

The 0-jet cross section is characterised by two scales, the Higgs mass m g and the jet
resolution pt veto
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The jet-veto condition restricts the phase space available to gluons, so we expect
logarithmically enhanced contributions In(m /Py veto) at all orders

Does a resummation of large logarithms help solve the problem of the weird
behaviour of scale-uncertainties?



Resummation uncertainties

Resummation has more handles to assess theoretical uncertainties
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Resummation uncertainties

Resummation has more handles to assess theoretical uncertainties

1. "Traditional" variation of renormalisation
and factorisation scale in the range

| 1 ! L L

1k ' -

™M 1
F gg — H, my =125 GeV
S— #R’ #F S mH ey < E_ < 2 -(_"_’I,E‘TE"'/ H
4 2 - - MATCHED NNLL+NNLO
IJ’ IR 0.8 |-1STW2008 NNLO POF: _
* anti-k,, R=0.5

&( pt,veto)
o
Py

10 20 30 50 70 100

e(Ptveto) / Ecentral(Ptveto)
l
'l
|



Resummation uncertainties

Resummation has more handles to assess theoretical uncertainties

1. "Traditional" variation of renormalisation
and factorisation scale in the range
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Resummation uncertainties

Resummation has more handles to assess theoretical uncertainties

1. "Traditional" variation of renormalisation
and factorisation scale in the range
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Resummation uncertainties

Resummation has more handles to assess theoretical uncertainties

1. "Traditional" variation of renormalisation
and factorisation scale in the range
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Resummation uncertainties

Other resummed predictions have different central scales, a wider range of resummation
scales, and the range of scale variation varies as a function of Pt veto
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These scales correspond to towers of logarithms to be resummed: they are small in
the region where the resummation is important, and large in the region where the
fixed-order is well behaved —> smooth matching between resummation and NNLO



e(py ,veto)

€(Pt veto) / Ecentral(Pt veto)

Resummation uncertainties

In all resummed calculations for the jet-veto cross section, uncertainties reduce
consistently when increasing the resummation order
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Resummation vs fixed order uncertainties

At fixed-order, due to infrared sensitivity, different methods to assess uncertainties,
all compatible within perturbative accuracy, give very different results
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Resummation vs fixed order uncertainties

At fixed-order, due to infrared sensitivity, different methods to assess uncertainties,
all compatible within perturbative accuracy, give very different results
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After resummation of large logarithms, also naive scale variations are a sensible way to
estimate theoretical uncertainties, which at NNLL are around 10-12%

The main message is: if you feel you have to resum logs, just do it



Jet-veto efficiency at fixed order

The final-state observable corresponding to the jet-veto cross section is the
transverse momentum of the hardest jet. For one soft and collinear gluon
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The cumulative distribution in the transverse momentum of the leading jet is called jet-
veto efficiency €(py. veto) . FOr a single gluon this is obtained by computing the shaded
area, and keeping in mind that emitting particles are gluons, with colour charge
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Single-logarithmic resummation

The transverse momentum of the leading jet scales like the transverse momentum of the
hardest emissions, hence it is trivially rIRC safe.
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Multiple-emission effects

At NLL all relevant emissions are widely separated in rapidity
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If Dt veto is small enough, for a finite radius we always have Rier < ln(mH/pt,veto)

This implies that for sufficiently small Pt,veto , the jet algorithm will never be able to
recombine two gluons widely separated in angle. This implies

Viky,... k) = maxiis:,jets} _ maxéz{ku}

No jets implies all gluons have k¢ < Pt.veto = No multiple emission corrections, the
answer is just a Sudakov form factor

_ Lgg(Prveto) —Rp, vero) ,
f(pt,veto) = ng(mH) € .F(R) — 3 |



Beyond NLL: independent emission

If two emissions are not widely separated in rapidity, the jet algorithm will cluster them

e

This gives the following correction (calling v = p; veto/™ )
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But the sum over all emissions that do not cluster and the Sudakov form factor give one
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Beyond NLL: independent emission

Let us define dimensionsless transverse vectors v, , = ky.o 5/mu
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Beyond NLL: correlated emission

Similarly, one can compute the correction due to correlated emission
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For small radius, rescaling k;, = zk; and k,;, = (1 — z)k, gives, for gluon-gluon splitting
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NNLL jet-veto distribution

Bringing all together one obtains a NNLL resummation formula, which contains for the
first time a non-trivial dependence on the jet radius

Two nearby gluons clustered in one jet One gluon giving two jets
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LD s
€(Pt,veto) = él(’;n:;) - 1+f"8(pt,vet0) R,(pt,veto)f(Rjet)l x ¢~ fPr.vero)

NNLL

The function f(R;e;) ~ In R;e; due to a cutoff collinear singularity in gluon splitting.
There is general interest in understanding the structure of these logarithms, and the
term o> an(Rjet) has been recently computed by Alioli and Walsh



Summary

In this lecture we have learnt;

1. variation of renormalisation and factorisation scales is a theoretically sound procedure
for scale uncertainties only for observables dominated by a single scale

2. for multi-scale observables, problems in scale variations might give an indication of
the infrared sensitivity of cross sections

3. methods to assess theoretical uncertainties for resummed predictions

4. some principles of NNLL resummation in the specific case of the jet-veto efficiency



