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uncertainties



Event-shape variables

Event-shape variables                         are combinations of hadron final-state 
momenta in a number which gives insight on event geometry

 Example: Thrust, longitudinal particle alignment

Planar event: Pencil-like event:



Final-state observables

Event-shape variables are a class of final-state observables, continuous measures of final-
state energy-momentum flow

In the previous lecture we have encountered the heavy-jet mass, the maximum of the 
invariant masses of the two hemispheres in which the event is divided by the thrust axis

There are many other such observables, jet broadenings, jet-resolution parameters, etc.



Collinear and infrared safety

All final-state observables we consider are infrared and collinear (IRC) safe, so that we 
can safely compute their distributions using quark and gluon language

Example: jets from parton momenta are close to jets from hadons momenta if their 
momenta do not change after

• the addition of any number of soft partons (IR safety)

• any number of collinear splittings (collinear safety) 



Large logarithms
Final-states have the property that for configurations close to the Born limit (e.g. a       
pair) their value is close to zero 

Example: pencil like events are selected by requiring the thrust or the heavy-jet mass 
to be below a certain value 

The restriction                   acts as a 
veto on gluon emissions 

To quantify the departure from the Born limit we consider the cumulative 
distribution         ,the probability that all events have                             



Resummation for final-state observables

In the region               , where                      , we wish the cumulative distribution of any 
final-state observable to be written in the form

To achieve NLL accuracy we have to consider:

• Double logarithms           : they come from  soft and collinear contributions, and 
have to exponentiate

• Single logarithms          : they come from soft and/or collinear contributions, and 
have to factorise from double logarithms 

As we have seen in the example of the heavy-jet mass, close to the Born limit,          
has up to two logarithms of     for each power of  



One gluon emission

We consider one gluon emission     and we compute the distribution   

Example of kinematics: two lightlike momenta along the thrust axis

Sudakov decomposition of k along      and  

Phase space and matrix element in the soft-collinear limit 



The Lund plane

For resummation purposes, it is extremely useful to visualise soft and collinear 
emissions in the Lund plane. We need to introduce the emission rapidity 

The boundaries                   
correspond the the collinear 
limits, giving the boundary 



The Lund plane

For a single emission the cumulative distribution for any event shape is just

For a single emission, any "good " final 
state observable behaves as

• Soft and collinear to leg 

• Soft large-angle

• Hard and collinear to leg 



The Lund plane

The first order contribution to           can be obtained by just computing the shaded area  



Logarithms for thrust and heavy-jet mass

For one emission the thrust and the heavy-jet mass are the same observable

• Soft-collinear emission

• Soft large-angle

• Hard collinear

Exercise. Compute the shaded area to derive 



Double and single logarithms

In the Lund plane, areas correspond to double logarithms, lines to single logarithms and 
points to constant contributions, so the log counting can be visualised



Radiator at NLL accuracy

The one-gluon contribution is conveniently written in terms of a "radiator", when one 
includes also all inclusive splittings of the emitted gluon

For two final-state emitting quark legs, as in           annihilation 

Exercise. Derive the expressions in section 2.1.3 of hep-ph/0407286 



Double soft-collinear emission

Considering the most singular case of two soft gluons with strongly ordered energies

correlated emission, singular only 
when the gluons are close in angle 

When the gluons are widely separated in angle, only the independent emission 
contribution survives

independent 
emission



Multiple soft-collinear emissions

We first neglect correlated emission. Then the multi-gluon matrix element is simply

In this case the cumulative distribution of an event shape becomes

virtual corrections, ensure 
that the inclusive sum of all 
emissions gives 1



Leading logarithmic resummation

Suppose the emissions are strongly ordered, i.e. 

If the observable's value is dominated by the "hardest" emission, in the strongly 
ordered regime the cumulative distribution is obtained by the exponentiation of the 
contribution of a single gluon (Sudakov form factor)

Under these assumptions one obtains the exponentiation of leading logarithms

Assume also that the value of the observable is dominated by            



Failure of leading logarithmic exponentiation

In the case of the JADE jet algorithm double logarithms do not exponentiate

We need to identify what can go wrong                                     

leading log exponentiation corrections

Potential corrections spoiling leading logarithmic exponentiation may come from

• Emissions without strong ordering                                                

• Strongly ordered emissions



rIRC safety: condition 1

Recursive infrared and collinear (rIRC) safety conditions are safety condition we 
put on the observable, so that we have no surprises from multiple emissions

1. Let's scale all                      , the observable should scale the same way, i.e.      

This ensures that, when                                              , we have  



rIRC safety: condition 2

Recursive infrared and collinear (rIRC) safety conditions are safety condition we 
put on the observable, so that we have no surprises from multiple emissions

2.    Let us make           softer than the others                                                , the 
observable should not change its scaling            

This ensures that, in the strongly ordered limit                                                        , we 
still have                                          

Tough exercise. Show that the JADE three-jet resolution fails either of the two conditions

Exercise. An additive observable                                                               is rIRC safe                             



rIRC safety in the Lund plane

An immediate consequence of the rIRC safety conditions is that we can neglect all 
emissions with                    , where                      



Two-gluon correlated emission

The two-gluon matrix element can be always written as the sum of an independent  
and correlated emission part 

The correlated emission part, if integrated inclusively, is combined with the one-loop 
one-gluon matrix element to give the running coupling



Two-gluon correlated emission

The remainder after extraction of the running coupling is

The correlated matrix element has only a collinear singularity (the soft are cutoff 
by     ). Does this singularity produce an extra logarithm? If yes, this contribution 
can be potentially single logarithmic, we need to prevent this from happening. 

Example: in a jet-rate, two correlated emissions are clustered into different jets



rIRC safety condition 2.bis

We require a further condition on the observable with respect to collinear splittings

2.bis. Consider an emission   , splitting into      and     . We introduce a measure of 
the collinearity of the splitting as follows 

The scaling properties of the observable must not change after a collinear splitting  

Notice the order of the limits, first you rescale the observable, and then you take the 
collinear limit. If you take the limit in reverse order, the result is trivial because the 
observables we consider are all collinear safe. 



rIRC safety 2.bis in the Lund plane

Clustering emissions close in rapidity does not produce extra logarithms

The relevant emissions are soft and collinear, widely separated in angle, and in a strip 
of size                  : this is a line, i.e. a single logarithmic contribution 



NLL resummation

At last, we can write the NLL formula for a rIRC safe final-state observable



Multiple-emission correction

We now see explicitly that the multiple emission correction is single logarithmic

For simplicity we consider event shapes only, whose value does not depend on 
particle's rapidities. We can then integrate freely on the rapidity to get

We first parametrise the particle momenta collinear to leg    in terms of 

At last, the single logarithmic correction from multiple emissions



Exercise: the thrust at NLL accuracy

For soft and/or collinear emissions, the thrust can be written as

1. Determine the scaling behaviour of the thrust in the soft-collinear, hard collinear and soft 
large-angle region

2. Prove that the thrust is recursively infrared and collinear safe

3. Show that the multiple emission correction is given by 



Summary

In this lecture we have learnt:

• how to compute double logarithms fast using the Lund diagrams

• there are rIRC safety conditions you have to impose on your observable so 
that leading logarithms exponentiate

• for rIRC safe observables, NLL accuracy forces all real emissions to be soft 
and collinear, and widely separated in rapidity

• multiple emission contributions are encoded in a single-logarithmic function 


