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A general framework to combine NNLO calculations 	


with a parton shower



To	
  cast	
  perturba-ve	
  calcula-ons	
  as	
  event	
  generators,	
  separate	
  
the	
  total	
  hadronic	
  event	
  into	
  different	
  jet	
  mul-plici-es
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With	
  this	
  step,	
  the	
  only	
  ques-on	
  remains	
  is	
  what	
  the	
  
differen-al	
  cross-­‐sec-on	
  is

3

dσ
MC

N

dΦN
?

At this point, this is a purely perturbative question



This	
  leads	
  to	
  two	
  condi-ons	
  that	
  each	
  MC	
  cross-­‐sec-on	
  needs	
  
to	
  sa-sfy
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N-jet (N+1)-jet (N+2)-jet

Fixed order NNLO NLO LO

Condition1:	


Correct individual perturbative accuracy
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N-jet (N+1)-jet (N+2)-jet

Fixed order NNLO NLO LO

Resummed!
order LL LL LL

Resummation required to be able to take resolution variable small

Condition1:	


Correct individual perturbative accuracy
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predicted at the desired accuracy only up to power corrections in the resolution scale T cut
N ,

which should therefore be as small as possible. At the same time, for integrated N -jet

observables the residual dependence on the resolution scale T cut
N in the pure FO and LL

calculations is at most power suppressed. The important condition is now that the same

must also hold for the combined FO+LL calculation. Therefore:

• Since T cut
N must be taken as small as possible to minimize power corrections, it is

imperative that logarithms of T cut
N must be counted as in eq. (2.28), for which we adopt

the notation Ocut, such that ↵n
sL

m
cut ⇠ Ocut(↵

n�m/2
s ).

• For integrated N -jet and (N +1)-jet observables that in fixed order are predicted at ↵n
s

with corrections starting at O(↵n+1
s ), any residual logarithmic dependence on the jet

resolution scales T cut
N and T cut

N+1 must be Ocut(↵�n+1
s ), i.e., only give corrections at the

level of accuracy (or higher) as expected from higher FO corrections.

To ensure this, the conditions in eq. (3.1) alone are not su�cient. In addition, the MC cross

sections for di↵erent multiplicities must be consistent with each other and satisfy the relation6
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up to Ocut(↵�n+1
s ) violations for an NnLON+LL calculation. (The missing exact dependence

on �N+1 below T cut
N will still introduce the same power corrections in T cut

N for general mea-

surements MX as in the pure FO and LL cases.) This condition enforces that after projecting

the fully di↵erential �N+1 dependence onto {�N , TN} the di↵erential TN spectrum is the

derivative of the cumulant with respect to T cut
N (for any fixed �N ). Integrating eq. (3.2) over

TN we obtain the equivalent condition for the cumulant being the integral of the TN spectrum.

That is, for any T c
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up to Ocut(↵�n+1
s ) violations for an NnLON+LL calculation.

In figure 2, we show how the FO and resummed contributions determine the accuracy

of the cross sections in di↵erent regions of phase space. In table 1, we summarize the per-

turbative accuracy as well as the size of uncontrolled higher-order corrections from fixed

order, resummed, and residual resolution scale dependence for integrated N -jet observables

and di↵erential (N + 1)-jet observables for various FO+LL orders. To give an example, at

NNLON+LL, integrated N -jet observables are supposed to get the O(↵0
s), O(↵1

s), and O(↵2
s)

terms correct, with corrections starting at O(↵3
s). This implies that the T cut

N dependence

must cancel such that it only appears at Ocut(↵�3
s ), so the lowest-order dependence can be

6In general, the projection from �N+1

to �N and definition of TN (�N+1

) can depend on the emission

channel inside d�mc
�N+1

, which we have kept implicit in eq. (3.2). In a given implementation, this dependence

is naturally accounted for, as we will see in the discussions below.

– 18 –

Condition II:	


Correlation between different multiplicities

Jet resolution is artificial parameter. Inclusive cross-sections should not 
depend on it to the perturbative order one is working
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This consistency can be written as 
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This consistency can be written as 

If this is enforced exactly, is unitarity talked about before



Explicit construction of the MC cross-sections

7



At	
  fixed	
  order	
  in	
  perturba-on	
  theory,	
  the	
  expressions	
  are	
  
completely	
  determined

8
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Figure 1. Illustration of the N -jet, (N + 1)-jet, and (N + 2)-jet regions in eq. (2.13) for resolution
variables that satisfy TN+1 < TN (e.g., the pT of the leading and subleading jet or N -jettiness [44]).
The N -jet bin has TN < T cut

N and is represented by N -parton events with TN = TN+1 = 0 (shown by
the black dot at the origin). The (N +1)-jet bin has TN > T cut

N and TN+1 < T cut
N+1 and is represented

by (N + 1)-parton events with TN+1 = 0 (shown by the black line on the TN axis). The inclusive
(N + 2)-jet bin has TN > T cut

N and TN+1 > T cut
N+1 and is represented by (N + 2)-parton events.

the resolution scale T cut
N . Next, d�mc

N+1(TN > T cut
N ; T cut

N+1) is an exclusive partonic (N +1)-jet

cross section and also IR finite. It contains N + 1 identified partons plus any number of

unresolved emissions below the resolution scale T cut
N+1. The argument TN > T cut

N indicates

that the cross section only has support above T cut
N , which acts as the condition to have

one additional resolved parton. Finally, d�mc
�N+2(TN > T cut

N , TN+1 > T cut
N+1) is an inclusive

partonic (N + 2)-jet cross section and also IR finite. It contains at least N + 2 identified

partons, where two additional partons are required to be above T cut
N and T cut

N+1, respectively,

as well as any number of additional emissions. Compared to eq. (2.5), where N + 1 was

the highest multiplicity and inclusive over additional emissions, now both N and N + 1

are exclusive multiplicities, while the highest multiplicity is N + 2 and again inclusive over

additional emissions. In figure 1, we illustrate the regions in TN and TN+1 contributing to

each multiplicity.

At fixed NNLO, the cross section �(X) is given by

�NNLO(X) =

Z

d�N (BN + VN +WN )(�N )MX(�N )

+

Z

d�N+1

�

BN+1 + VN+1

�

(�N+1)MX(�N+1)

+

Z

d�N+2BN+2(�N+2)MX(�N+2) , (2.15)

where WN contains the two-loop virtual corrections for N partons and VN+1 the one-loop

virtual corrections for N + 1 partons. In principle, the phase space integrals in eq. (2.15)

can again be performed by Monte Carlo integration using subtractions. Since the singularity

– 10 –

Standard expression for an NNLO observable

Want to write this in terms of MC cross sections
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Figure 1. Illustration of the N -jet, (N + 1)-jet, and (N + 2)-jet regions in eq. (2.13) for resolution
variables that satisfy TN+1 < TN (e.g., the pT of the leading and subleading jet or N -jettiness [44]).
The N -jet bin has TN < T cut

N and is represented by N -parton events with TN = TN+1 = 0 (shown by
the black dot at the origin). The (N +1)-jet bin has TN > T cut

N and TN+1 < T cut
N+1 and is represented

by (N + 1)-parton events with TN+1 = 0 (shown by the black line on the TN axis). The inclusive
(N + 2)-jet bin has TN > T cut

N and TN+1 > T cut
N+1 and is represented by (N + 2)-parton events.

the resolution scale T cut
N . Next, d�mc

N+1(TN > T cut
N ; T cut

N+1) is an exclusive partonic (N +1)-jet

cross section and also IR finite. It contains N + 1 identified partons plus any number of

unresolved emissions below the resolution scale T cut
N+1. The argument TN > T cut

N indicates

that the cross section only has support above T cut
N , which acts as the condition to have

one additional resolved parton. Finally, d�mc
�N+2(TN > T cut

N , TN+1 > T cut
N+1) is an inclusive

partonic (N + 2)-jet cross section and also IR finite. It contains at least N + 2 identified

partons, where two additional partons are required to be above T cut
N and T cut

N+1, respectively,

as well as any number of additional emissions. Compared to eq. (2.5), where N + 1 was

the highest multiplicity and inclusive over additional emissions, now both N and N + 1

are exclusive multiplicities, while the highest multiplicity is N + 2 and again inclusive over

additional emissions. In figure 1, we illustrate the regions in TN and TN+1 contributing to

each multiplicity.

At fixed NNLO, the cross section �(X) is given by

�NNLO(X) =

Z

d�N (BN + VN +WN )(�N )MX(�N )

+

Z

d�N+1

�

BN+1 + VN+1

�

(�N+1)MX(�N+1)

+

Z

d�N+2BN+2(�N+2)MX(�N+2) , (2.15)

where WN contains the two-loop virtual corrections for N partons and VN+1 the one-loop

virtual corrections for N + 1 partons. In principle, the phase space integrals in eq. (2.15)

can again be performed by Monte Carlo integration using subtractions. Since the singularity
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structure of the real, virtual, and real-virtual contributions is much more complex than at

NLO, the required subtractions are far more intricate now.

�NNLO(X) =

Z

d�N
d�mc
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d�N
(T cut

N ) +

Z

d�N+1

d�mc
N+1

d�N+1
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N ; T cut
N+1)

+

Z

d�N+2

d�mc
�N+2

d�N+2
(TN > T cut

N , TN+1 > T cut
N+1)

We now want to recast eq. (2.16) in the form of eq. (2.14). At NNLO, the general

definition of the MC cross sections given below eq. (2.14) corresponds to the following MC

measurement functions:

Mmc(�
0
N ) = �(�N � �0

N ) ,

Mmc(�
0
N+1) = �[�N � �̂N (�0

N+1)] ✓[TN (�0
N+1) < T cut

N ] (2.16)

+ �(�N+1 � �0
N+1) ✓[TN (�0

N+1) > T cut
N ] ,

Mmc(�
0
N+2) = �[�N � �̂N (�0

N+2)] ✓[TN (�0
N+2) < T cut

N ]

+ �[�N+1 � �̂N+1(�
0
N+2)] ✓[TN (�0

N+2) > T cut
N ] ✓[TN+1(�

0
N+2) < T cut

N+1]

+ �(�N+2 � �0
N+2) ✓[TN (�0

N+2) > T cut
N ] ✓[TN+1(�

0
N+2) > T cut

N+1] .

For these measurements to be IR safe, TN and TN+1 can be any IR-safe resolution variables

and the various �̂N (�M ) can be any IR-safe phase space projections. These conditions are

much more nontrivial at NNLO compared to NLO, since we now need explicit projections

from �N+2 down to �N , and furthermore the condition TN (�N+2) > T cut
N must cut o↵ all

double-unresolved IR-singular regions of �N+2. For example, at NLO TN could simply be

defined as the pT or virtuality of the one additional emission (which is IR safe at NLO).

However, taking TN and TN+1 as the pT or virtuality of each of the two additional emissions

is not IR safe at NNLO. Instead, a properly IR-safe NNLO generalization for TN would be to

define it as the pT of the additional jet using an explicit jet algorithm with some jet radius R.

This corresponds to using a “local” resolution variable. Another choice is to define it as the
P

pT of all additional emissions or N -jettiness [44]. These correspond to “global” resolution

variables.

Plugging eq. (2.17) back into eq. (2.16), we obtain the required MC cross sections,

d�mc
N

d�N
(T cut

N ) = (BN + VN +WN )(�N )

+

Z

d�N+1

d�N
(BN+1 + VN+1)(�N+1) ✓[TN (�N+1) < T cut

N ]

+

Z

d�N+2

d�N
BN+2(�N+2) ✓[TN (�N+2) < T cut

N ] ,

d�mc
N+1

d�N+1
(TN > T cut

N ; T cut
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= (BN+1 + VN+1)(�N+1) ✓[TN (�N+1) > T cut
N ]
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N+1] .

For these measurements to be IR safe, TN and TN+1 can be any IR-safe resolution variables

and the various �̂N (�M ) can be any IR-safe phase space projections. These conditions are

much more nontrivial at NNLO compared to NLO, since we now need explicit projections

from �N+2 down to �N , and furthermore the condition TN (�N+2) > T cut
N must cut o↵ all

double-unresolved IR-singular regions of �N+2. For example, at NLO TN could simply be

defined as the pT or virtuality of the one additional emission (which is IR safe at NLO).

However, taking TN and TN+1 as the pT or virtuality of each of the two additional emissions

is not IR safe at NNLO. Instead, a properly IR-safe NNLO generalization for TN would be to

define it as the pT of the additional jet using an explicit jet algorithm with some jet radius R.

This corresponds to using a “local” resolution variable. Another choice is to define it as the
P

pT of all additional emissions or N -jettiness [44]. These correspond to “global” resolution

variables.

Plugging eq. (2.17) back into eq. (2.16), we obtain the required MC cross sections,

d�mc
N

d�N
(T cut

N ) = (BN + VN +WN )(�N )

+

Z

d�N+1

d�N
(BN+1 + VN+1)(�N+1) ✓[TN (�N+1) < T cut

N ]

+

Z

d�N+2

d�N
BN+2(�N+2) ✓[TN (�N+2) < T cut

N ] ,

d�mc
N+1

d�N+1
(TN > T cut

N ; T cut
N+1)

= (BN+1 + VN+1)(�N+1) ✓[TN (�N+1) > T cut
N ]

– 11 –

Required expression at fixed order are

At	
  fixed	
  order	
  in	
  perturba-on	
  theory,	
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  expressions	
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  determined
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structure of the real, virtual, and real-virtual contributions is much more complex than at

NLO, the required subtractions are far more intricate now.

�NNLO(X) =

Z

d�N
d�mc

N

d�N
(T cut

N ) +

Z

d�N+1

d�mc
N+1

d�N+1
(TN > T cut

N ; T cut
N+1)

+

Z

d�N+2

d�mc
�N+2

d�N+2
(TN > T cut

N , TN+1 > T cut
N+1)

We now want to recast eq. (2.16) in the form of eq. (2.14). At NNLO, the general

definition of the MC cross sections given below eq. (2.14) corresponds to the following MC

measurement functions:

Mmc(�
0
N ) = �(�N � �0

N ) ,

Mmc(�
0
N+1) = �[�N � �̂N (�0

N+1)] ✓[TN (�0
N+1) < T cut

N ] (2.16)

+ �(�N+1 � �0
N+1) ✓[TN (�0

N+1) > T cut
N ] ,

Mmc(�
0
N+2) = �[�N � �̂N (�0

N+2)] ✓[TN (�0
N+2) < T cut

N ]

+ �[�N+1 � �̂N+1(�
0
N+2)] ✓[TN (�0

N+2) > T cut
N ] ✓[TN+1(�

0
N+2) < T cut

N+1]

+ �(�N+2 � �0
N+2) ✓[TN (�0

N+2) > T cut
N ] ✓[TN+1(�

0
N+2) > T cut

N+1] .

For these measurements to be IR safe, TN and TN+1 can be any IR-safe resolution variables

and the various �̂N (�M ) can be any IR-safe phase space projections. These conditions are

much more nontrivial at NNLO compared to NLO, since we now need explicit projections

from �N+2 down to �N , and furthermore the condition TN (�N+2) > T cut
N must cut o↵ all

double-unresolved IR-singular regions of �N+2. For example, at NLO TN could simply be

defined as the pT or virtuality of the one additional emission (which is IR safe at NLO).

However, taking TN and TN+1 as the pT or virtuality of each of the two additional emissions

is not IR safe at NNLO. Instead, a properly IR-safe NNLO generalization for TN would be to

define it as the pT of the additional jet using an explicit jet algorithm with some jet radius R.

This corresponds to using a “local” resolution variable. Another choice is to define it as the
P

pT of all additional emissions or N -jettiness [44]. These correspond to “global” resolution

variables.

Plugging eq. (2.17) back into eq. (2.16), we obtain the required MC cross sections,

d�mc
N

d�N
(T cut

N ) = (BN + VN +WN )(�N )

+

Z

d�N+1

d�N
(BN+1 + VN+1)(�N+1) ✓[TN (�N+1) < T cut

N ]

+

Z

d�N+2

d�N
BN+2(�N+2) ✓[TN (�N+2) < T cut

N ] ,

d�mc
N+1

d�N+1
(TN > T cut

N ; T cut
N+1)

= (BN+1 + VN+1)(�N+1) ✓[TN (�N+1) > T cut
N ]

– 11 –

Want to write this in terms of MC cross sections

structure of the real, virtual, and real-virtual contributions is much more complex than at

NLO, the required subtractions are far more intricate now.

�NNLO(X) =

Z

d�N
d�mc

N

d�N
(T cut

N ) +

Z

d�N+1

d�mc
N+1

d�N+1
(TN > T cut

N ; T cut
N+1)

+

Z

d�N+2

d�mc
�N+2

d�N+2
(TN > T cut

N , TN+1 > T cut
N+1)

We now want to recast eq. (2.16) in the form of eq. (2.14). At NNLO, the general

definition of the MC cross sections given below eq. (2.14) corresponds to the following MC

measurement functions:

Mmc(�
0
N ) = �(�N � �0

N ) ,

Mmc(�
0
N+1) = �[�N � �̂N (�0

N+1)] ✓[TN (�0
N+1) < T cut

N ] (2.16)

+ �(�N+1 � �0
N+1) ✓[TN (�0

N+1) > T cut
N ] ,

Mmc(�
0
N+2) = �[�N � �̂N (�0

N+2)] ✓[TN (�0
N+2) < T cut

N ]

+ �[�N+1 � �̂N+1(�
0
N+2)] ✓[TN (�0

N+2) > T cut
N ] ✓[TN+1(�

0
N+2) < T cut

N+1]

+ �(�N+2 � �0
N+2) ✓[TN (�0

N+2) > T cut
N ] ✓[TN+1(�

0
N+2) > T cut

N+1] .

For these measurements to be IR safe, TN and TN+1 can be any IR-safe resolution variables

and the various �̂N (�M ) can be any IR-safe phase space projections. These conditions are

much more nontrivial at NNLO compared to NLO, since we now need explicit projections

from �N+2 down to �N , and furthermore the condition TN (�N+2) > T cut
N must cut o↵ all

double-unresolved IR-singular regions of �N+2. For example, at NLO TN could simply be

defined as the pT or virtuality of the one additional emission (which is IR safe at NLO).

However, taking TN and TN+1 as the pT or virtuality of each of the two additional emissions

is not IR safe at NNLO. Instead, a properly IR-safe NNLO generalization for TN would be to

define it as the pT of the additional jet using an explicit jet algorithm with some jet radius R.

This corresponds to using a “local” resolution variable. Another choice is to define it as the
P

pT of all additional emissions or N -jettiness [44]. These correspond to “global” resolution

variables.

Plugging eq. (2.17) back into eq. (2.16), we obtain the required MC cross sections,

d�mc
N

d�N
(T cut

N ) = (BN + VN +WN )(�N )

+

Z

d�N+1

d�N
(BN+1 + VN+1)(�N+1) ✓[TN (�N+1) < T cut

N ]

+

Z

d�N+2

d�N
BN+2(�N+2) ✓[TN (�N+2) < T cut

N ] ,

d�mc
N+1

d�N+1
(TN > T cut

N ; T cut
N+1)

= (BN+1 + VN+1)(�N+1) ✓[TN (�N+1) > T cut
N ]

– 11 –

+

Z

d�N+2

d�N+1
BN+2(�N+2) ✓[TN (�N+2) > T cut

N ] ✓[TN+1(�N+2) < T cut
N+1] ,

d�mc
�N+2

d�N+2
(TN > T cut

N , TN+1 > T cut
N+1)

= BN+2(�N+2) ✓[TN (�N+2) > T cut
N ] ✓[TN+1(�N+2) > T cut

N+1] . (2.17)

where we have defined the generalization of eq. (2.11),

d�M

d�N
⌘ d�M �[�N � �̂N (�M )] . (2.18)

Note that the implementation of the constraint TN > T cut
N in d�mc

N+1 is nontrivial now.

For simplicity, we have not written any subtractions in eq. (2.18), which will be needed

in some form when evaluating the cross sections numerically to separate out and cancel the

IR divergences in the virtual and real emission contributions. Applying the MC measurement

functions in eq. (2.17) to the required subtraction terms is straightforward. The precise form

of the subtractions is however not important for our discussion, and one can apply for example

the NNLO subtraction techniques in refs. [45–48].

As at NLO, writing the NNLO calculation in terms of IR-finite MC cross sections as

above forms the basis for using it in an exclusive event generator for physical events. Using

eq. (2.18) together with eq. (2.14) the cross section for some measurement MX obtained in

this way is

�(X) =

Z

d�N (BN + VN +WN )(�N )MX(�N )

+

Z

d�N+1 (BN+1 + VN+1)(�N+1)

⇥
n

✓[TN (�N+1) < T cut
N ]MX [�̂N (�N+1)] + ✓[TN (�N+1) > T cut

N ]MX(�N+1)
o

+

Z

d�N+2BN+2(�N+2)

⇥
n

✓[TN (�N+2) < T cut
N ]MX [�̂N (�N+2)]

+ ✓[TN (�N+2) > T cut
N ] ✓[TN+1(�N+2) < T cut

N+1]MX [�̂N+1(�N+2)]

+ ✓[TN (�N+2) > T cut
N ] ✓[TN+1(�N+2) > T cut

N+1]MX(�N+2)
o

. (2.19)

This has the same inevitable limitations that we already saw in the NLO case. Since N -parton

and (N + 1)-parton events correspond to partonic N -jet and (N + 1)-jet cross sections, the

measurement is evaluated on the corresponding projected phase space points in the unresolved

regions of phase space. Therefore, the cross section �(X) is correct to the required fixed order

(up to power corrections in the resolution scales) for measurements X that are insensitive to

the unresolved regions of phase space. This means:

• N -jet observables are correct to NNLON if they integrate over the complete unresolved

regions of �N+1 and �N+2. [Power corrections are at most of relative O(↵sT cut
N /T e↵

N )

– 12 –

Required expression at fixed order are

At	
  fixed	
  order	
  in	
  perturba-on	
  theory,	
  the	
  expressions	
  are	
  
completely	
  determined
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structure of the real, virtual, and real-virtual contributions is much more complex than at

NLO, the required subtractions are far more intricate now.

�NNLO(X) =

Z

d�N
d�mc

N

d�N
(T cut

N ) +

Z

d�N+1

d�mc
N+1

d�N+1
(TN > T cut

N ; T cut
N+1)

+

Z

d�N+2

d�mc
�N+2

d�N+2
(TN > T cut

N , TN+1 > T cut
N+1)

We now want to recast eq. (2.16) in the form of eq. (2.14). At NNLO, the general

definition of the MC cross sections given below eq. (2.14) corresponds to the following MC

measurement functions:

Mmc(�
0
N ) = �(�N � �0

N ) ,

Mmc(�
0
N+1) = �[�N � �̂N (�0

N+1)] ✓[TN (�0
N+1) < T cut

N ] (2.16)

+ �(�N+1 � �0
N+1) ✓[TN (�0

N+1) > T cut
N ] ,

Mmc(�
0
N+2) = �[�N � �̂N (�0

N+2)] ✓[TN (�0
N+2) < T cut

N ]

+ �[�N+1 � �̂N+1(�
0
N+2)] ✓[TN (�0

N+2) > T cut
N ] ✓[TN+1(�

0
N+2) < T cut

N+1]

+ �(�N+2 � �0
N+2) ✓[TN (�0

N+2) > T cut
N ] ✓[TN+1(�

0
N+2) > T cut

N+1] .

For these measurements to be IR safe, TN and TN+1 can be any IR-safe resolution variables

and the various �̂N (�M ) can be any IR-safe phase space projections. These conditions are

much more nontrivial at NNLO compared to NLO, since we now need explicit projections

from �N+2 down to �N , and furthermore the condition TN (�N+2) > T cut
N must cut o↵ all

double-unresolved IR-singular regions of �N+2. For example, at NLO TN could simply be

defined as the pT or virtuality of the one additional emission (which is IR safe at NLO).

However, taking TN and TN+1 as the pT or virtuality of each of the two additional emissions

is not IR safe at NNLO. Instead, a properly IR-safe NNLO generalization for TN would be to

define it as the pT of the additional jet using an explicit jet algorithm with some jet radius R.

This corresponds to using a “local” resolution variable. Another choice is to define it as the
P

pT of all additional emissions or N -jettiness [44]. These correspond to “global” resolution

variables.

Plugging eq. (2.17) back into eq. (2.16), we obtain the required MC cross sections,

d�mc
N

d�N
(T cut

N ) = (BN + VN +WN )(�N )

+

Z

d�N+1

d�N
(BN+1 + VN+1)(�N+1) ✓[TN (�N+1) < T cut

N ]

+

Z

d�N+2

d�N
BN+2(�N+2) ✓[TN (�N+2) < T cut

N ] ,

d�mc
N+1

d�N+1
(TN > T cut

N ; T cut
N+1)

= (BN+1 + VN+1)(�N+1) ✓[TN (�N+1) > T cut
N ]

– 11 –

Want to write this in terms of MC cross sections

+

Z

d�N+2

d�N+1
BN+2(�N+2) ✓[TN (�N+2) > T cut

N ] ✓[TN+1(�N+2) < T cut
N+1] ,

d�mc
�N+2

d�N+2
(TN > T cut

N , TN+1 > T cut
N+1)

= BN+2(�N+2) ✓[TN (�N+2) > T cut
N ] ✓[TN+1(�N+2) > T cut

N+1] . (2.17)

where we have defined the generalization of eq. (2.11),

d�M

d�N
⌘ d�M �[�N � �̂N (�M )] . (2.18)

Note that the implementation of the constraint TN > T cut
N in d�mc

N+1 is nontrivial now.

For simplicity, we have not written any subtractions in eq. (2.18), which will be needed

in some form when evaluating the cross sections numerically to separate out and cancel the

IR divergences in the virtual and real emission contributions. Applying the MC measurement

functions in eq. (2.17) to the required subtraction terms is straightforward. The precise form

of the subtractions is however not important for our discussion, and one can apply for example

the NNLO subtraction techniques in refs. [45–48].

As at NLO, writing the NNLO calculation in terms of IR-finite MC cross sections as

above forms the basis for using it in an exclusive event generator for physical events. Using

eq. (2.18) together with eq. (2.14) the cross section for some measurement MX obtained in

this way is

�(X) =

Z

d�N (BN + VN +WN )(�N )MX(�N )

+

Z

d�N+1 (BN+1 + VN+1)(�N+1)

⇥
n

✓[TN (�N+1) < T cut
N ]MX [�̂N (�N+1)] + ✓[TN (�N+1) > T cut

N ]MX(�N+1)
o

+

Z

d�N+2BN+2(�N+2)

⇥
n

✓[TN (�N+2) < T cut
N ]MX [�̂N (�N+2)]

+ ✓[TN (�N+2) > T cut
N ] ✓[TN+1(�N+2) < T cut

N+1]MX [�̂N+1(�N+2)]

+ ✓[TN (�N+2) > T cut
N ] ✓[TN+1(�N+2) > T cut

N+1]MX(�N+2)
o

. (2.19)

This has the same inevitable limitations that we already saw in the NLO case. Since N -parton

and (N + 1)-parton events correspond to partonic N -jet and (N + 1)-jet cross sections, the

measurement is evaluated on the corresponding projected phase space points in the unresolved

regions of phase space. Therefore, the cross section �(X) is correct to the required fixed order

(up to power corrections in the resolution scales) for measurements X that are insensitive to

the unresolved regions of phase space. This means:

• N -jet observables are correct to NNLON if they integrate over the complete unresolved

regions of �N+1 and �N+2. [Power corrections are at most of relative O(↵sT cut
N /T e↵

N )

– 12 –

Required expression at fixed order are

How do I make these expression have the correct LL behavior?

At	
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Consider again the exclusive N-jet cross-section

There	
  are	
  many	
  possible	
  ways	
  to	
  make	
  the	
  expression	
  correct	
  
to	
  LL	
  accuracy

The same is therefore also the case at NNLO+LL. Hence, we need to construct expressions

for the corresponding fully di↵erential MC cross sections [see eqs. (2.13) and (2.14)]

d�mc
N

d�N
(T cut

N ) ,
d�mc

N+1

d�N+1
(TN > T cut

N ; T cut
N+1) ,

d�mc
�N+2

d�N+2
(TN > T cut

N , TN+1 > T cut
N+1) . (4.1)

As discussed in section 3.1, at NNLO+LL we require that N -jet observables are correct

to NNLON+LL, (N + 1)-jet observables to NLON+1+LL, and (N + 2)-jet observables to

LON+2+LL, provided that any observable built from these cross sections is su�ciently inclu-

sive over the unresolved regions of phase space. Since the FO calculation is supplemented with

the LL resummation of the jet resolution variables TN and TN+1, the perturbative accuracy

of the prediction in the IR-singular regime is improved relative to the pure FO calculation,

which breaks down in this region. The required perturbative accuracy at NNLO+LL in the

FO and resummation regions is summarized in table 1.

To construct the NNLO+LL MC cross sections, it will be convenient to proceed in two

steps. In section 4.1, we first consider the separation between the exclusive N -jet and inclu-

sive (N+1)-jet cross sections using TN and construct the corresponding exclusive d�mc
N (T cut

N )

and an inclusive d�mc
�N+1(TN > T cut

N ). In section 4.2, we then consider the further sepa-

ration of d�mc
�N+1(TN > T cut

N ) into the final exclusive d�mc
N+1(TN > T cut

N ; T cut
N+1) and inclu-

sive d�mc
�N+2(TN > T cut

N , TN+1 > T cut
N+1) using TN+1. To make the notation as transparent

as possible, we drop the emission labels m throughout this section. They can be inserted

straightforwardly into all formulae giving the di↵erent contributions to the cross sections.

4.1 The Exclusive N-jet and Inclusive (N + 1)-jet Cross Sections

As we have already seen at LO and NLO, it is convenient to divide the full FO exclusive

N -jet cross section, d�FO
N (T cut

N ), into a singular and a nonsingular contribution9,

d�FO
N

d�N
(T cut

N ) =
d�C

N

d�N
(T cut

N )
| {z }

FO singular

+
d�B�C

N

d�N
(T cut

N )
| {z }

FO nonsingular

. (4.2)

At NNLO, d�FO
N (T cut

N ) is given in eq. (2.17). Its singular approximation is given by

d�C
N

d�N
(T cut

N ) = (BN + VN +WN )(�N )

+

Z

d�N+1

d�N
(CN+1 + V CN+1)(�N+1) ✓[TN (�N+1) < T cut

N ]

+

Z

d�N+2

d�N
CN+2(�N+2) ✓[TN (�N+2) < T cut

N ] , (4.3)

9To be precise, singular terms in the cumulant contain logarithms of T cut

N or constants, while nonsingular

terms vanish as T cut

N ! 0. In the spectrum, singular terms contain plus distributions or delta functions of TN ,

while nonsingular terms contain no singular distributions and at most integrable singularities.
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where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives

Case 1:
d�mc

N

d�N
(T cut

N ) =
d�C

�N

d�N
�N (�N ; T cut

N )
| {z }

resummed

+
d�C�S

N

d�N
(T cut

N )
| {z }

FO singular matching

+
d�B�C

N

d�N
(T cut

N )
| {z }

FO nonsingular
matching

. (4.4)

The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,

d�B�C
N

d�N
(T cut

N ) =
d�FO

N

d�N
(T cut

N )� d�C
N

d�N
(T cut

N ) . (4.5)

As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,

d�C�S
N

d�N
(T cut

N ) =
d�C

N

d�N
(T cut

N )�


d�C
�N

d�N
�N (�N ; T cut

N )

�

FO

= �
Z

d�N+1

�N
(CN+1 � SN+1)(�N+1) ✓(TN > T cut

N ) +O(↵2
s) . (4.6)

Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as

– 27 –

where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives
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The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,
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As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,
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s) . (4.6)

Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives
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The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,
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As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,
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Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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The same is therefore also the case at NNLO+LL. Hence, we need to construct expressions

for the corresponding fully di↵erential MC cross sections [see eqs. (2.13) and (2.14)]

d�mc
N

d�N
(T cut

N ) ,
d�mc

N+1

d�N+1
(TN > T cut

N ; T cut
N+1) ,

d�mc
�N+2

d�N+2
(TN > T cut

N , TN+1 > T cut
N+1) . (4.1)

As discussed in section 3.1, at NNLO+LL we require that N -jet observables are correct

to NNLON+LL, (N + 1)-jet observables to NLON+1+LL, and (N + 2)-jet observables to

LON+2+LL, provided that any observable built from these cross sections is su�ciently inclu-

sive over the unresolved regions of phase space. Since the FO calculation is supplemented with

the LL resummation of the jet resolution variables TN and TN+1, the perturbative accuracy

of the prediction in the IR-singular regime is improved relative to the pure FO calculation,

which breaks down in this region. The required perturbative accuracy at NNLO+LL in the

FO and resummation regions is summarized in table 1.

To construct the NNLO+LL MC cross sections, it will be convenient to proceed in two

steps. In section 4.1, we first consider the separation between the exclusive N -jet and inclu-

sive (N+1)-jet cross sections using TN and construct the corresponding exclusive d�mc
N (T cut

N )

and an inclusive d�mc
�N+1(TN > T cut

N ). In section 4.2, we then consider the further sepa-

ration of d�mc
�N+1(TN > T cut

N ) into the final exclusive d�mc
N+1(TN > T cut

N ; T cut
N+1) and inclu-

sive d�mc
�N+2(TN > T cut

N , TN+1 > T cut
N+1) using TN+1. To make the notation as transparent

as possible, we drop the emission labels m throughout this section. They can be inserted

straightforwardly into all formulae giving the di↵erent contributions to the cross sections.

4.1 The Exclusive N-jet and Inclusive (N + 1)-jet Cross Sections

As we have already seen at LO and NLO, it is convenient to divide the full FO exclusive

N -jet cross section, d�FO
N (T cut

N ), into a singular and a nonsingular contribution9,
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At NNLO, d�FO
N (T cut

N ) is given in eq. (2.17). Its singular approximation is given by

d�C
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N ) = (BN + VN +WN )(�N )
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N ]
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CN+2(�N+2) ✓[TN (�N+2) < T cut

N ] , (4.3)

9To be precise, singular terms in the cumulant contain logarithms of T cut

N or constants, while nonsingular

terms vanish as T cut

N ! 0. In the spectrum, singular terms contain plus distributions or delta functions of TN ,

while nonsingular terms contain no singular distributions and at most integrable singularities.
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Split this into a singular piece and a non-singular piece

where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives
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FO nonsingular
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. (4.4)

The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,
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d�FO
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d�N
(T cut

N )� d�C
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d�N
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N ) . (4.5)

As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,

d�C�S
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N ) +O(↵2
s) . (4.6)

Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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Consider again the exclusive N-jet cross-section

There	
  are	
  many	
  possible	
  ways	
  to	
  make	
  the	
  expression	
  correct	
  
to	
  LL	
  accuracy

The same is therefore also the case at NNLO+LL. Hence, we need to construct expressions

for the corresponding fully di↵erential MC cross sections [see eqs. (2.13) and (2.14)]
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N , TN+1 > T cut
N+1) . (4.1)

As discussed in section 3.1, at NNLO+LL we require that N -jet observables are correct

to NNLON+LL, (N + 1)-jet observables to NLON+1+LL, and (N + 2)-jet observables to

LON+2+LL, provided that any observable built from these cross sections is su�ciently inclu-

sive over the unresolved regions of phase space. Since the FO calculation is supplemented with

the LL resummation of the jet resolution variables TN and TN+1, the perturbative accuracy

of the prediction in the IR-singular regime is improved relative to the pure FO calculation,

which breaks down in this region. The required perturbative accuracy at NNLO+LL in the

FO and resummation regions is summarized in table 1.

To construct the NNLO+LL MC cross sections, it will be convenient to proceed in two

steps. In section 4.1, we first consider the separation between the exclusive N -jet and inclu-

sive (N+1)-jet cross sections using TN and construct the corresponding exclusive d�mc
N (T cut

N )

and an inclusive d�mc
�N+1(TN > T cut

N ). In section 4.2, we then consider the further sepa-

ration of d�mc
�N+1(TN > T cut

N ) into the final exclusive d�mc
N+1(TN > T cut

N ; T cut
N+1) and inclu-

sive d�mc
�N+2(TN > T cut

N , TN+1 > T cut
N+1) using TN+1. To make the notation as transparent

as possible, we drop the emission labels m throughout this section. They can be inserted

straightforwardly into all formulae giving the di↵erent contributions to the cross sections.

4.1 The Exclusive N-jet and Inclusive (N + 1)-jet Cross Sections

As we have already seen at LO and NLO, it is convenient to divide the full FO exclusive

N -jet cross section, d�FO
N (T cut

N ), into a singular and a nonsingular contribution9,
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+
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FO nonsingular

. (4.2)

At NNLO, d�FO
N (T cut

N ) is given in eq. (2.17). Its singular approximation is given by
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N ) = (BN + VN +WN )(�N )

+
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N ]

+
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N ] , (4.3)

9To be precise, singular terms in the cumulant contain logarithms of T cut

N or constants, while nonsingular

terms vanish as T cut

N ! 0. In the spectrum, singular terms contain plus distributions or delta functions of TN ,

while nonsingular terms contain no singular distributions and at most integrable singularities.
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where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives

Case 1:
d�mc
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+
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FO nonsingular
matching

. (4.4)

The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,

d�B�C
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N ) =
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d�N
(T cut

N )� d�C
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d�N
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N ) . (4.5)

As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,
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N ) +O(↵2
s) . (4.6)

Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives
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The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,
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d�N
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As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,
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Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives
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The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,
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As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,
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Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives
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The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,
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As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic
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N dependence and that obtained by expanding the resummed term in fixed order, i.e.,
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Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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Consider again the exclusive N-jet cross-section

There	
  are	
  many	
  possible	
  ways	
  to	
  make	
  the	
  expression	
  correct	
  
to	
  LL	
  accuracy

The same is therefore also the case at NNLO+LL. Hence, we need to construct expressions

for the corresponding fully di↵erential MC cross sections [see eqs. (2.13) and (2.14)]
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d�N+1
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N , TN+1 > T cut
N+1) . (4.1)

As discussed in section 3.1, at NNLO+LL we require that N -jet observables are correct

to NNLON+LL, (N + 1)-jet observables to NLON+1+LL, and (N + 2)-jet observables to

LON+2+LL, provided that any observable built from these cross sections is su�ciently inclu-

sive over the unresolved regions of phase space. Since the FO calculation is supplemented with

the LL resummation of the jet resolution variables TN and TN+1, the perturbative accuracy

of the prediction in the IR-singular regime is improved relative to the pure FO calculation,

which breaks down in this region. The required perturbative accuracy at NNLO+LL in the

FO and resummation regions is summarized in table 1.

To construct the NNLO+LL MC cross sections, it will be convenient to proceed in two

steps. In section 4.1, we first consider the separation between the exclusive N -jet and inclu-

sive (N+1)-jet cross sections using TN and construct the corresponding exclusive d�mc
N (T cut

N )

and an inclusive d�mc
�N+1(TN > T cut

N ). In section 4.2, we then consider the further sepa-

ration of d�mc
�N+1(TN > T cut

N ) into the final exclusive d�mc
N+1(TN > T cut

N ; T cut
N+1) and inclu-

sive d�mc
�N+2(TN > T cut

N , TN+1 > T cut
N+1) using TN+1. To make the notation as transparent

as possible, we drop the emission labels m throughout this section. They can be inserted

straightforwardly into all formulae giving the di↵erent contributions to the cross sections.

4.1 The Exclusive N-jet and Inclusive (N + 1)-jet Cross Sections

As we have already seen at LO and NLO, it is convenient to divide the full FO exclusive

N -jet cross section, d�FO
N (T cut

N ), into a singular and a nonsingular contribution9,

d�FO
N

d�N
(T cut

N ) =
d�C

N

d�N
(T cut

N )
| {z }

FO singular

+
d�B�C

N

d�N
(T cut

N )
| {z }

FO nonsingular

. (4.2)

At NNLO, d�FO
N (T cut

N ) is given in eq. (2.17). Its singular approximation is given by
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9To be precise, singular terms in the cumulant contain logarithms of T cut

N or constants, while nonsingular

terms vanish as T cut

N ! 0. In the spectrum, singular terms contain plus distributions or delta functions of TN ,

while nonsingular terms contain no singular distributions and at most integrable singularities.
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where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives
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The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,
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As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,
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Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
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To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives
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The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,
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As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,
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Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives
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The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,
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As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,
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Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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The same is therefore also the case at NNLO+LL. Hence, we need to construct expressions

for the corresponding fully di↵erential MC cross sections [see eqs. (2.13) and (2.14)]
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N , TN+1 > T cut
N+1) . (4.1)

As discussed in section 3.1, at NNLO+LL we require that N -jet observables are correct

to NNLON+LL, (N + 1)-jet observables to NLON+1+LL, and (N + 2)-jet observables to

LON+2+LL, provided that any observable built from these cross sections is su�ciently inclu-

sive over the unresolved regions of phase space. Since the FO calculation is supplemented with

the LL resummation of the jet resolution variables TN and TN+1, the perturbative accuracy

of the prediction in the IR-singular regime is improved relative to the pure FO calculation,

which breaks down in this region. The required perturbative accuracy at NNLO+LL in the

FO and resummation regions is summarized in table 1.

To construct the NNLO+LL MC cross sections, it will be convenient to proceed in two

steps. In section 4.1, we first consider the separation between the exclusive N -jet and inclu-

sive (N+1)-jet cross sections using TN and construct the corresponding exclusive d�mc
N (T cut

N )

and an inclusive d�mc
�N+1(TN > T cut

N ). In section 4.2, we then consider the further sepa-

ration of d�mc
�N+1(TN > T cut

N ) into the final exclusive d�mc
N+1(TN > T cut

N ; T cut
N+1) and inclu-

sive d�mc
�N+2(TN > T cut

N , TN+1 > T cut
N+1) using TN+1. To make the notation as transparent

as possible, we drop the emission labels m throughout this section. They can be inserted

straightforwardly into all formulae giving the di↵erent contributions to the cross sections.

4.1 The Exclusive N-jet and Inclusive (N + 1)-jet Cross Sections

As we have already seen at LO and NLO, it is convenient to divide the full FO exclusive

N -jet cross section, d�FO
N (T cut

N ), into a singular and a nonsingular contribution9,

d�FO
N

d�N
(T cut

N ) =
d�C

N

d�N
(T cut

N )
| {z }

FO singular

+
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At NNLO, d�FO
N (T cut

N ) is given in eq. (2.17). Its singular approximation is given by
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9To be precise, singular terms in the cumulant contain logarithms of T cut

N or constants, while nonsingular

terms vanish as T cut

N ! 0. In the spectrum, singular terms contain plus distributions or delta functions of TN ,

while nonsingular terms contain no singular distributions and at most integrable singularities.
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The singular piece contains all singular dependence on TNcut

where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives
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The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,
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As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,
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Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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  ways	
  to	
  make	
  the	
  expression	
  correct	
  
to	
  LL	
  accuracy

The same is therefore also the case at NNLO+LL. Hence, we need to construct expressions

for the corresponding fully di↵erential MC cross sections [see eqs. (2.13) and (2.14)]
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N+1) ,
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�N+2
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(TN > T cut

N , TN+1 > T cut
N+1) . (4.1)

As discussed in section 3.1, at NNLO+LL we require that N -jet observables are correct

to NNLON+LL, (N + 1)-jet observables to NLON+1+LL, and (N + 2)-jet observables to

LON+2+LL, provided that any observable built from these cross sections is su�ciently inclu-

sive over the unresolved regions of phase space. Since the FO calculation is supplemented with

the LL resummation of the jet resolution variables TN and TN+1, the perturbative accuracy

of the prediction in the IR-singular regime is improved relative to the pure FO calculation,

which breaks down in this region. The required perturbative accuracy at NNLO+LL in the

FO and resummation regions is summarized in table 1.

To construct the NNLO+LL MC cross sections, it will be convenient to proceed in two

steps. In section 4.1, we first consider the separation between the exclusive N -jet and inclu-

sive (N+1)-jet cross sections using TN and construct the corresponding exclusive d�mc
N (T cut

N )

and an inclusive d�mc
�N+1(TN > T cut

N ). In section 4.2, we then consider the further sepa-

ration of d�mc
�N+1(TN > T cut

N ) into the final exclusive d�mc
N+1(TN > T cut

N ; T cut
N+1) and inclu-

sive d�mc
�N+2(TN > T cut

N , TN+1 > T cut
N+1) using TN+1. To make the notation as transparent

as possible, we drop the emission labels m throughout this section. They can be inserted

straightforwardly into all formulae giving the di↵erent contributions to the cross sections.

4.1 The Exclusive N-jet and Inclusive (N + 1)-jet Cross Sections

As we have already seen at LO and NLO, it is convenient to divide the full FO exclusive

N -jet cross section, d�FO
N (T cut

N ), into a singular and a nonsingular contribution9,
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FO singular

+
d�B�C

N

d�N
(T cut

N )
| {z }

FO nonsingular

. (4.2)

At NNLO, d�FO
N (T cut

N ) is given in eq. (2.17). Its singular approximation is given by

d�C
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(T cut

N ) = (BN + VN +WN )(�N )

+
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d�N+1

d�N
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N ] , (4.3)

9To be precise, singular terms in the cumulant contain logarithms of T cut

N or constants, while nonsingular

terms vanish as T cut

N ! 0. In the spectrum, singular terms contain plus distributions or delta functions of TN ,

while nonsingular terms contain no singular distributions and at most integrable singularities.
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where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives
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+
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| {z }

FO nonsingular
matching

. (4.4)

The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,
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N )� d�C
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d�N
(T cut

N ) . (4.5)

As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,
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
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= �
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N ) +O(↵2
s) . (4.6)

Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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and CN+2 contributions in eq. (4.3). Therefore, d�C
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resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives
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The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,
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As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,
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Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
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N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives
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The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,
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As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,
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Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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The same is therefore also the case at NNLO+LL. Hence, we need to construct expressions

for the corresponding fully di↵erential MC cross sections [see eqs. (2.13) and (2.14)]

d�mc
N

d�N
(T cut

N ) ,
d�mc

N+1

d�N+1
(TN > T cut

N ; T cut
N+1) ,

d�mc
�N+2

d�N+2
(TN > T cut

N , TN+1 > T cut
N+1) . (4.1)

As discussed in section 3.1, at NNLO+LL we require that N -jet observables are correct

to NNLON+LL, (N + 1)-jet observables to NLON+1+LL, and (N + 2)-jet observables to

LON+2+LL, provided that any observable built from these cross sections is su�ciently inclu-

sive over the unresolved regions of phase space. Since the FO calculation is supplemented with

the LL resummation of the jet resolution variables TN and TN+1, the perturbative accuracy

of the prediction in the IR-singular regime is improved relative to the pure FO calculation,

which breaks down in this region. The required perturbative accuracy at NNLO+LL in the

FO and resummation regions is summarized in table 1.

To construct the NNLO+LL MC cross sections, it will be convenient to proceed in two

steps. In section 4.1, we first consider the separation between the exclusive N -jet and inclu-

sive (N+1)-jet cross sections using TN and construct the corresponding exclusive d�mc
N (T cut

N )

and an inclusive d�mc
�N+1(TN > T cut

N ). In section 4.2, we then consider the further sepa-

ration of d�mc
�N+1(TN > T cut

N ) into the final exclusive d�mc
N+1(TN > T cut

N ; T cut
N+1) and inclu-

sive d�mc
�N+2(TN > T cut

N , TN+1 > T cut
N+1) using TN+1. To make the notation as transparent

as possible, we drop the emission labels m throughout this section. They can be inserted

straightforwardly into all formulae giving the di↵erent contributions to the cross sections.

4.1 The Exclusive N-jet and Inclusive (N + 1)-jet Cross Sections

As we have already seen at LO and NLO, it is convenient to divide the full FO exclusive

N -jet cross section, d�FO
N (T cut

N ), into a singular and a nonsingular contribution9,

d�FO
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d�N
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N ) =
d�C
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N )
| {z }

FO singular

+
d�B�C

N

d�N
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N )
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FO nonsingular

. (4.2)

At NNLO, d�FO
N (T cut

N ) is given in eq. (2.17). Its singular approximation is given by

d�C
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d�N
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N ) = (BN + VN +WN )(�N )

+
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d�N+1

d�N
(CN+1 + V CN+1)(�N+1) ✓[TN (�N+1) < T cut

N ]

+

Z

d�N+2

d�N
CN+2(�N+2) ✓[TN (�N+2) < T cut

N ] , (4.3)

9To be precise, singular terms in the cumulant contain logarithms of T cut

N or constants, while nonsingular

terms vanish as T cut

N ! 0. In the spectrum, singular terms contain plus distributions or delta functions of TN ,

while nonsingular terms contain no singular distributions and at most integrable singularities.
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The singular piece contains all singular dependence on TNcut

Since d�C
�N is explicitly T cut

N independent, the resummed terms satisfy eq. (3.2) because [see

eq. (2.30)]

d
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BN (�N )
�N (�N , TN ) .

(4.15)

The nonsingular matching correction, d�B�C
N , is defined in eq. (4.5). Taking the di↵erence

of eqs. (2.17) and (4.3), we can immediately obtain its NNLO result
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The di↵erential equivalent d�B�C
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and one can easily see that eqs. (??) and (4.16) explicitly satisfy the consistency condition in

eq. (3.3).

Finally, the singular matching corrections, d�C�S , are defined as
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By definition they satisfy eqs. (3.2) and (3.3), because each of the terms on the right-hand

sides do so. To obtain their explicit expressions we use the NNLO expansion of the Sudakov

factor, which we write as
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Since d�C
�N is explicitly T cut

N independent, the resummed terms satisfy eq. (3.2) because [see

eq. (2.30)]
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Non-singular piece has at most power dependence on TNcut

where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives
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The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,

d�B�C
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(T cut

N ) =
d�FO

N

d�N
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N )� d�C
N

d�N
(T cut

N ) . (4.5)

As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,

d�C�S
N

d�N
(T cut

N ) =
d�C
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d�N
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N )�

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Z

d�N+1

�N
(CN+1 � SN+1)(�N+1) ✓(TN > T cut

N ) +O(↵2
s) . (4.6)

Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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The same is therefore also the case at NNLO+LL. Hence, we need to construct expressions

for the corresponding fully di↵erential MC cross sections [see eqs. (2.13) and (2.14)]

d�mc
N

d�N
(T cut

N ) ,
d�mc

N+1

d�N+1
(TN > T cut

N ; T cut
N+1) ,

d�mc
�N+2

d�N+2
(TN > T cut

N , TN+1 > T cut
N+1) . (4.1)

As discussed in section 3.1, at NNLO+LL we require that N -jet observables are correct

to NNLON+LL, (N + 1)-jet observables to NLON+1+LL, and (N + 2)-jet observables to

LON+2+LL, provided that any observable built from these cross sections is su�ciently inclu-

sive over the unresolved regions of phase space. Since the FO calculation is supplemented with

the LL resummation of the jet resolution variables TN and TN+1, the perturbative accuracy

of the prediction in the IR-singular regime is improved relative to the pure FO calculation,

which breaks down in this region. The required perturbative accuracy at NNLO+LL in the

FO and resummation regions is summarized in table 1.

To construct the NNLO+LL MC cross sections, it will be convenient to proceed in two

steps. In section 4.1, we first consider the separation between the exclusive N -jet and inclu-

sive (N+1)-jet cross sections using TN and construct the corresponding exclusive d�mc
N (T cut

N )

and an inclusive d�mc
�N+1(TN > T cut

N ). In section 4.2, we then consider the further sepa-

ration of d�mc
�N+1(TN > T cut

N ) into the final exclusive d�mc
N+1(TN > T cut

N ; T cut
N+1) and inclu-

sive d�mc
�N+2(TN > T cut

N , TN+1 > T cut
N+1) using TN+1. To make the notation as transparent

as possible, we drop the emission labels m throughout this section. They can be inserted

straightforwardly into all formulae giving the di↵erent contributions to the cross sections.

4.1 The Exclusive N-jet and Inclusive (N + 1)-jet Cross Sections

As we have already seen at LO and NLO, it is convenient to divide the full FO exclusive

N -jet cross section, d�FO
N (T cut

N ), into a singular and a nonsingular contribution9,

d�FO
N

d�N
(T cut
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d�N
(T cut

N )
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FO singular

+
d�B�C

N
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At NNLO, d�FO
N (T cut

N ) is given in eq. (2.17). Its singular approximation is given by

d�C
N

d�N
(T cut

N ) = (BN + VN +WN )(�N )

+

Z

d�N+1

d�N
(CN+1 + V CN+1)(�N+1) ✓[TN (�N+1) < T cut

N ]

+

Z

d�N+2

d�N
CN+2(�N+2) ✓[TN (�N+2) < T cut

N ] , (4.3)

9To be precise, singular terms in the cumulant contain logarithms of T cut

N or constants, while nonsingular

terms vanish as T cut

N ! 0. In the spectrum, singular terms contain plus distributions or delta functions of TN ,

while nonsingular terms contain no singular distributions and at most integrable singularities.
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where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives

Case 1:
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FO nonsingular
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. (4.4)

The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,

d�B�C
N

d�N
(T cut

N ) =
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N )� d�C
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As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,
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
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= �
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N ) +O(↵2
s) . (4.6)

Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as

– 27 –

where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives
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The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,
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As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,
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Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives

Case 1:
d�mc

N

d�N
(T cut

N ) =
d�C

�N

d�N
�N (�N ; T cut

N )
| {z }

resummed

+
d�C�S

N

d�N
(T cut

N )
| {z }

FO singular matching

+
d�B�C

N

d�N
(T cut

N )
| {z }

FO nonsingular
matching

. (4.4)

The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,
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As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,
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Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
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N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives
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The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,
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As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,
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Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
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N (T cut

N ) can in general contain logarithmic dependence as large as
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The same is therefore also the case at NNLO+LL. Hence, we need to construct expressions

for the corresponding fully di↵erential MC cross sections [see eqs. (2.13) and (2.14)]

d�mc
N

d�N
(T cut

N ) ,
d�mc

N+1

d�N+1
(TN > T cut

N ; T cut
N+1) ,

d�mc
�N+2

d�N+2
(TN > T cut

N , TN+1 > T cut
N+1) . (4.1)

As discussed in section 3.1, at NNLO+LL we require that N -jet observables are correct

to NNLON+LL, (N + 1)-jet observables to NLON+1+LL, and (N + 2)-jet observables to

LON+2+LL, provided that any observable built from these cross sections is su�ciently inclu-

sive over the unresolved regions of phase space. Since the FO calculation is supplemented with

the LL resummation of the jet resolution variables TN and TN+1, the perturbative accuracy

of the prediction in the IR-singular regime is improved relative to the pure FO calculation,

which breaks down in this region. The required perturbative accuracy at NNLO+LL in the

FO and resummation regions is summarized in table 1.

To construct the NNLO+LL MC cross sections, it will be convenient to proceed in two

steps. In section 4.1, we first consider the separation between the exclusive N -jet and inclu-

sive (N+1)-jet cross sections using TN and construct the corresponding exclusive d�mc
N (T cut

N )

and an inclusive d�mc
�N+1(TN > T cut

N ). In section 4.2, we then consider the further sepa-

ration of d�mc
�N+1(TN > T cut

N ) into the final exclusive d�mc
N+1(TN > T cut

N ; T cut
N+1) and inclu-

sive d�mc
�N+2(TN > T cut

N , TN+1 > T cut
N+1) using TN+1. To make the notation as transparent

as possible, we drop the emission labels m throughout this section. They can be inserted

straightforwardly into all formulae giving the di↵erent contributions to the cross sections.

4.1 The Exclusive N-jet and Inclusive (N + 1)-jet Cross Sections

As we have already seen at LO and NLO, it is convenient to divide the full FO exclusive

N -jet cross section, d�FO
N (T cut

N ), into a singular and a nonsingular contribution9,

d�FO
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d�N
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N ) =
d�C
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| {z }

FO singular

+
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FO nonsingular

. (4.2)

At NNLO, d�FO
N (T cut

N ) is given in eq. (2.17). Its singular approximation is given by

d�C
N

d�N
(T cut

N ) = (BN + VN +WN )(�N )

+

Z

d�N+1

d�N
(CN+1 + V CN+1)(�N+1) ✓[TN (�N+1) < T cut

N ]

+

Z

d�N+2

d�N
CN+2(�N+2) ✓[TN (�N+2) < T cut

N ] , (4.3)

9To be precise, singular terms in the cumulant contain logarithms of T cut

N or constants, while nonsingular

terms vanish as T cut

N ! 0. In the spectrum, singular terms contain plus distributions or delta functions of TN ,

while nonsingular terms contain no singular distributions and at most integrable singularities.
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where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives
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. (4.4)

The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,
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N ) . (4.5)

As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,

d�C�S
N

d�N
(T cut

N ) =
d�C

N

d�N
(T cut

N )�


d�C
�N

d�N
�N (�N ; T cut

N )

�

FO

= �
Z

d�N+1

�N
(CN+1 � SN+1)(�N+1) ✓(TN > T cut

N ) +O(↵2
s) . (4.6)

Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives

Case 1:
d�mc

N

d�N
(T cut

N ) =
d�C

�N

d�N
�N (�N ; T cut

N )
| {z }

resummed

+
d�C�S

N

d�N
(T cut

N )
| {z }

FO singular matching

+
d�B�C

N

d�N
(T cut

N )
| {z }

FO nonsingular
matching

. (4.4)

The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,

d�B�C
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d�N
(T cut

N ) =
d�FO

N

d�N
(T cut

N )� d�C
N

d�N
(T cut

N ) . (4.5)

As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,

d�C�S
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�

FO

= �
Z

d�N+1
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(CN+1 � SN+1)(�N+1) ✓(TN > T cut

N ) +O(↵2
s) . (4.6)

Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives

Case 1:
d�mc

N

d�N
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N ) =
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d�N
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resummed

+
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d�N
(T cut

N )
| {z }

FO singular matching

+
d�B�C

N

d�N
(T cut

N )
| {z }

FO nonsingular
matching

. (4.4)

The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,

d�B�C
N

d�N
(T cut

N ) =
d�FO

N

d�N
(T cut

N )� d�C
N

d�N
(T cut

N ) . (4.5)

As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,

d�C�S
N

d�N
(T cut

N ) =
d�C

N

d�N
(T cut

N )�


d�C
�N

d�N
�N (�N ; T cut

N )

�

FO

= �
Z

d�N+1

�N
(CN+1 � SN+1)(�N+1) ✓(TN > T cut

N ) +O(↵2
s) . (4.6)

Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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Now, resum singular dependence on TNcut to at least LL accuracy

↵sLcut at NLO and ↵2
sL

3
cut at NNLO, which contribute at Ocut(↵

1/2
s ) with the counting of

eq. (2.28).

A potential problem with implementing eq. (4.4) is the presence of explicit logarithms in

d�C�S
N (T cut

N ), which become large as T cut
N is reduced, and in particular d�C�S

N (T cut
N ) diverges

for T cut
N ! 0. While by construction this divergence cancels in physical observables, it could

give rise to events with large or even negative weights. To circumvent this and regulate the

logarithmic divergence, we can alternatively choose to multiply the singular matching terms

with the Sudakov factor and write

Case 2:
d�mc

N

d�N
(T cut

N ) =



d�C
�N

d�N
+

de�C�S
N

d�N
(T cut

N )

�

�N (�N ; T cut
N ) +

d�B�C
N

d�N
(T cut

N ) , (4.7)

where the FO singular matching corrections are now given by

de�C�S
N

d�N
(T cut

N ) =



d�C�S
N

d�N
(T cut

N )
1

�N (�N ; T cut
N )

�

FO

= �
Z

d�N+1

�N
(CN+1 � SN+1)(�N+1) ✓(TN > T cut

N ) +O(↵2
s) . (4.8)

Note that while multiplying with the Sudakov factor helps to suppress the FO T cut
N logarithms

in de�C�S
N (T cut

N ), this choice does not amount to an actual resummation of these logarithms.

A downside of this choice is that it introduces a more complicated T cut
N dependence at all

orders that must be canceled in inclusive N -jet observables. Since de�C�S
N (T cut

N ) can contain

logarithms ↵2
sL

3
cut, multiplying with the Sudakov factor introduces terms of order ↵n

sL
2n�1
cut .

The singular matching correction is always required if the resummation term does not

contain all logarithms of T cut
N to the desired fixed order. Even if SN+1 in eq. (4.6) contains the

full subleading singularities at NLO, as in Powheg where CN+1 = SN+1 so d�C�S
N (T cut

N ) = 0,

at NNLO d�C�S
N (T cut

N ) can still contain terms ⇠ ↵2
sL

2
cut ⇠ Ocut(↵s). Hence, to achieve

NNLON+LL accuracy it is essential to enforce the consistency conditions in eqs. (3.2) and

(3.3) for the d�C�S
N or de�C�S

N contributions. Otherwise these terms can easily generate a

residual T cut
N dependence in inclusive observables that destroys their perturbative accuracy.

To construct the inclusive (N + 1)-jet MC cross section, d�mc
�N+1(TN > T cut

N ), like d�mc
N

we split it into a resummed contribution and FO singular and nonsingular matching correc-

tions. Following the above discussion, these di↵erent contributions are constructed from their

corresponding counterparts in eqs. (4.4) and (4.7) by explicitly enforcing eqs. (3.2) and (3.3).

This gives

Case 1:
d�mc

�N+1

d�N+1
(TN > T cut

N ) =
d�C

�N

d�N

�

�

�

�

�N=�̂N

SN+1(�N+1)

BN (�̂N )
�N (�̂N ; TN ) ✓(TN > T cut

N )

+
d�C�S

�N+1

d�N+1
(TN > T cut

N ) +
d�B�C

�N+1

d�N+1
(TN > T cut

N ) , (4.9)

Case 2:
d�mc

�N+1

d�N+1
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N ) =

⇢

d�C
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d�N
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de�C�S
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d�N
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�
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N )
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The same is therefore also the case at NNLO+LL. Hence, we need to construct expressions

for the corresponding fully di↵erential MC cross sections [see eqs. (2.13) and (2.14)]

d�mc
N

d�N
(T cut

N ) ,
d�mc

N+1

d�N+1
(TN > T cut

N ; T cut
N+1) ,

d�mc
�N+2

d�N+2
(TN > T cut

N , TN+1 > T cut
N+1) . (4.1)

As discussed in section 3.1, at NNLO+LL we require that N -jet observables are correct

to NNLON+LL, (N + 1)-jet observables to NLON+1+LL, and (N + 2)-jet observables to

LON+2+LL, provided that any observable built from these cross sections is su�ciently inclu-

sive over the unresolved regions of phase space. Since the FO calculation is supplemented with

the LL resummation of the jet resolution variables TN and TN+1, the perturbative accuracy

of the prediction in the IR-singular regime is improved relative to the pure FO calculation,

which breaks down in this region. The required perturbative accuracy at NNLO+LL in the

FO and resummation regions is summarized in table 1.

To construct the NNLO+LL MC cross sections, it will be convenient to proceed in two

steps. In section 4.1, we first consider the separation between the exclusive N -jet and inclu-

sive (N+1)-jet cross sections using TN and construct the corresponding exclusive d�mc
N (T cut

N )

and an inclusive d�mc
�N+1(TN > T cut

N ). In section 4.2, we then consider the further sepa-

ration of d�mc
�N+1(TN > T cut

N ) into the final exclusive d�mc
N+1(TN > T cut

N ; T cut
N+1) and inclu-

sive d�mc
�N+2(TN > T cut

N , TN+1 > T cut
N+1) using TN+1. To make the notation as transparent

as possible, we drop the emission labels m throughout this section. They can be inserted

straightforwardly into all formulae giving the di↵erent contributions to the cross sections.

4.1 The Exclusive N-jet and Inclusive (N + 1)-jet Cross Sections

As we have already seen at LO and NLO, it is convenient to divide the full FO exclusive

N -jet cross section, d�FO
N (T cut

N ), into a singular and a nonsingular contribution9,

d�FO
N

d�N
(T cut

N ) =
d�C

N

d�N
(T cut

N )
| {z }

FO singular

+
d�B�C

N

d�N
(T cut

N )
| {z }

FO nonsingular

. (4.2)

At NNLO, d�FO
N (T cut

N ) is given in eq. (2.17). Its singular approximation is given by

d�C
N

d�N
(T cut

N ) = (BN + VN +WN )(�N )

+

Z

d�N+1

d�N
(CN+1 + V CN+1)(�N+1) ✓[TN (�N+1) < T cut

N ]

+

Z

d�N+2

d�N
CN+2(�N+2) ✓[TN (�N+2) < T cut

N ] , (4.3)

9To be precise, singular terms in the cumulant contain logarithms of T cut

N or constants, while nonsingular

terms vanish as T cut

N ! 0. In the spectrum, singular terms contain plus distributions or delta functions of TN ,

while nonsingular terms contain no singular distributions and at most integrable singularities.
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where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives

Case 1:
d�mc

N

d�N
(T cut

N ) =
d�C

�N

d�N
�N (�N ; T cut

N )
| {z }

resummed

+
d�C�S

N

d�N
(T cut

N )
| {z }

FO singular matching

+
d�B�C

N

d�N
(T cut

N )
| {z }

FO nonsingular
matching

. (4.4)

The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,

d�B�C
N

d�N
(T cut

N ) =
d�FO

N

d�N
(T cut

N )� d�C
N

d�N
(T cut

N ) . (4.5)

As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,

d�C�S
N

d�N
(T cut

N ) =
d�C

N

d�N
(T cut

N )�


d�C
�N

d�N
�N (�N ; T cut

N )

�

FO

= �
Z

d�N+1

�N
(CN+1 � SN+1)(�N+1) ✓(TN > T cut

N ) +O(↵2
s) . (4.6)

Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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Consider again the exclusive N-jet cross-section

There	
  are	
  many	
  possible	
  ways	
  to	
  make	
  the	
  expression	
  correct	
  
to	
  LL	
  accuracy

The same is therefore also the case at NNLO+LL. Hence, we need to construct expressions

for the corresponding fully di↵erential MC cross sections [see eqs. (2.13) and (2.14)]

d�mc
N

d�N
(T cut

N ) ,
d�mc

N+1

d�N+1
(TN > T cut

N ; T cut
N+1) ,

d�mc
�N+2

d�N+2
(TN > T cut

N , TN+1 > T cut
N+1) . (4.1)

As discussed in section 3.1, at NNLO+LL we require that N -jet observables are correct

to NNLON+LL, (N + 1)-jet observables to NLON+1+LL, and (N + 2)-jet observables to

LON+2+LL, provided that any observable built from these cross sections is su�ciently inclu-

sive over the unresolved regions of phase space. Since the FO calculation is supplemented with

the LL resummation of the jet resolution variables TN and TN+1, the perturbative accuracy

of the prediction in the IR-singular regime is improved relative to the pure FO calculation,

which breaks down in this region. The required perturbative accuracy at NNLO+LL in the

FO and resummation regions is summarized in table 1.

To construct the NNLO+LL MC cross sections, it will be convenient to proceed in two

steps. In section 4.1, we first consider the separation between the exclusive N -jet and inclu-

sive (N+1)-jet cross sections using TN and construct the corresponding exclusive d�mc
N (T cut

N )

and an inclusive d�mc
�N+1(TN > T cut

N ). In section 4.2, we then consider the further sepa-

ration of d�mc
�N+1(TN > T cut

N ) into the final exclusive d�mc
N+1(TN > T cut

N ; T cut
N+1) and inclu-

sive d�mc
�N+2(TN > T cut

N , TN+1 > T cut
N+1) using TN+1. To make the notation as transparent

as possible, we drop the emission labels m throughout this section. They can be inserted

straightforwardly into all formulae giving the di↵erent contributions to the cross sections.

4.1 The Exclusive N-jet and Inclusive (N + 1)-jet Cross Sections

As we have already seen at LO and NLO, it is convenient to divide the full FO exclusive

N -jet cross section, d�FO
N (T cut

N ), into a singular and a nonsingular contribution9,

d�FO
N

d�N
(T cut

N ) =
d�C

N

d�N
(T cut

N )
| {z }

FO singular

+
d�B�C

N

d�N
(T cut

N )
| {z }

FO nonsingular

. (4.2)

At NNLO, d�FO
N (T cut

N ) is given in eq. (2.17). Its singular approximation is given by

d�C
N

d�N
(T cut

N ) = (BN + VN +WN )(�N )

+

Z

d�N+1

d�N
(CN+1 + V CN+1)(�N+1) ✓[TN (�N+1) < T cut

N ]

+

Z

d�N+2

d�N
CN+2(�N+2) ✓[TN (�N+2) < T cut

N ] , (4.3)

9To be precise, singular terms in the cumulant contain logarithms of T cut

N or constants, while nonsingular

terms vanish as T cut

N ! 0. In the spectrum, singular terms contain plus distributions or delta functions of TN ,

while nonsingular terms contain no singular distributions and at most integrable singularities.
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where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives

Case 1:
d�mc

N

d�N
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d�N
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+
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FO singular matching

+
d�B�C

N

d�N
(T cut

N )
| {z }

FO nonsingular
matching

. (4.4)

The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,

d�B�C
N

d�N
(T cut

N ) =
d�FO

N

d�N
(T cut

N )� d�C
N

d�N
(T cut

N ) . (4.5)

As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,

d�C�S
N

d�N
(T cut

N ) =
d�C

N

d�N
(T cut

N )�
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d�N
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�
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= �
Z

d�N+1
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(CN+1 � SN+1)(�N+1) ✓(TN > T cut

N ) +O(↵2
s) . (4.6)

Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives

Case 1:
d�mc

N

d�N
(T cut

N ) =
d�C

�N

d�N
�N (�N ; T cut

N )
| {z }

resummed

+
d�C�S

N

d�N
(T cut

N )
| {z }

FO singular matching

+
d�B�C

N

d�N
(T cut

N )
| {z }

FO nonsingular
matching

. (4.4)

The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,

d�B�C
N

d�N
(T cut

N ) =
d�FO

N

d�N
(T cut

N )� d�C
N

d�N
(T cut

N ) . (4.5)

As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,

d�C�S
N

d�N
(T cut

N ) =
d�C

N

d�N
(T cut

N )�


d�C
�N

d�N
�N (�N ; T cut

N )

�

FO

= �
Z

d�N+1

�N
(CN+1 � SN+1)(�N+1) ✓(TN > T cut

N ) +O(↵2
s) . (4.6)

Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives

Case 1:
d�mc

N

d�N
(T cut

N ) =
d�C

�N

d�N
�N (�N ; T cut

N )
| {z }

resummed

+
d�C�S

N

d�N
(T cut

N )
| {z }

FO singular matching

+
d�B�C

N

d�N
(T cut

N )
| {z }

FO nonsingular
matching

. (4.4)

The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,

d�B�C
N

d�N
(T cut

N ) =
d�FO

N

d�N
(T cut

N )� d�C
N

d�N
(T cut

N ) . (4.5)

As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,

d�C�S
N

d�N
(T cut

N ) =
d�C

N

d�N
(T cut

N )�


d�C
�N

d�N
�N (�N ; T cut

N )

�

FO

= �
Z

d�N+1

�N
(CN+1 � SN+1)(�N+1) ✓(TN > T cut

N ) +O(↵2
s) . (4.6)

Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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Now, resum singular dependence on TNcut to at least LL accuracy

↵sLcut at NLO and ↵2
sL

3
cut at NNLO, which contribute at Ocut(↵

1/2
s ) with the counting of

eq. (2.28).

A potential problem with implementing eq. (4.4) is the presence of explicit logarithms in

d�C�S
N (T cut

N ), which become large as T cut
N is reduced, and in particular d�C�S

N (T cut
N ) diverges

for T cut
N ! 0. While by construction this divergence cancels in physical observables, it could

give rise to events with large or even negative weights. To circumvent this and regulate the

logarithmic divergence, we can alternatively choose to multiply the singular matching terms

with the Sudakov factor and write

Case 2:
d�mc

N

d�N
(T cut

N ) =



d�C
�N

d�N
+

de�C�S
N

d�N
(T cut

N )

�

�N (�N ; T cut
N ) +

d�B�C
N

d�N
(T cut

N ) , (4.7)

where the FO singular matching corrections are now given by

de�C�S
N

d�N
(T cut

N ) =



d�C�S
N

d�N
(T cut

N )
1

�N (�N ; T cut
N )

�

FO

= �
Z

d�N+1

�N
(CN+1 � SN+1)(�N+1) ✓(TN > T cut

N ) +O(↵2
s) . (4.8)

Note that while multiplying with the Sudakov factor helps to suppress the FO T cut
N logarithms

in de�C�S
N (T cut

N ), this choice does not amount to an actual resummation of these logarithms.

A downside of this choice is that it introduces a more complicated T cut
N dependence at all

orders that must be canceled in inclusive N -jet observables. Since de�C�S
N (T cut

N ) can contain

logarithms ↵2
sL

3
cut, multiplying with the Sudakov factor introduces terms of order ↵n

sL
2n�1
cut .

The singular matching correction is always required if the resummation term does not

contain all logarithms of T cut
N to the desired fixed order. Even if SN+1 in eq. (4.6) contains the

full subleading singularities at NLO, as in Powheg where CN+1 = SN+1 so d�C�S
N (T cut

N ) = 0,

at NNLO d�C�S
N (T cut

N ) can still contain terms ⇠ ↵2
sL

2
cut ⇠ Ocut(↵s). Hence, to achieve

NNLON+LL accuracy it is essential to enforce the consistency conditions in eqs. (3.2) and

(3.3) for the d�C�S
N or de�C�S

N contributions. Otherwise these terms can easily generate a

residual T cut
N dependence in inclusive observables that destroys their perturbative accuracy.

To construct the inclusive (N + 1)-jet MC cross section, d�mc
�N+1(TN > T cut

N ), like d�mc
N

we split it into a resummed contribution and FO singular and nonsingular matching correc-

tions. Following the above discussion, these di↵erent contributions are constructed from their

corresponding counterparts in eqs. (4.4) and (4.7) by explicitly enforcing eqs. (3.2) and (3.3).

This gives

Case 1:
d�mc

�N+1

d�N+1
(TN > T cut

N ) =
d�C

�N

d�N

�

�

�

�

�N=�̂N

SN+1(�N+1)

BN (�̂N )
�N (�̂N ; TN ) ✓(TN > T cut

N )

+
d�C�S

�N+1

d�N+1
(TN > T cut

N ) +
d�B�C

�N+1

d�N+1
(TN > T cut

N ) , (4.9)

Case 2:
d�mc

�N+1

d�N+1
(TN > T cut

N ) =

⇢

d�C
�N

d�N
+

de�C�S
N

d�N
(TN )

�

�N=�̂N

SN+1(�N+1)

BN (�̂N )
✓(TN > T cut

N )
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The same is therefore also the case at NNLO+LL. Hence, we need to construct expressions

for the corresponding fully di↵erential MC cross sections [see eqs. (2.13) and (2.14)]

d�mc
N

d�N
(T cut

N ) ,
d�mc

N+1

d�N+1
(TN > T cut

N ; T cut
N+1) ,

d�mc
�N+2

d�N+2
(TN > T cut

N , TN+1 > T cut
N+1) . (4.1)

As discussed in section 3.1, at NNLO+LL we require that N -jet observables are correct

to NNLON+LL, (N + 1)-jet observables to NLON+1+LL, and (N + 2)-jet observables to

LON+2+LL, provided that any observable built from these cross sections is su�ciently inclu-

sive over the unresolved regions of phase space. Since the FO calculation is supplemented with

the LL resummation of the jet resolution variables TN and TN+1, the perturbative accuracy

of the prediction in the IR-singular regime is improved relative to the pure FO calculation,

which breaks down in this region. The required perturbative accuracy at NNLO+LL in the

FO and resummation regions is summarized in table 1.

To construct the NNLO+LL MC cross sections, it will be convenient to proceed in two

steps. In section 4.1, we first consider the separation between the exclusive N -jet and inclu-

sive (N+1)-jet cross sections using TN and construct the corresponding exclusive d�mc
N (T cut

N )

and an inclusive d�mc
�N+1(TN > T cut

N ). In section 4.2, we then consider the further sepa-

ration of d�mc
�N+1(TN > T cut

N ) into the final exclusive d�mc
N+1(TN > T cut

N ; T cut
N+1) and inclu-

sive d�mc
�N+2(TN > T cut

N , TN+1 > T cut
N+1) using TN+1. To make the notation as transparent

as possible, we drop the emission labels m throughout this section. They can be inserted

straightforwardly into all formulae giving the di↵erent contributions to the cross sections.

4.1 The Exclusive N-jet and Inclusive (N + 1)-jet Cross Sections

As we have already seen at LO and NLO, it is convenient to divide the full FO exclusive

N -jet cross section, d�FO
N (T cut

N ), into a singular and a nonsingular contribution9,

d�FO
N

d�N
(T cut

N ) =
d�C

N

d�N
(T cut

N )
| {z }

FO singular

+
d�B�C

N

d�N
(T cut

N )
| {z }

FO nonsingular

. (4.2)

At NNLO, d�FO
N (T cut

N ) is given in eq. (2.17). Its singular approximation is given by

d�C
N

d�N
(T cut

N ) = (BN + VN +WN )(�N )

+

Z

d�N+1

d�N
(CN+1 + V CN+1)(�N+1) ✓[TN (�N+1) < T cut

N ]

+

Z

d�N+2

d�N
CN+2(�N+2) ✓[TN (�N+2) < T cut

N ] , (4.3)

9To be precise, singular terms in the cumulant contain logarithms of T cut

N or constants, while nonsingular

terms vanish as T cut

N ! 0. In the spectrum, singular terms contain plus distributions or delta functions of TN ,

while nonsingular terms contain no singular distributions and at most integrable singularities.
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choice one has between the two cases, di↵erent implementations can be obtained by making

di↵erent choices for the CN+1, V CN+1, and CN+2 contributions that are used to approximate

the singular behavior of the full theory, as well as for the splitting function SN+1 that is used

to define the Sudakov factor. This amounts to shifting nonsingular corrections or subleading

logarithms between the resummed contribution and the FO matching corrections.

4.1.1 Case 1

Here, we use d�mc
N (T cut

N ) as given in eq. (4.4), with its corresponding inclusive d�mc
�N+1(TN >

T cut
N ) given in eq. (4.9), which we repeat here for completeness:

d�mc
N

d�N
(T cut

N ) =
d�C

�N

d�N
�N (�N ; T cut

N ) +
d�C�S

N

d�N
(T cut

N ) +
d�B�C

N

d�N
(T cut

N ) ,

d�mc
�N+1

d�N+1
(TN > T cut

N ) =
d�C

�N

d�N

�

�

�

�

�N=�̂N

SN+1(�N+1)

BN (�̂N )
�N (�̂N ; TN ) ✓(TN > T cut

N )

+
d�C�S

�N+1

d�N+1
(TN > T cut

N ) +
d�B�C

�N+1

d�N+1
(TN > T cut

N ) .

The explicit expressions for all ingredients are given in the following. By construction these

are correct to NNLON and NLON+1 and include the correct LL resummation for T cut
N and TN ,

respectively. Also, each of the three terms in the cumulant and spectrum separately satisfy

the exact consistency relations in eqs. (3.2) and (3.3) without any residual T cut
N dependence.

The singular inclusive cross section, d�C
�N , appearing in the resummed terms is obtained

by removing the constraints on TN in eq. (4.3), which gives

d�C
�N

d�N
= (BN + VN +WN )(�N ) +

Z

d�N+1

d�N
(CN+1 + V CN+1)(�N+1)

+

Z

d�N+2

d�N
CN+2(�N+2) . (4.14)

Since d�C
�N is explicitly T cut

N independent, the resummed terms satisfy eq. (3.2) because [see

eq. (2.30)]

d

dT cut
N

h

�N (�N , T cut
N )

i

T cut

N =TN
=

Z

d�N+1

d�N
�[TN � TN (�N+1)]

SN+1(�N+1)

BN (�N )
�N (�N , TN ) .

(4.15)

The nonsingular matching correction, d�B�C
N , is defined in eq. (4.5). Taking the di↵erence

of eqs. (2.17) and (4.3), we can immediately obtain its NNLO result

d�B�C
N

d�N
(T cut

N ) ⌘ d�NNLO
N

d�N
(T cut

N )� d�C
N

d�N
(T cut

N )

=

Z

d�N+1

d�N
(BN+1 � CN+1 + VN+1 � V CN+1)(�N+1) ✓[TN (�N+1) < T cut

N ]

+

Z

d�N+2

d�N
(BN+2 � CN+2)(�N+2) ✓[TN (�N+2) < T cut

N ] . (4.16)
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Singular approximation to inclusive cross section

where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives

Case 1:
d�mc

N

d�N
(T cut

N ) =
d�C

�N

d�N
�N (�N ; T cut

N )
| {z }

resummed

+
d�C�S

N

d�N
(T cut

N )
| {z }

FO singular matching

+
d�B�C

N

d�N
(T cut

N )
| {z }

FO nonsingular
matching

. (4.4)

The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,

d�B�C
N

d�N
(T cut

N ) =
d�FO

N

d�N
(T cut

N )� d�C
N

d�N
(T cut

N ) . (4.5)

As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,

d�C�S
N

d�N
(T cut

N ) =
d�C

N

d�N
(T cut

N )�


d�C
�N

d�N
�N (�N ; T cut

N )

�

FO

= �
Z

d�N+1

�N
(CN+1 � SN+1)(�N+1) ✓(TN > T cut

N ) +O(↵2
s) . (4.6)

Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as

– 27 –



17

Consider again the exclusive N-jet cross-section

There	
  are	
  many	
  possible	
  ways	
  to	
  make	
  the	
  expression	
  correct	
  
to	
  LL	
  accuracy

The same is therefore also the case at NNLO+LL. Hence, we need to construct expressions

for the corresponding fully di↵erential MC cross sections [see eqs. (2.13) and (2.14)]

d�mc
N

d�N
(T cut

N ) ,
d�mc

N+1

d�N+1
(TN > T cut

N ; T cut
N+1) ,

d�mc
�N+2

d�N+2
(TN > T cut

N , TN+1 > T cut
N+1) . (4.1)

As discussed in section 3.1, at NNLO+LL we require that N -jet observables are correct

to NNLON+LL, (N + 1)-jet observables to NLON+1+LL, and (N + 2)-jet observables to

LON+2+LL, provided that any observable built from these cross sections is su�ciently inclu-

sive over the unresolved regions of phase space. Since the FO calculation is supplemented with

the LL resummation of the jet resolution variables TN and TN+1, the perturbative accuracy

of the prediction in the IR-singular regime is improved relative to the pure FO calculation,

which breaks down in this region. The required perturbative accuracy at NNLO+LL in the

FO and resummation regions is summarized in table 1.

To construct the NNLO+LL MC cross sections, it will be convenient to proceed in two

steps. In section 4.1, we first consider the separation between the exclusive N -jet and inclu-

sive (N+1)-jet cross sections using TN and construct the corresponding exclusive d�mc
N (T cut

N )

and an inclusive d�mc
�N+1(TN > T cut

N ). In section 4.2, we then consider the further sepa-

ration of d�mc
�N+1(TN > T cut

N ) into the final exclusive d�mc
N+1(TN > T cut

N ; T cut
N+1) and inclu-

sive d�mc
�N+2(TN > T cut

N , TN+1 > T cut
N+1) using TN+1. To make the notation as transparent

as possible, we drop the emission labels m throughout this section. They can be inserted

straightforwardly into all formulae giving the di↵erent contributions to the cross sections.

4.1 The Exclusive N-jet and Inclusive (N + 1)-jet Cross Sections

As we have already seen at LO and NLO, it is convenient to divide the full FO exclusive

N -jet cross section, d�FO
N (T cut

N ), into a singular and a nonsingular contribution9,

d�FO
N

d�N
(T cut

N ) =
d�C

N

d�N
(T cut

N )
| {z }

FO singular

+
d�B�C

N

d�N
(T cut

N )
| {z }

FO nonsingular

. (4.2)

At NNLO, d�FO
N (T cut

N ) is given in eq. (2.17). Its singular approximation is given by

d�C
N

d�N
(T cut

N ) = (BN + VN +WN )(�N )

+

Z

d�N+1

d�N
(CN+1 + V CN+1)(�N+1) ✓[TN (�N+1) < T cut

N ]

+

Z

d�N+2

d�N
CN+2(�N+2) ✓[TN (�N+2) < T cut

N ] , (4.3)

9To be precise, singular terms in the cumulant contain logarithms of T cut

N or constants, while nonsingular

terms vanish as T cut

N ! 0. In the spectrum, singular terms contain plus distributions or delta functions of TN ,

while nonsingular terms contain no singular distributions and at most integrable singularities.
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where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives

Case 1:
d�mc

N

d�N
(T cut

N ) =
d�C

�N

d�N
�N (�N ; T cut

N )
| {z }

resummed

+
d�C�S

N

d�N
(T cut

N )
| {z }

FO singular matching

+
d�B�C

N

d�N
(T cut

N )
| {z }

FO nonsingular
matching

. (4.4)

The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,

d�B�C
N

d�N
(T cut

N ) =
d�FO

N

d�N
(T cut

N )� d�C
N

d�N
(T cut

N ) . (4.5)

As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,

d�C�S
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d�N
(T cut

N ) =
d�C

N

d�N
(T cut

N )�


d�C
�N

d�N
�N (�N ; T cut
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�

FO

= �
Z

d�N+1

�N
(CN+1 � SN+1)(�N+1) ✓(TN > T cut

N ) +O(↵2
s) . (4.6)

Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives

Case 1:
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. (4.4)

The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,

d�B�C
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N ) =
d�FO
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d�N
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N )� d�C
N

d�N
(T cut

N ) . (4.5)

As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,

d�C�S
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
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�

FO

= �
Z

d�N+1

�N
(CN+1 � SN+1)(�N+1) ✓(TN > T cut

N ) +O(↵2
s) . (4.6)

Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives
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matching
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The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,

d�B�C
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d�N
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N ) =
d�FO

N

d�N
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N )� d�C
N

d�N
(T cut

N ) . (4.5)

As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,

d�C�S
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N )�
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N )

�

FO
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Z

d�N+1

�N
(CN+1 � SN+1)(�N+1) ✓(TN > T cut

N ) +O(↵2
s) . (4.6)

Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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Now, resum singular dependence on TNcut to at least LL accuracy

↵sLcut at NLO and ↵2
sL

3
cut at NNLO, which contribute at Ocut(↵

1/2
s ) with the counting of

eq. (2.28).

A potential problem with implementing eq. (4.4) is the presence of explicit logarithms in

d�C�S
N (T cut

N ), which become large as T cut
N is reduced, and in particular d�C�S

N (T cut
N ) diverges

for T cut
N ! 0. While by construction this divergence cancels in physical observables, it could

give rise to events with large or even negative weights. To circumvent this and regulate the

logarithmic divergence, we can alternatively choose to multiply the singular matching terms

with the Sudakov factor and write

Case 2:
d�mc

N

d�N
(T cut

N ) =



d�C
�N

d�N
+

de�C�S
N

d�N
(T cut

N )

�

�N (�N ; T cut
N ) +

d�B�C
N

d�N
(T cut

N ) , (4.7)

where the FO singular matching corrections are now given by

de�C�S
N

d�N
(T cut

N ) =



d�C�S
N

d�N
(T cut

N )
1

�N (�N ; T cut
N )

�

FO

= �
Z

d�N+1

�N
(CN+1 � SN+1)(�N+1) ✓(TN > T cut

N ) +O(↵2
s) . (4.8)

Note that while multiplying with the Sudakov factor helps to suppress the FO T cut
N logarithms

in de�C�S
N (T cut

N ), this choice does not amount to an actual resummation of these logarithms.

A downside of this choice is that it introduces a more complicated T cut
N dependence at all

orders that must be canceled in inclusive N -jet observables. Since de�C�S
N (T cut

N ) can contain

logarithms ↵2
sL

3
cut, multiplying with the Sudakov factor introduces terms of order ↵n

sL
2n�1
cut .

The singular matching correction is always required if the resummation term does not

contain all logarithms of T cut
N to the desired fixed order. Even if SN+1 in eq. (4.6) contains the

full subleading singularities at NLO, as in Powheg where CN+1 = SN+1 so d�C�S
N (T cut

N ) = 0,

at NNLO d�C�S
N (T cut

N ) can still contain terms ⇠ ↵2
sL

2
cut ⇠ Ocut(↵s). Hence, to achieve

NNLON+LL accuracy it is essential to enforce the consistency conditions in eqs. (3.2) and

(3.3) for the d�C�S
N or de�C�S

N contributions. Otherwise these terms can easily generate a

residual T cut
N dependence in inclusive observables that destroys their perturbative accuracy.

To construct the inclusive (N + 1)-jet MC cross section, d�mc
�N+1(TN > T cut

N ), like d�mc
N

we split it into a resummed contribution and FO singular and nonsingular matching correc-

tions. Following the above discussion, these di↵erent contributions are constructed from their

corresponding counterparts in eqs. (4.4) and (4.7) by explicitly enforcing eqs. (3.2) and (3.3).

This gives

Case 1:
d�mc

�N+1

d�N+1
(TN > T cut

N ) =
d�C

�N

d�N

�

�

�

�

�N=�̂N

SN+1(�N+1)

BN (�̂N )
�N (�̂N ; TN ) ✓(TN > T cut

N )

+
d�C�S

�N+1

d�N+1
(TN > T cut

N ) +
d�B�C

�N+1

d�N+1
(TN > T cut

N ) , (4.9)

Case 2:
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N

d�N
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The same is therefore also the case at NNLO+LL. Hence, we need to construct expressions

for the corresponding fully di↵erential MC cross sections [see eqs. (2.13) and (2.14)]

d�mc
N

d�N
(T cut

N ) ,
d�mc

N+1

d�N+1
(TN > T cut

N ; T cut
N+1) ,

d�mc
�N+2

d�N+2
(TN > T cut

N , TN+1 > T cut
N+1) . (4.1)

As discussed in section 3.1, at NNLO+LL we require that N -jet observables are correct

to NNLON+LL, (N + 1)-jet observables to NLON+1+LL, and (N + 2)-jet observables to

LON+2+LL, provided that any observable built from these cross sections is su�ciently inclu-

sive over the unresolved regions of phase space. Since the FO calculation is supplemented with

the LL resummation of the jet resolution variables TN and TN+1, the perturbative accuracy

of the prediction in the IR-singular regime is improved relative to the pure FO calculation,

which breaks down in this region. The required perturbative accuracy at NNLO+LL in the

FO and resummation regions is summarized in table 1.

To construct the NNLO+LL MC cross sections, it will be convenient to proceed in two

steps. In section 4.1, we first consider the separation between the exclusive N -jet and inclu-

sive (N+1)-jet cross sections using TN and construct the corresponding exclusive d�mc
N (T cut

N )

and an inclusive d�mc
�N+1(TN > T cut

N ). In section 4.2, we then consider the further sepa-

ration of d�mc
�N+1(TN > T cut

N ) into the final exclusive d�mc
N+1(TN > T cut

N ; T cut
N+1) and inclu-

sive d�mc
�N+2(TN > T cut

N , TN+1 > T cut
N+1) using TN+1. To make the notation as transparent

as possible, we drop the emission labels m throughout this section. They can be inserted

straightforwardly into all formulae giving the di↵erent contributions to the cross sections.

4.1 The Exclusive N-jet and Inclusive (N + 1)-jet Cross Sections

As we have already seen at LO and NLO, it is convenient to divide the full FO exclusive

N -jet cross section, d�FO
N (T cut

N ), into a singular and a nonsingular contribution9,

d�FO
N

d�N
(T cut

N ) =
d�C

N

d�N
(T cut

N )
| {z }

FO singular

+
d�B�C

N

d�N
(T cut

N )
| {z }

FO nonsingular

. (4.2)

At NNLO, d�FO
N (T cut

N ) is given in eq. (2.17). Its singular approximation is given by

d�C
N

d�N
(T cut

N ) = (BN + VN +WN )(�N )

+

Z

d�N+1

d�N
(CN+1 + V CN+1)(�N+1) ✓[TN (�N+1) < T cut

N ]

+

Z

d�N+2

d�N
CN+2(�N+2) ✓[TN (�N+2) < T cut

N ] , (4.3)

9To be precise, singular terms in the cumulant contain logarithms of T cut

N or constants, while nonsingular

terms vanish as T cut

N ! 0. In the spectrum, singular terms contain plus distributions or delta functions of TN ,

while nonsingular terms contain no singular distributions and at most integrable singularities.
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Sudakov form factor

is essentially the inclusive NLON cross section, but using the real emission given by SN+1

instead of BN+1. This means that SN+1 must contain the full IR singularities of BN+1 in

the limit TN ! 0, such that upon integration the virtual IR divergences of VN are canceled

in eq. (3.9).

We can easily check that eq. (3.7) is correct to NLO and LL, i.e., that it satisfies eq. (3.1).

Dropping the NLO corrections, which amounts to taking d�S
�N ! BN and dropping the

d�B�S
N in d�mc

N , we reproduce the LON,N+1+LL result in eq. (3.6). Using the fixed O(↵s)

expansion of the Sudakov,

�N (�N ; T cut
N ) = 1� 1

BN (�N )

X

m

⇢

Z

d�N+1

d�N
SN+1(�N+1) ✓(TN > T cut

N )

�

m

+O(↵2
s) , (3.10)

�N (�N ; T cut
N ) = exp

(

�
X

m



Z

d�N+1

d�N

SN+1(�N+1)

BN (�N )
✓(TN > T cut

N )

�

m

)

(3.11)

we see that expanding eq. (3.7) to NLO exactly reproduces eq. (2.10) at NLON and

LON+1, where the TN in the NLO calculation is now the samem-dependent resolution variable

that is used in the LL calculation.

As written in eq. (3.7), the MC cross sections exactly satisfy eqs. (3.2) and (3.3). In fact,

they do so separately for the resummed contributions proportional to d�S
�N�N and the FO

matching corrections d�B�S
N and d�B�S

�N+1. The di↵erence in the MC@NLO and Powheg

implementations lies in the (e↵ective) choice of SN+1, which we discuss briefly next.

In MC@NLO,

Sm
N+1(�N+1) = G(T m

N ) PSmN+1(�N+1) + [1�G(T m
N )]Cm

N+1(�N+1) ,

with lim
TN!0

G(TN ) = 0 , G(TN > T cut
N ) = 1 , (3.12)

where PSmN+1 denotes the parton shower approximation to BN+1 for channel m as determined

by the splitting factors used in an actual parton shower algorithm like Herwig or Pythia,

Cm
N+1 could be used as an NLO subtraction for Bm

N+1, and the purpose ofG(TN ) is to smoothly

join the two. [In principle, G(TN ) ⌘ Gm
N+1(�N+1) can depend on m and the full �N+1.]

Note that the value of SN+1 for TN < T cut
N was not needed in the LL and LO+LL

discussions, but is needed here and the expressions we use are specific to the NLO+LL

construction. In our formulation of eq. (3.7), the MC@NLO method corresponds to taking

G(TN > T cut
N ) = 1, since an actual parton shower is used to generate the Sudakov factor and

T cut
N is identical to the parton shower cuto↵. The condition limTN!0G(TN ) = 0 is necessary

to ensure that all IR divergences cancel in the limit TN ! 0, because PSN+1 does not provide

a valid NLO subtraction.

Even though there is no explicit T cut
N dependence in eq. (3.9), the fact that PSN+1 does

not reproduce the full IR singularities of BN+1 causes an implicit logarithmic sensitivity to
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where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives

Case 1:
d�mc

N

d�N
(T cut

N ) =
d�C
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d�N
�N (�N ; T cut

N )
| {z }

resummed

+
d�C�S

N

d�N
(T cut

N )
| {z }

FO singular matching

+
d�B�C

N

d�N
(T cut

N )
| {z }

FO nonsingular
matching

. (4.4)

The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,

d�B�C
N

d�N
(T cut

N ) =
d�FO

N

d�N
(T cut

N )� d�C
N

d�N
(T cut

N ) . (4.5)

As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,

d�C�S
N

d�N
(T cut

N ) =
d�C

N

d�N
(T cut

N )�


d�C
�N

d�N
�N (�N ; T cut

N )

�

FO

= �
Z

d�N+1

�N
(CN+1 � SN+1)(�N+1) ✓(TN > T cut

N ) +O(↵2
s) . (4.6)

Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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Consider again the exclusive N-jet cross-section

There	
  are	
  many	
  possible	
  ways	
  to	
  make	
  the	
  expression	
  correct	
  
to	
  LL	
  accuracy

The same is therefore also the case at NNLO+LL. Hence, we need to construct expressions

for the corresponding fully di↵erential MC cross sections [see eqs. (2.13) and (2.14)]

d�mc
N

d�N
(T cut

N ) ,
d�mc

N+1

d�N+1
(TN > T cut

N ; T cut
N+1) ,

d�mc
�N+2

d�N+2
(TN > T cut

N , TN+1 > T cut
N+1) . (4.1)

As discussed in section 3.1, at NNLO+LL we require that N -jet observables are correct

to NNLON+LL, (N + 1)-jet observables to NLON+1+LL, and (N + 2)-jet observables to

LON+2+LL, provided that any observable built from these cross sections is su�ciently inclu-

sive over the unresolved regions of phase space. Since the FO calculation is supplemented with

the LL resummation of the jet resolution variables TN and TN+1, the perturbative accuracy

of the prediction in the IR-singular regime is improved relative to the pure FO calculation,

which breaks down in this region. The required perturbative accuracy at NNLO+LL in the

FO and resummation regions is summarized in table 1.

To construct the NNLO+LL MC cross sections, it will be convenient to proceed in two

steps. In section 4.1, we first consider the separation between the exclusive N -jet and inclu-

sive (N+1)-jet cross sections using TN and construct the corresponding exclusive d�mc
N (T cut

N )

and an inclusive d�mc
�N+1(TN > T cut

N ). In section 4.2, we then consider the further sepa-

ration of d�mc
�N+1(TN > T cut

N ) into the final exclusive d�mc
N+1(TN > T cut

N ; T cut
N+1) and inclu-

sive d�mc
�N+2(TN > T cut

N , TN+1 > T cut
N+1) using TN+1. To make the notation as transparent

as possible, we drop the emission labels m throughout this section. They can be inserted

straightforwardly into all formulae giving the di↵erent contributions to the cross sections.

4.1 The Exclusive N-jet and Inclusive (N + 1)-jet Cross Sections

As we have already seen at LO and NLO, it is convenient to divide the full FO exclusive

N -jet cross section, d�FO
N (T cut

N ), into a singular and a nonsingular contribution9,

d�FO
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N )
| {z }

FO singular

+
d�B�C

N
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(T cut
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| {z }

FO nonsingular

. (4.2)

At NNLO, d�FO
N (T cut

N ) is given in eq. (2.17). Its singular approximation is given by

d�C
N

d�N
(T cut

N ) = (BN + VN +WN )(�N )

+

Z

d�N+1

d�N
(CN+1 + V CN+1)(�N+1) ✓[TN (�N+1) < T cut

N ]

+

Z

d�N+2

d�N
CN+2(�N+2) ✓[TN (�N+2) < T cut

N ] , (4.3)

9To be precise, singular terms in the cumulant contain logarithms of T cut

N or constants, while nonsingular

terms vanish as T cut

N ! 0. In the spectrum, singular terms contain plus distributions or delta functions of TN ,

while nonsingular terms contain no singular distributions and at most integrable singularities.
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where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives

Case 1:
d�mc
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(T cut
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d�C

�N
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FO singular matching

+
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(T cut

N )
| {z }

FO nonsingular
matching

. (4.4)

The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,

d�B�C
N

d�N
(T cut

N ) =
d�FO

N

d�N
(T cut

N )� d�C
N

d�N
(T cut

N ) . (4.5)

As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,
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(T cut

N )�

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�

FO

= �
Z

d�N+1

�N
(CN+1 � SN+1)(�N+1) ✓(TN > T cut

N ) +O(↵2
s) . (4.6)

Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,
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As discussed above, it contains no logarithmic dependence on T cut
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The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic
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N dependence and that obtained by expanding the resummed term in fixed order, i.e.,
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FO
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Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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Now, resum singular dependence on TNcut to at least LL accuracy

↵sLcut at NLO and ↵2
sL

3
cut at NNLO, which contribute at Ocut(↵

1/2
s ) with the counting of

eq. (2.28).

A potential problem with implementing eq. (4.4) is the presence of explicit logarithms in

d�C�S
N (T cut

N ), which become large as T cut
N is reduced, and in particular d�C�S

N (T cut
N ) diverges

for T cut
N ! 0. While by construction this divergence cancels in physical observables, it could

give rise to events with large or even negative weights. To circumvent this and regulate the

logarithmic divergence, we can alternatively choose to multiply the singular matching terms

with the Sudakov factor and write

Case 2:
d�mc

N

d�N
(T cut

N ) =



d�C
�N

d�N
+

de�C�S
N

d�N
(T cut

N )

�

�N (�N ; T cut
N ) +

d�B�C
N

d�N
(T cut

N ) , (4.7)

where the FO singular matching corrections are now given by

de�C�S
N

d�N
(T cut

N ) =



d�C�S
N

d�N
(T cut

N )
1

�N (�N ; T cut
N )

�

FO

= �
Z

d�N+1

�N
(CN+1 � SN+1)(�N+1) ✓(TN > T cut

N ) +O(↵2
s) . (4.8)

Note that while multiplying with the Sudakov factor helps to suppress the FO T cut
N logarithms

in de�C�S
N (T cut

N ), this choice does not amount to an actual resummation of these logarithms.

A downside of this choice is that it introduces a more complicated T cut
N dependence at all

orders that must be canceled in inclusive N -jet observables. Since de�C�S
N (T cut

N ) can contain

logarithms ↵2
sL

3
cut, multiplying with the Sudakov factor introduces terms of order ↵n

sL
2n�1
cut .

The singular matching correction is always required if the resummation term does not

contain all logarithms of T cut
N to the desired fixed order. Even if SN+1 in eq. (4.6) contains the

full subleading singularities at NLO, as in Powheg where CN+1 = SN+1 so d�C�S
N (T cut

N ) = 0,

at NNLO d�C�S
N (T cut

N ) can still contain terms ⇠ ↵2
sL

2
cut ⇠ Ocut(↵s). Hence, to achieve

NNLON+LL accuracy it is essential to enforce the consistency conditions in eqs. (3.2) and

(3.3) for the d�C�S
N or de�C�S

N contributions. Otherwise these terms can easily generate a

residual T cut
N dependence in inclusive observables that destroys their perturbative accuracy.

To construct the inclusive (N + 1)-jet MC cross section, d�mc
�N+1(TN > T cut

N ), like d�mc
N

we split it into a resummed contribution and FO singular and nonsingular matching correc-

tions. Following the above discussion, these di↵erent contributions are constructed from their

corresponding counterparts in eqs. (4.4) and (4.7) by explicitly enforcing eqs. (3.2) and (3.3).

This gives

Case 1:
d�mc

�N+1

d�N+1
(TN > T cut

N ) =
d�C

�N

d�N

�

�

�

�

�N=�̂N

SN+1(�N+1)

BN (�̂N )
�N (�̂N ; TN ) ✓(TN > T cut

N )

+
d�C�S

�N+1

d�N+1
(TN > T cut

N ) +
d�B�C

�N+1

d�N+1
(TN > T cut

N ) , (4.9)

Case 2:
d�mc

�N+1

d�N+1
(TN > T cut

N ) =

⇢

d�C
�N

d�N
+

de�C�S
N

d�N
(TN )

�

�N=�̂N

SN+1(�N+1)

BN (�̂N )
✓(TN > T cut

N )
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The same is therefore also the case at NNLO+LL. Hence, we need to construct expressions

for the corresponding fully di↵erential MC cross sections [see eqs. (2.13) and (2.14)]

d�mc
N

d�N
(T cut

N ) ,
d�mc

N+1

d�N+1
(TN > T cut

N ; T cut
N+1) ,

d�mc
�N+2

d�N+2
(TN > T cut

N , TN+1 > T cut
N+1) . (4.1)

As discussed in section 3.1, at NNLO+LL we require that N -jet observables are correct

to NNLON+LL, (N + 1)-jet observables to NLON+1+LL, and (N + 2)-jet observables to

LON+2+LL, provided that any observable built from these cross sections is su�ciently inclu-

sive over the unresolved regions of phase space. Since the FO calculation is supplemented with

the LL resummation of the jet resolution variables TN and TN+1, the perturbative accuracy

of the prediction in the IR-singular regime is improved relative to the pure FO calculation,

which breaks down in this region. The required perturbative accuracy at NNLO+LL in the

FO and resummation regions is summarized in table 1.

To construct the NNLO+LL MC cross sections, it will be convenient to proceed in two

steps. In section 4.1, we first consider the separation between the exclusive N -jet and inclu-

sive (N+1)-jet cross sections using TN and construct the corresponding exclusive d�mc
N (T cut

N )

and an inclusive d�mc
�N+1(TN > T cut

N ). In section 4.2, we then consider the further sepa-

ration of d�mc
�N+1(TN > T cut

N ) into the final exclusive d�mc
N+1(TN > T cut

N ; T cut
N+1) and inclu-

sive d�mc
�N+2(TN > T cut

N , TN+1 > T cut
N+1) using TN+1. To make the notation as transparent

as possible, we drop the emission labels m throughout this section. They can be inserted

straightforwardly into all formulae giving the di↵erent contributions to the cross sections.

4.1 The Exclusive N-jet and Inclusive (N + 1)-jet Cross Sections

As we have already seen at LO and NLO, it is convenient to divide the full FO exclusive

N -jet cross section, d�FO
N (T cut

N ), into a singular and a nonsingular contribution9,

d�FO
N

d�N
(T cut

N ) =
d�C

N

d�N
(T cut

N )
| {z }

FO singular

+
d�B�C

N

d�N
(T cut

N )
| {z }

FO nonsingular

. (4.2)

At NNLO, d�FO
N (T cut

N ) is given in eq. (2.17). Its singular approximation is given by

d�C
N

d�N
(T cut

N ) = (BN + VN +WN )(�N )

+

Z

d�N+1

d�N
(CN+1 + V CN+1)(�N+1) ✓[TN (�N+1) < T cut

N ]

+

Z

d�N+2

d�N
CN+2(�N+2) ✓[TN (�N+2) < T cut

N ] , (4.3)

9To be precise, singular terms in the cumulant contain logarithms of T cut

N or constants, while nonsingular

terms vanish as T cut

N ! 0. In the spectrum, singular terms contain plus distributions or delta functions of TN ,

while nonsingular terms contain no singular distributions and at most integrable singularities.
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Singular matching term

with the Sudakov factor and write

Case 2:
d�mc
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, (4.7)

where the FO singular matching corrections are now given by
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s) . (4.8)

Note that while multiplying with the Sudakov factor helps to suppress the FO T cut
N logarithms

in de�C�S
N (T cut

N ), this choice does not amount to an actual resummation of these logarithms.

A downside of this choice is that it introduces a more complicated T cut
N dependence at all

orders that must be canceled in inclusive N -jet observables. Since de�C�S
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3
cut, multiplying with the Sudakov factor introduces terms of order ↵n
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N contributions. Otherwise these terms can easily generate a

residual T cut
N dependence in inclusive observables that destroys their perturbative accuracy.

To construct the inclusive (N + 1)-jet MC cross section, d�mc
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N ), like d�mc
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tions. Following the above discussion, these di↵erent contributions are constructed from their

corresponding counterparts in eqs. (4.4) and (4.7) by explicitly enforcing eqs. (3.2) and (3.3).

This gives
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Case 2:
d�mc

�N+1

d�N+1
(TN > T cut

N ) =

⇢

d�C
�N

d�N
+

de�C�S
N

d�N
(TN )

�

�N=�̂N

SN+1(�N+1)

BN (�̂N )
✓(TN > T cut

N )

+
de�C�S

�N+1

d�N+1
(TN > T cut

N )

�

�N (�̂N ; TN ) +
d�B�C

�N+1

d�N+1
(TN > T cut

N ),

(4.10)

where the various ingredients are discussed in detail in sections 4.1.1 and 4.1.2. For case 1,

the FO singular and nonsingular matching terms are pure FO corrections and to obtain them
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For convenience, we also define the subtracted one-loop virtual correction, which is the IR-

finite NLO term in d�C
�N ,

V C
N (�N ) = VN (�N ) +

Z

d�N+1

d�N
CN+1(�N+1) . (4.18)

The di↵erential version is easier to obtain (since it does not explicitly require �(2)
N ), and we

find

d�C�S
�N+1

d�N+1
(TN > T cut

N )

= (CN+1 + V CN+1)(�N+1) ✓(TN > T cut
N ) +

Z

d�N+2

d�N+1
CN+2(�N+2) ✓[TN (�N+2) > T cut

N ]

�


1 +
S(2)
N+1(�N+1)

S(1)
N+1(�N+1)

+
V C
N (�̂N )

BN (�̂N )
+�(1)

N (�̂N , TN )

�

S(1)
N+1(�N+1) ✓(TN > T cut

N ) . (4.19)

The cumulant version is given by

d�C�S
N

d�N
(T cut

N ) = �
Z

d�N+1

d�N

d�C�S
�N+1

d�N+1
(TN > T cut

N )

= �
Z

d�N+1

d�N
(CN+1 + V CN+1)(�N+1) ✓[TN (�N+1) > T cut

N ]

�
Z

d�N+2

d�N
CN+2(�N+2) ✓[TN (�N+2) > T cut

N ]

�BN (�N )
⇥

�(1)
N (�N ; T cut

N ) +�(2)
N (�N ; T cut

N )
⇤� V C

N (�N )�(1)
N (�N ; T cut

N ) .

The integrals here are explicitly over TN > T cut
N , which cuts o↵ all IR singularities that do not

cancel between the full FO singular contributions and their LL approximation arising from

the Sudakov expansion, which is given by the last lines in eqs. (4.19) and (4.20). Note that

CN+2 here fulfills two roles. First, it produces the leading double logarithms ↵2
s(L

4
cut + L3

cut)

(for the cumulant). The ↵2
sL

4
cut is always canceled by the square [�(1)

N ]2 inside �(2)
N , and the

↵2
sL

3
cut is also canceled if �(1)

N produces the correct single logarithm ↵sLcut at NLO. Second,

the (N + 1)-parton virtual IR divergences in V CN+1 are canceled by the TN+1 ! 0 limit

in the �N+2 integral over CN+2, where the remainder is an ↵s(↵sL2
cut + ↵sLcut) correction.

Generically, these are only partially canceled by the corresponding V C
N �(1)

N (T cut
N ) term.

4.1.2 Case 2

For this case, we use d�mc
N (T cut

N ) as given in eq. (4.7), with its corresponding inclusive

d�mc
�N+1(TN > T cut

N ) given in eq. (4.10), which we repeat here for completeness:

d�mc
N

d�N
(T cut

N ) =



d�C
�N
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d�mc
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N ) =
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d�C
�N

d�N
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d�N
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�N (�̂N ; TN ) +
d�B�C

�N+1

d�N+1
(TN > T cut

N ) .

The explicit expressions for all ingredients are given in the following. As for case 1, these are

correct to NNLON and NLON+1 and include the correct LL resummation for T cut
N and TN ,

respectively. The resummation terms involving d�C
�N�N and the nonsingular FO matching

terms, d�B�C , are the same as in case 1 [see eq. (4.14) and eqs. (??) and (4.16)] and separately

satisfy the consistency relations in eqs. (3.2) and (3.3).

The di↵erence to case 1 is how the singular matching corrections, de�S�C , are included.

For the cumulant, we have
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N

d�N
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N ) =


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N+1)(�N+1) ✓[TN (�N+1) > T cut
N ] ,

where d�C�S
N (T cut

N ) is given in eq. (4.19). The corresponding di↵erential result in the spectrum

is obtained by requiring eq. (3.3),
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�
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where d�C�S
�N+1(TN > T cut

N ) is given in eq. (4.20). One can easily check that with this result

the expression for d�mc
�N+1 in case 2 expands to the correct NLON+1 result.

4.2 The Exclusive (N + 1)-jet and Inclusive (N + 2)-jet Cross Sections

The inclusive (N + 1)-jet MC cross section is divided into the exclusive (N + 1)-jet and

inclusive (N + 2)-jet MC cross sections using a resolution scale T cut
N+1,
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N+1) . (4.22)
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where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives
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+
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+
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FO nonsingular
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. (4.4)

The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,
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N ) . (4.5)

As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,
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N ) +O(↵2
s) . (4.6)

Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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Consider again the exclusive N-jet cross-section

There	
  are	
  many	
  possible	
  ways	
  to	
  make	
  the	
  expression	
  correct	
  
to	
  LL	
  accuracy

Given this expression, and Condition II from before, the inclusive 1-jet 
cross section is determined by taking the derivative of the above
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The explicit expressions for all ingredients are given in the following. As for case 1, these are

correct to NNLON and NLON+1 and include the correct LL resummation for T cut
N and TN ,

respectively. The resummation terms involving d�C
�N�N and the nonsingular FO matching

terms, d�B�C , are the same as in case 1 [see eq. (4.14) and eqs. (??) and (4.16)] and separately

satisfy the consistency relations in eqs. (3.2) and (3.3).

The di↵erence to case 1 is how the singular matching corrections, de�S�C , are included.

For the cumulant, we have
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where d�C�S
N (T cut

N ) is given in eq. (4.19). The corresponding di↵erential result in the spectrum

is obtained by requiring eq. (3.3),
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where d�C�S
�N+1(TN > T cut

N ) is given in eq. (4.20). One can easily check that with this result

the expression for d�mc
�N+1 in case 2 expands to the correct NLON+1 result.

4.2 The Exclusive (N + 1)-jet and Inclusive (N + 2)-jet Cross Sections

The inclusive (N + 1)-jet MC cross section is divided into the exclusive (N + 1)-jet and

inclusive (N + 2)-jet MC cross sections using a resolution scale T cut
N+1,
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↵sLcut at NLO and ↵2
sL

3
cut at NNLO, which contribute at Ocut(↵

1/2
s ) with the counting of

eq. (2.28).

A potential problem with implementing eq. (4.4) is the presence of explicit logarithms in

d�C�S
N (T cut

N ), which become large as T cut
N is reduced, and in particular d�C�S

N (T cut
N ) diverges

for T cut
N ! 0. While by construction this divergence cancels in physical observables, it could

give rise to events with large or even negative weights. To circumvent this and regulate the

logarithmic divergence, we can alternatively choose to multiply the singular matching terms

with the Sudakov factor and write

Case 2:
d�mc

N

d�N
(T cut

N ) =



d�C
�N

d�N
+

de�C�S
N

d�N
(T cut

N )

�

�N (�N ; T cut
N ) +

d�B�C
N

d�N
(T cut

N ) , (4.7)

where the FO singular matching corrections are now given by
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Note that while multiplying with the Sudakov factor helps to suppress the FO T cut
N logarithms

in de�C�S
N (T cut

N ), this choice does not amount to an actual resummation of these logarithms.

A downside of this choice is that it introduces a more complicated T cut
N dependence at all

orders that must be canceled in inclusive N -jet observables. Since de�C�S
N (T cut

N ) can contain

logarithms ↵2
sL

3
cut, multiplying with the Sudakov factor introduces terms of order ↵n

sL
2n�1
cut .

The singular matching correction is always required if the resummation term does not

contain all logarithms of T cut
N to the desired fixed order. Even if SN+1 in eq. (4.6) contains the

full subleading singularities at NLO, as in Powheg where CN+1 = SN+1 so d�C�S
N (T cut

N ) = 0,

at NNLO d�C�S
N (T cut

N ) can still contain terms ⇠ ↵2
sL

2
cut ⇠ Ocut(↵s). Hence, to achieve

NNLON+LL accuracy it is essential to enforce the consistency conditions in eqs. (3.2) and

(3.3) for the d�C�S
N or de�C�S

N contributions. Otherwise these terms can easily generate a

residual T cut
N dependence in inclusive observables that destroys their perturbative accuracy.

To construct the inclusive (N + 1)-jet MC cross section, d�mc
�N+1(TN > T cut

N ), like d�mc
N

we split it into a resummed contribution and FO singular and nonsingular matching correc-

tions. Following the above discussion, these di↵erent contributions are constructed from their

corresponding counterparts in eqs. (4.4) and (4.7) by explicitly enforcing eqs. (3.2) and (3.3).

This gives
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where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives
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d�mc
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d�N
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d�C

�N

d�N
�N (�N ; T cut

N )
| {z }

resummed

+
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FO nonsingular
matching

. (4.4)

The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,
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N )� d�C
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d�N
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N ) . (4.5)

As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,
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Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives
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The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,
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As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,
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Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives
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The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,
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As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,
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Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1, and

BN+2, respectively, i.e., they correspond to a valid set of NNLO subtractions, such that

eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating BN+1,

VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the CN+1, V CN+1,

and CN+2 contributions in eq. (4.3). Therefore, d�C
N (T cut

N ) contains all logarithms in T cut
N ,

while the remainder d�B�C
N (T cut

N ) in eq. (4.2) is a power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in sec-

tion 3.3, the LL resummed contribution can be obtained by multiplying an inclusive cross

section by the LL Sudakov factor for T cut
N . The resulting expression in general di↵ers from

the correct FO result by both singular and nonsingular terms in T cut
N , which are accounted

for by adding corresponding FO singular and nonsingular matching corrections. This gives

Case 1:
d�mc

N

d�N
(T cut

N ) =
d�C

�N

d�N
�N (�N ; T cut

N )
| {z }

resummed

+
d�C�S

N

d�N
(T cut

N )
| {z }

FO singular matching

+
d�B�C

N

d�N
(T cut

N )
| {z }

FO nonsingular
matching

. (4.4)

The first term is the resummed contribution, where d�C
�N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the ✓(TN < T cut
N ) in eq. (4.3). It

is by construction T cut
N independent, so all dependence on T cut

N in the resummed term resides

in the Sudakov factor �N (�N ; T cut
N ), which sums the LL series in T cut

N . The remaining two

terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B � C, is the FO nonsingular term from eq. (4.2). It

contains the di↵erence between the full FO contribution and its singular limit,

d�B�C
N

d�N
(T cut

N ) =
d�FO

N

d�N
(T cut

N )� d�C
N

d�N
(T cut

N ) . (4.5)

As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C � S, is the singular FO matching correction. It

contains the di↵erence between the singular approximation containing the full logarithmic

T cut
N dependence and that obtained by expanding the resummed term in fixed order, i.e.,

d�C�S
N

d�N
(T cut

N ) =
d�C

N

d�N
(T cut

N )�


d�C
�N

d�N
�N (�N ; T cut

N )

�

FO

= �
Z

d�N+1

�N
(CN+1 � SN+1)(�N+1) ✓(TN > T cut

N ) +O(↵2
s) . (4.6)

Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed con-

tribution. In the second line we show the NLO result for illustration. As already discussed

in section 3.3, since the splitting function SN+1 generically only reproduces the leading sin-

gularities in CN+1, d�
C�S
N (T cut

N ) can in general contain logarithmic dependence as large as
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d�mc
�N+1

d�N+1
(TN > T cut

N ) =

⇢

d�C
�N

d�N
+

de�C�S
N

d�N
(TN )

�

�N=�̂N

SN+1(�N+1)

BN (�̂N )
✓(TN > T cut

N )

+
de�C�S

�N+1

d�N+1
(TN > T cut

N )

�

�N (�̂N ; TN ) +
d�B�C

�N+1

d�N+1
(TN > T cut

N ) .

The explicit expressions for all ingredients are given in the following. As for case 1, these are

correct to NNLON and NLON+1 and include the correct LL resummation for T cut
N and TN ,

respectively. The resummation terms involving d�C
�N�N and the nonsingular FO matching

terms, d�B�C , are the same as in case 1 [see eq. (4.14) and eqs. (??) and (4.16)] and separately

satisfy the consistency relations in eqs. (3.2) and (3.3).

The di↵erence to case 1 is how the singular matching corrections, de�S�C , are included.

For the cumulant, we have

de�C�S
N

d�N
(T cut

N ) =



d�C�S
N

d�N
(T cut

N )
1

�(1)
N (�N ; T cut

N )

�

NNLON

=
d�C�S

N

d�N
(T cut

N ) (4.20)

+�(1)
N (�N ; T cut

N )

Z

d�N+1

d�N
(CN+1 � S(1)

N+1)(�N+1) ✓[TN (�N+1) > T cut
N ] ,

where d�C�S
N (T cut

N ) is given in eq. (4.19). The corresponding di↵erential result in the spectrum

is obtained by requiring eq. (3.3),

de�C�S
�N+1

d�N+1
(TN > T cut

N )

=
d�C�S

�N+1

d�N+1
(TN > T cut

N )�
⇢

�(1)
N (�̂N ; TN ) (CN+1 � S(1)

N+1)(�N+1) (4.21)

+
S(1)
N+1(�N+1)

BN (�̂N )

Z

d�0
N+1

d�N

�

CN+1 � S(1)
N+1

�

(�0
N+1) ✓[TN (�0

N+1) > TN ]

�

✓(TN > T cut
N ) ,

where d�C�S
�N+1(TN > T cut

N ) is given in eq. (4.20). One can easily check that with this result

the expression for d�mc
�N+1 in case 2 expands to the correct NLON+1 result.

4.2 The Exclusive (N + 1)-jet and Inclusive (N + 2)-jet Cross Sections

The inclusive (N + 1)-jet MC cross section is divided into the exclusive (N + 1)-jet and

inclusive (N + 2)-jet MC cross sections using a resolution scale T cut
N+1,

d�mc
�N+1

d�N+1
(TN > T cut

N ) =
d�mc

N+1

d�N+1
(TN > T cut

N ; T cut
N+1)

+

Z

d�N+2

d�N+1

d�mc
�N+2

d�N+2
(TN > T cut

N , TN+1 > T cut
N+1) . (4.22)
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+

de�C�S
N

d�N
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✓(TN > T cut

N )

+
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d�N+1
(TN > T cut

N )

�

�N (�̂N ; TN ) +
d�B�C

�N+1

d�N+1
(TN > T cut

N ) .

The explicit expressions for all ingredients are given in the following. As for case 1, these are

correct to NNLON and NLON+1 and include the correct LL resummation for T cut
N and TN ,

respectively. The resummation terms involving d�C
�N�N and the nonsingular FO matching

terms, d�B�C , are the same as in case 1 [see eq. (4.14) and eqs. (??) and (4.16)] and separately

satisfy the consistency relations in eqs. (3.2) and (3.3).

The di↵erence to case 1 is how the singular matching corrections, de�S�C , are included.

For the cumulant, we have

de�C�S
N

d�N
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N ) =


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1
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N ) (4.20)

+�(1)
N (�N ; T cut

N )

Z

d�N+1

d�N
(CN+1 � S(1)

N+1)(�N+1) ✓[TN (�N+1) > T cut
N ] ,

where d�C�S
N (T cut

N ) is given in eq. (4.19). The corresponding di↵erential result in the spectrum

is obtained by requiring eq. (3.3),

de�C�S
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=
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�
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N+1) > TN ]

�

✓(TN > T cut
N ) ,

where d�C�S
�N+1(TN > T cut

N ) is given in eq. (4.20). One can easily check that with this result

the expression for d�mc
�N+1 in case 2 expands to the correct NLON+1 result.

4.2 The Exclusive (N + 1)-jet and Inclusive (N + 2)-jet Cross Sections

The inclusive (N + 1)-jet MC cross section is divided into the exclusive (N + 1)-jet and

inclusive (N + 2)-jet MC cross sections using a resolution scale T cut
N+1,

d�mc
�N+1

d�N+1
(TN > T cut

N ) =
d�mc

N+1

d�N+1
(TN > T cut

N ; T cut
N+1)

+

Z
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N ) .

The explicit expressions for all ingredients are given in the following. As for case 1, these are

correct to NNLON and NLON+1 and include the correct LL resummation for T cut
N and TN ,

respectively. The resummation terms involving d�C
�N�N and the nonsingular FO matching

terms, d�B�C , are the same as in case 1 [see eq. (4.14) and eqs. (??) and (4.16)] and separately

satisfy the consistency relations in eqs. (3.2) and (3.3).

The di↵erence to case 1 is how the singular matching corrections, de�S�C , are included.

For the cumulant, we have
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(CN+1 � S(1)

N+1)(�N+1) ✓[TN (�N+1) > T cut
N ] ,

where d�C�S
N (T cut

N ) is given in eq. (4.19). The corresponding di↵erential result in the spectrum

is obtained by requiring eq. (3.3),

de�C�S
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N ) ,

where d�C�S
�N+1(TN > T cut

N ) is given in eq. (4.20). One can easily check that with this result

the expression for d�mc
�N+1 in case 2 expands to the correct NLON+1 result.

4.2 The Exclusive (N + 1)-jet and Inclusive (N + 2)-jet Cross Sections

The inclusive (N + 1)-jet MC cross section is divided into the exclusive (N + 1)-jet and

inclusive (N + 2)-jet MC cross sections using a resolution scale T cut
N+1,

d�mc
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Singular matching
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The explicit expressions for all ingredients are given in the following. As for case 1, these are

correct to NNLON and NLON+1 and include the correct LL resummation for T cut
N and TN ,

respectively. The resummation terms involving d�C
�N�N and the nonsingular FO matching

terms, d�B�C , are the same as in case 1 [see eq. (4.14) and eqs. (??) and (4.16)] and separately

satisfy the consistency relations in eqs. (3.2) and (3.3).

The di↵erence to case 1 is how the singular matching corrections, de�S�C , are included.

For the cumulant, we have

de�C�S
N

d�N
(T cut

N ) =



d�C�S
N

d�N
(T cut

N )
1

�(1)
N (�N ; T cut

N )

�

NNLON

=
d�C�S

N

d�N
(T cut

N ) (4.20)

+�(1)
N (�N ; T cut

N )

Z

d�N+1

d�N
(CN+1 � S(1)
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N ] ,

where d�C�S
N (T cut

N ) is given in eq. (4.19). The corresponding di↵erential result in the spectrum

is obtained by requiring eq. (3.3),
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where d�C�S
�N+1(TN > T cut

N ) is given in eq. (4.20). One can easily check that with this result

the expression for d�mc
�N+1 in case 2 expands to the correct NLON+1 result.

4.2 The Exclusive (N + 1)-jet and Inclusive (N + 2)-jet Cross Sections

The inclusive (N + 1)-jet MC cross section is divided into the exclusive (N + 1)-jet and

inclusive (N + 2)-jet MC cross sections using a resolution scale T cut
N+1,
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For convenience, we also define the subtracted one-loop virtual correction, which is the IR-

finite NLO term in d�C
�N ,

V C
N (�N ) = VN (�N ) +

Z

d�N+1

d�N
CN+1(�N+1) . (4.18)

The di↵erential version is easier to obtain (since it does not explicitly require �(2)
N ), and we

find
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The cumulant version is given by
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The integrals here are explicitly over TN > T cut
N , which cuts o↵ all IR singularities that do not

cancel between the full FO singular contributions and their LL approximation arising from

the Sudakov expansion, which is given by the last lines in eqs. (4.19) and (4.20). Note that

CN+2 here fulfills two roles. First, it produces the leading double logarithms ↵2
s(L

4
cut + L3

cut)

(for the cumulant). The ↵2
sL

4
cut is always canceled by the square [�(1)

N ]2 inside �(2)
N , and the

↵2
sL

3
cut is also canceled if �(1)

N produces the correct single logarithm ↵sLcut at NLO. Second,

the (N + 1)-parton virtual IR divergences in V CN+1 are canceled by the TN+1 ! 0 limit

in the �N+2 integral over CN+2, where the remainder is an ↵s(↵sL2
cut + ↵sLcut) correction.

Generically, these are only partially canceled by the corresponding V C
N �(1)

N (T cut
N ) term.

4.1.2 Case 2

For this case, we use d�mc
N (T cut

N ) as given in eq. (4.7), with its corresponding inclusive

d�mc
�N+1(TN > T cut

N ) given in eq. (4.10), which we repeat here for completeness:
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For convenience, we also define the subtracted one-loop virtual correction, which is the IR-

finite NLO term in d�C
�N ,
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The cumulant version is given by
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The integrals here are explicitly over TN > T cut
N , which cuts o↵ all IR singularities that do not

cancel between the full FO singular contributions and their LL approximation arising from

the Sudakov expansion, which is given by the last lines in eqs. (4.19) and (4.20). Note that

CN+2 here fulfills two roles. First, it produces the leading double logarithms ↵2
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(for the cumulant). The ↵2
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cut is always canceled by the square [�(1)
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N , and the
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cut is also canceled if �(1)

N produces the correct single logarithm ↵sLcut at NLO. Second,

the (N + 1)-parton virtual IR divergences in V CN+1 are canceled by the TN+1 ! 0 limit

in the �N+2 integral over CN+2, where the remainder is an ↵s(↵sL2
cut + ↵sLcut) correction.

Generically, these are only partially canceled by the corresponding V C
N �(1)
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N ) term.

4.1.2 Case 2

For this case, we use d�mc
N (T cut

N ) as given in eq. (4.7), with its corresponding inclusive

d�mc
�N+1(TN > T cut

N ) given in eq. (4.10), which we repeat here for completeness:
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The explicit expressions for all ingredients are given in the following. As for case 1, these are

correct to NNLON and NLON+1 and include the correct LL resummation for T cut
N and TN ,

respectively. The resummation terms involving d�C
�N�N and the nonsingular FO matching

terms, d�B�C , are the same as in case 1 [see eq. (4.14) and eqs. (??) and (4.16)] and separately

satisfy the consistency relations in eqs. (3.2) and (3.3).

The di↵erence to case 1 is how the singular matching corrections, de�S�C , are included.

For the cumulant, we have
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N ) is given in eq. (4.19). The corresponding di↵erential result in the spectrum
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de�C�S
�N+1

d�N+1
(TN > T cut

N )

=
d�C�S

�N+1

d�N+1
(TN > T cut

N )�
⇢

�(1)
N (�̂N ; TN ) (CN+1 � S(1)

N+1)(�N+1) (4.20)

+
S(1)
N+1(�N+1)

BN (�̂N )

Z

d�0
N+1

d�N

�

CN+1 � S(1)
N+1

�

(�0
N+1) ✓[TN (�0

N+1) > TN ]

�

✓(TN > T cut
N ) ,

where d�C�S
�N+1(TN > T cut

N ) is given in eq. (4.20). One can easily check that with this result

the expression for d�mc
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4.2 The Exclusive (N + 1)-jet and Inclusive (N + 2)-jet Cross Sections

The inclusive (N + 1)-jet MC cross section is divided into the exclusive (N + 1)-jet and

inclusive (N + 2)-jet MC cross sections using a resolution scale T cut
N+1,

d�mc
�N+1

d�N+1
(TN > T cut

N ) =
d�mc

N+1

d�N+1
(TN > T cut

N ; T cut
N+1)

+

Z

d�N+2

d�N+1

d�mc
�N+2

d�N+2
(TN > T cut

N , TN+1 > T cut
N+1) . (4.21)

– 33 –

d�mc
�N+1

d�N+1
(TN > T cut

N ) =

⇢

d�C
�N

d�N
+

de�C�S
N

d�N
(TN )

�

�N=�̂N

SN+1(�N+1)

BN (�̂N )
✓(TN > T cut

N )

+
de�C�S

�N+1

d�N+1
(TN > T cut

N )

�

�N (�̂N ; TN ) +
d�B�C

�N+1

d�N+1
(TN > T cut

N ) .

The explicit expressions for all ingredients are given in the following. As for case 1, these are
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Each term uniquely determined

Non-singular matching

of eqs. (2.17) and (4.3), we can immediately obtain its NNLO result
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and one can easily see that eqs. (??) and (4.16) explicitly satisfy the consistency condition in

eq. (3.3).

Finally, the singular matching corrections, d�C�S , are defined as
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By definition they satisfy eqs. (3.2) and (3.3), because each of the terms on the right-hand

sides do so. To obtain their explicit expressions we use the NNLO expansion of the Sudakov

factor, which we write as
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Here, we used S(n)
N+1 to denote the ↵n

s contribution to SN+1, i.e.,

SN+1(�N+1) = S(1)
N+1(�N+1) + S(2)

N+1(�N+1) + · · · . (4.17)
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Note that this is just a special case of the consistency condition in eq. (3.3) applied to TN+1

and taking T c
N+1 ⌘ T max

N+1.

The inclusive d�mc
�N+1 already resums the leading logarithms of TN in the (N +1)-parton

phase space. On top of that, we also want to resum the leading logarithms of T cut
N+1 and TN+1

appearing in d�mc
N+1(T cut

N+1) and d�mc
�N+2(TN+1). The LL resummation for TN+1 is obtained

using the (N + 1)-parton Sudakov factor, �N+1, which is defined as

�N+1(�N+2; T cut
N+1) = exp

⇢

�
Z

d�N+2

d�N+1

SN+2(�N+2)

BN+1(�̂N+1)
✓[TN+1(�N+2) > T cut

N+1]

�

, (4.24)

where the upper limit on the integration over TN+1 should be chosen of order TN . Note that

the (N+1)-parton splitting function SN+2 enters in the Sudakov factor relative to the (N+1)-

parton Born matrix element BN+1, which is required to correctly sum the logarithms of TN+1

across the whole range of TN , even for TN ⇠ T max
N . In terms of the resummation accuracy,

achieving (N)LON+1+LL implies that the (N + 1)-parton Sudakov factor must multiply the

complete BN+1 matrix element to obtain the LL resummation of TN+1 (or T cut
N+1) in the limit

TN+1 ⌧ TN for both TN ⌧ T max
N and TN ⇠ T max

N .

Given these considerations, we again divide the exclusive (N+1)-jet and inclusive (N+2)-

jet MC cross sections into a resummed contribution and FO matching corrections,
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This has precisely the structure of the usual NLON+1+LL calculation [see eq. (3.7)], but with

the dependence on the singular and nonsingular FO matching corrections, d�C�S and d�B�C ,

written out explicitly. Furthermore, d�0C
�N+1(TN > T cut

N ) is the singular approximation to the

full (N + 1)-jet inclusive cross section on which the TN+1 resummation acts. The crucial dif-

ference compared to the usual NLO+LL case discussed in section 3.3 is that the NLON+1+LL

calculation is used down to very small values TN > T cut
N , and so d�0C

�N+1(TN > T cut
N ) now has

to include the LL resummation in TN . In terms of the inclusive d�mc
�N+1(TN > T cut

N ) [given
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case, since SN+1 contains the full singular structure also above T cut
N , there is no implicit T cut

N

dependence. Strictly speaking, this is true as long as ⇥m and F do not introduce a sensitivity

to small TN .

The full �N+1 dependence in d�mc
�N+1 in eq. (3.7) is determined by SN+1(�N+1) in

the resummation term, i.e., by the approximate �N+1 dependence in the splitting factor

that determines the Sudakov factor. The FO matching correction, d�B�S
�N+1 ⇠ (BN+1 �

SN+1)(�N+1), additively corrects the approximate �N+1 dependence in SN+1 to the full

LON+1 dependence given by BN+1. Another possible approach is to also multiply this term

by the Sudakov factor, or equivalently, directly use the full BN+1 dependence in the resummed

spectrum, such that

d�mc
N

d�N
(T cut

N ) =
d�S

�N

d�N
�N (�N ; T cut

N ) +
d�B�S

N

d�N
(T cut

N ) , (3.15)
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X

m
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�

�

�

�N=�̂N

BN+1(�N+1)

BN (�̂N )
�N (�̂N ; TN ) ✓(TN > T cut

N )

�

m

.

This corresponds to the usual CKKW procedure for LON,N+1+LL in eq. (3.4). It is also

analogous to the Geneva method in ref. [22], where the �N+1-di↵erential FO calculation is

multiplicatively combined with the TN spectrum resummed to higher order. In eq. (3.15), the

spectrum is not the exact derivative of the cumulant anymore, resulting in a residual T cut
N

dependence in the integrated cross section. The e↵ective correction term by which eq. (3.3)

is violated and that gets added to the correct NLON cross section is given by
Z

d�N+1

d�N
(BN+1 � SN+1)(�N+1)

⇥

�N (�̂N ; TN )� 1
⇤

✓(TN > T cut
N ) . (3.16)

In fixed order this is O(↵2
s) and beyond NLON . However, its impact on the perturbative

accuracy depends again on the extent to which the IR singularities of BN+1 are correctly

reproduced by SN+1. If SN+1 contains the full IR singularities, so BN+1 � SN+1 is fi-

nite for TN ! 0, then the leading term in eq. (3.16) scales as T cut
N ↵2

s ln
2(T cut

N /Q) which

is Ocut(↵sT cut
N ). Therefore, in this case the correction can be regarded as a power correction.

If SN+1 does not reproduce the full IR singularities, so that BN+1�SN+1 contains subleading

divergences ⇠ ↵s/TN , then the leading term scales as ↵2
s ln

3(T cut
N /Q). Hence, in this case the

correction is of Ocut(↵
1/2
s ) and clearly violates the NLON+LL accuracy, which allows at most

Ocut(↵2
s) corrections (see the first column of table 1). Note that the perturbative accuracy of

the residual T cut
N dependence in either case here is the same as in eq. (3.4) at LON,N+1+LL.

The reason is that it is determined by the resummation counting and the NLO matching by

itself only improves the FO accuracy.

4 Combining NNLO calculations with LL resummation

As we saw in section 2.2, at NNLO we need events representing N , (N + 1), and (N + 2)

partonic jets, defined through the N -jet and (N + 1)-jet resolution variables TN and TN+1.
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�N+1

d�N+1
(TN > T cut

N ) =
X

m

⇢

d�S
�N

d�N

�

�

�

�

�N=�̂N

BN+1(�N+1)

BN (�̂N )
�N (�̂N ; TN ) ✓(TN > T cut

N )

�

m

.

This corresponds to the usual CKKW procedure for LON,N+1+LL in eq. (3.4). It is also

analogous to the Geneva method in ref. [22], where the �N+1-di↵erential FO calculation is

multiplicatively combined with the TN spectrum resummed to higher order. In eq. (3.15), the

spectrum is not the exact derivative of the cumulant anymore, resulting in a residual T cut
N

dependence in the integrated cross section. The e↵ective correction term by which eq. (3.3)

is violated and that gets added to the correct NLON cross section is given by
Z

d�N+1

d�N
(BN+1 � SN+1)(�N+1)

⇥

�N (�̂N ; TN )� 1
⇤

✓(TN > T cut
N ) . (3.16)

In fixed order this is O(↵2
s) and beyond NLON . However, its impact on the perturbative

accuracy depends again on the extent to which the IR singularities of BN+1 are correctly

reproduced by SN+1. If SN+1 contains the full IR singularities, so BN+1 � SN+1 is fi-

nite for TN ! 0, then the leading term in eq. (3.16) scales as T cut
N ↵2

s ln
2(T cut

N /Q) which

is Ocut(↵sT cut
N ). Therefore, in this case the correction can be regarded as a power correction.

If SN+1 does not reproduce the full IR singularities, so that BN+1�SN+1 contains subleading

divergences ⇠ ↵s/TN , then the leading term scales as ↵2
s ln

3(T cut
N /Q). Hence, in this case the

correction is of Ocut(↵
1/2
s ) and clearly violates the NLON+LL accuracy, which allows at most

Ocut(↵2
s) corrections (see the first column of table 1). Note that the perturbative accuracy of

the residual T cut
N dependence in either case here is the same as in eq. (3.4) at LON,N+1+LL.

The reason is that it is determined by the resummation counting and the NLO matching by

itself only improves the FO accuracy.

4 Combining NNLO calculations with LL resummation

As we saw in section 2.2, at NNLO we need events representing N , (N + 1), and (N + 2)

partonic jets, defined through the N -jet and (N + 1)-jet resolution variables TN and TN+1.
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4.1.2 Case 2

For this case, we use d�mc
N (T cut

N ) as given in eq. (4.7), with its corresponding inclusive

d�mc
�N+1(TN > T cut

N ) given in eq. (4.10), which we repeat here for completeness:

d�mc
N

d�N
(T cut

N ) =



d�C
�N

d�N
+

de�C�S
N

d�N
(T cut

N )

�

�N (�N ; T cut
N ) +

d�B�C
N

d�N
(T cut

N ) ,

d�mc
�N+1

d�N+1
(TN > T cut

N ) =

⇢

d�C
�N

d�N
+

de�C�S
N

d�N
(TN )

�

�N=�̂N

SN+1(�N+1)

BN (�̂N )
✓(TN > T cut

N )

+
de�C�S

�N+1

d�N+1
(TN > T cut

N )

�

�N (�̂N ; TN ) +
d�B�C

�N+1

d�N+1
(TN > T cut

N ) .

The explicit expressions for all ingredients are given in the following. As for case 1, these are

correct to NNLON and NLON+1 and include the correct LL resummation for T cut
N and TN ,

respectively. The resummation terms involving d�C
�N�N and the nonsingular FO matching

terms, d�B�C , are the same as in case 1 [see eq. (4.14) and eqs. (??) and (4.16)] and separately

satisfy the consistency relations in eqs. (3.2) and (3.3).

The di↵erence to case 1 is how the singular matching corrections, de�S�C , are included.

For the cumulant, we have

de�C�S
N

d�N
(T cut

N ) =



d�C�S
N

d�N
(T cut

N )
1

�(1)
N (�N ; T cut

N )

�

NNLON

=
d�C�S

N

d�N
(T cut

N ) (4.20)

+�(1)
N (�N ; T cut

N )

Z

d�N+1

d�N
(CN+1 � S(1)

N+1)(�N+1) ✓[TN (�N+1) > T cut
N ] ,

where d�C�S
N (T cut

N ) is given in eq. (??). The corresponding di↵erential result in the spectrum

is obtained by requiring eq. (3.3),

de�C�S
�N+1

d�N+1
(TN > T cut

N )

=
d�C�S

�N+1

d�N+1
(TN > T cut

N )�
⇢

�(1)
N (�̂N ; TN ) (CN+1 � S(1)

N+1)(�N+1) (4.21)

+
S(1)
N+1(�N+1)

BN (�̂N )

Z

d�0
N+1

d�N

�

CN+1 � S(1)
N+1

�

(�0
N+1) ✓[TN (�0

N+1) > TN ]

�

✓(TN > T cut
N ) ,

where d�C�S
�N+1(TN > T cut

N ) is given in eq. (4.19). One can easily check that with this result

the expression for d�mc
�N+1 in case 2 expands to the correct NLON+1 result.
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+
de�C�S

�N+1

d�N+1
(TN > T cut

N )

�

�N (�̂N ; TN ) +
d�B�C

�N+1

d�N+1
(TN > T cut

N ),

(4.10)

where the various ingredients are discussed in detail in sections 4.1.1 and 4.1.2. For case 1,

the FO singular and nonsingular matching terms are pure FO corrections and to obtain them

it is su�cient to enforce that d�mc
�N+1 expands to the correct NLO cross section. For case 2,

the singular matching correction is more complicated, and its TN dependence is obtained by

taking the derivative of de�C�S
N (T cut

N )�N (T cut
N ) in eq. (4.7) with respect to T cut

N . This ensures

that the singular matching corrections in the spectrum correctly integrate up to cancel the

corresponding T cut
N dependence in the cumulant.10

Before we give the detailed expressions for all ingredients required to construct eqs. (4.4),

(4.7), (4.9), and (4.10), it is instructive to see how the NLO+LL case arises from this notation.

At NLO, we have

d�C
�N

d�N
= (BN + VN )(�N ) +

Z

d�N+1

d�N
CN+1(�N+1) , (4.11)

and the singular matching corrections for the cumulant, d�C�S
N , are given in the second line

of eq. (4.6) [or eq. (4.8) for de�C�S
N ]. The nonsingular matching correction is

d�B�C
N

d�N
(T cut

N ) =

Z

d�N+1

�N
(BN+1 � CN+1)(�N+1) ✓(TN < T cut

N ) . (4.12)

The corresponding results for the di↵erential spectrum are

d�C�S
�N+1

d�N+1
(TN > T cut

N ) =
de�C�S

�N+1

d�N+1
(TN > T cut

N ) = (CN+1 � SN+1)(�N+1) ✓(TN > T cut
N ) ,

d�B�C
�N+1

d�N+1
(TN > T cut

N ) = (BN+1 � CN+1)(�N+1) ✓(TN > T cut
N ) .

(4.13)

Note that d�C�S and de�C�S are equal at this order. They only start to di↵er at NNLO,

where the cross terms in the FO expansion of the product de�C�S
N �N become relevant.

As discussed in section 3.3, the splitting function of Powheg given in eq. (3.14) repro-

duces the full singular dependence of the real emission. Thus, one can choose CN+1 = SN+1,

such that d�C�S
N = 0 and d�C

�N = d�S
�N , and cases 1 and 2 both reduce to eq. (3.7).

For MC@NLO, the splitting function is given in eq. (3.12). It depends on a function

G(TN ), which for the sake of illustration we can choose asG(TN ) = ✓(TN > T cut
N ) (even though

this is not the choice made in the MC@NLO implementation). In this case, the expression

10Notice that there might be points in �N+1

for which BN (�̂N ) = 0 due to either kinematical or PDF

e↵ects. To avoid that the ratio SN+1

(�N+1

)/BN (�̂N ) goes to infinity, one has to define SN+1

such that it

vanishes for these points. This implies that the contributions from these phase space regions are contained in

d�C�S or de�C�S .
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At NLO we find

+
de�C�S

�N+1

d�N+1
(TN > T cut

N )

�

�N (�̂N ; TN ) +
d�B�C

�N+1

d�N+1
(TN > T cut

N ),

(4.10)

where the various ingredients are discussed in detail in sections 4.1.1 and 4.1.2. For case 1,

the FO singular and nonsingular matching terms are pure FO corrections and to obtain them

it is su�cient to enforce that d�mc
�N+1 expands to the correct NLO cross section. For case 2,

the singular matching correction is more complicated, and its TN dependence is obtained by

taking the derivative of de�C�S
N (T cut

N )�N (T cut
N ) in eq. (4.7) with respect to T cut

N . This ensures

that the singular matching corrections in the spectrum correctly integrate up to cancel the

corresponding T cut
N dependence in the cumulant.10

Before we give the detailed expressions for all ingredients required to construct eqs. (4.4),

(4.7), (4.9), and (4.10), it is instructive to see how the NLO+LL case arises from this notation.

At NLO, we have

d�C
�N

d�N
= (BN + VN )(�N ) +

Z

d�N+1

d�N
CN+1(�N+1) , (4.11)

and the singular matching corrections for the cumulant, d�C�S
N , are given in the second line

of eq. (4.6) [or eq. (4.8) for de�C�S
N ]. The nonsingular matching correction is

d�B�C
N

d�N
(T cut

N ) =

Z

d�N+1

�N
(BN+1 � CN+1)(�N+1) ✓(TN < T cut

N ) . (4.12)

The corresponding results for the di↵erential spectrum are

d�C�S
�N+1

d�N+1
(TN > T cut

N ) =
de�C�S

�N+1

d�N+1
(TN > T cut

N ) = (CN+1 � SN+1)(�N+1) ✓(TN > T cut
N ) ,

d�B�C
�N+1

d�N+1
(TN > T cut

N ) = (BN+1 � CN+1)(�N+1) ✓(TN > T cut
N ) .

(4.13)

Note that d�C�S and de�C�S are equal at this order. They only start to di↵er at NNLO,

where the cross terms in the FO expansion of the product de�C�S
N �N become relevant.

As discussed in section 3.3, the splitting function of Powheg given in eq. (3.14) repro-

duces the full singular dependence of the real emission. Thus, one can choose CN+1 = SN+1,

such that d�C�S
N = 0 and d�C

�N = d�S
�N , and cases 1 and 2 both reduce to eq. (3.7).

For MC@NLO, the splitting function is given in eq. (3.12). It depends on a function

G(TN ), which for the sake of illustration we can choose asG(TN ) = ✓(TN > T cut
N ) (even though

this is not the choice made in the MC@NLO implementation). In this case, the expression

10Notice that there might be points in �N+1

for which BN (�̂N ) = 0 due to either kinematical or PDF

e↵ects. To avoid that the ratio SN+1

(�N+1

)/BN (�̂N ) goes to infinity, one has to define SN+1

such that it

vanishes for these points. This implies that the contributions from these phase space regions are contained in

d�C�S or de�C�S .
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↵sLcut at NLO and ↵2
sL

3
cut at NNLO, which contribute at Ocut(↵

1/2
s ) with the counting of

eq. (2.28).

A potential problem with implementing eq. (4.4) is the presence of explicit logarithms in

d�C�S
N (T cut

N ), which become large as T cut
N is reduced, and in particular d�C�S

N (T cut
N ) diverges

for T cut
N ! 0. While by construction this divergence cancels in physical observables, it could

give rise to events with large or even negative weights. To circumvent this and regulate the

logarithmic divergence, we can alternatively choose to multiply the singular matching terms

with the Sudakov factor and write

Case 2:
d�mc

N

d�N
(T cut

N ) =



d�C
�N

d�N
+

de�C�S
N

d�N
(T cut

N )

�

�N (�N ; T cut
N ) +

d�B�C
N

d�N
(T cut

N ) , (4.7)

where the FO singular matching corrections are now given by

de�C�S
N

d�N
(T cut

N ) =



d�C�S
N

d�N
(T cut

N )
1

�N (�N ; T cut
N )

�

FO

= �
Z

d�N+1

�N
(CN+1 � SN+1)(�N+1) ✓(TN > T cut

N ) +O(↵2
s) . (4.8)

Note that while multiplying with the Sudakov factor helps to suppress the FO T cut
N logarithms

in de�C�S
N (T cut

N ), this choice does not amount to an actual resummation of these logarithms.

A downside of this choice is that it introduces a more complicated T cut
N dependence at all

orders that must be canceled in inclusive N -jet observables. Since de�C�S
N (T cut

N ) can contain

logarithms ↵2
sL

3
cut, multiplying with the Sudakov factor introduces terms of order ↵n

sL
2n�1
cut .

The singular matching correction is always required if the resummation term does not

contain all logarithms of T cut
N to the desired fixed order. Even if SN+1 in eq. (4.6) contains the

full subleading singularities at NLO, as in Powheg where CN+1 = SN+1 so d�C�S
N (T cut

N ) = 0,

at NNLO d�C�S
N (T cut

N ) can still contain terms ⇠ ↵2
sL

2
cut ⇠ Ocut(↵s). Hence, to achieve

NNLON+LL accuracy it is essential to enforce the consistency conditions in eqs. (3.2) and

(3.3) for the d�C�S
N or de�C�S

N contributions. Otherwise these terms can easily generate a

residual T cut
N dependence in inclusive observables that destroys their perturbative accuracy.

To construct the inclusive (N + 1)-jet MC cross section, d�mc
�N+1(TN > T cut

N ), like d�mc
N

we split it into a resummed contribution and FO singular and nonsingular matching correc-

tions. Following the above discussion, these di↵erent contributions are constructed from their

corresponding counterparts in eqs. (4.4) and (4.7) by explicitly enforcing eqs. (3.2) and (3.3).

This gives

Case 1:
d�mc

�N+1

d�N+1
(TN > T cut

N ) =
d�C

�N

d�N

�

�

�

�

�N=�̂N

SN+1(�N+1)

BN (�̂N )
�N (�̂N ; TN ) ✓(TN > T cut

N )

+
d�C�S

�N+1

d�N+1
(TN > T cut

N ) +
d�B�C

�N+1

d�N+1
(TN > T cut

N ) , (4.9)

Case 2:
d�mc

�N+1

d�N+1
(TN > T cut

N ) =

⇢

d�C
�N

d�N
+

de�C�S
N

d�N
(TN )

�

�N=�̂N

SN+1(�N+1)

BN (�̂N )
✓(TN > T cut

N )
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↵sLcut at NLO and ↵2
sL

3
cut at NNLO, which contribute at Ocut(↵

1/2
s ) with the counting of

eq. (2.28).

A potential problem with implementing eq. (4.4) is the presence of explicit logarithms in

d�C�S
N (T cut

N ), which become large as T cut
N is reduced, and in particular d�C�S

N (T cut
N ) diverges

for T cut
N ! 0. While by construction this divergence cancels in physical observables, it could

give rise to events with large or even negative weights. To circumvent this and regulate the

logarithmic divergence, we can alternatively choose to multiply the singular matching terms

with the Sudakov factor and write

Case 2:
d�mc

N

d�N
(T cut

N ) =



d�C
�N

d�N
+

de�C�S
N

d�N
(T cut

N )

�

�N (�N ; T cut
N ) +

d�B�C
N

d�N
(T cut

N ) , (4.7)

where the FO singular matching corrections are now given by

de�C�S
N

d�N
(T cut

N ) =



d�C�S
N

d�N
(T cut

N )
1

�N (�N ; T cut
N )

�

FO

= �
Z

d�N+1

�N
(CN+1 � SN+1)(�N+1) ✓(TN > T cut

N ) +O(↵2
s) . (4.8)

Note that while multiplying with the Sudakov factor helps to suppress the FO T cut
N logarithms

in de�C�S
N (T cut

N ), this choice does not amount to an actual resummation of these logarithms.

A downside of this choice is that it introduces a more complicated T cut
N dependence at all

orders that must be canceled in inclusive N -jet observables. Since de�C�S
N (T cut

N ) can contain

logarithms ↵2
sL

3
cut, multiplying with the Sudakov factor introduces terms of order ↵n

sL
2n�1
cut .

The singular matching correction is always required if the resummation term does not

contain all logarithms of T cut
N to the desired fixed order. Even if SN+1 in eq. (4.6) contains the

full subleading singularities at NLO, as in Powheg where CN+1 = SN+1 so d�C�S
N (T cut

N ) = 0,

at NNLO d�C�S
N (T cut

N ) can still contain terms ⇠ ↵2
sL

2
cut ⇠ Ocut(↵s). Hence, to achieve

NNLON+LL accuracy it is essential to enforce the consistency conditions in eqs. (3.2) and

(3.3) for the d�C�S
N or de�C�S

N contributions. Otherwise these terms can easily generate a

residual T cut
N dependence in inclusive observables that destroys their perturbative accuracy.

To construct the inclusive (N + 1)-jet MC cross section, d�mc
�N+1(TN > T cut

N ), like d�mc
N

we split it into a resummed contribution and FO singular and nonsingular matching correc-

tions. Following the above discussion, these di↵erent contributions are constructed from their

corresponding counterparts in eqs. (4.4) and (4.7) by explicitly enforcing eqs. (3.2) and (3.3).

This gives

Case 1:
d�mc

�N+1

d�N+1
(TN > T cut

N ) =
d�C

�N

d�N

�

�

�

�

�N=�̂N

SN+1(�N+1)

BN (�̂N )
�N (�̂N ; TN ) ✓(TN > T cut

N )

+
d�C�S

�N+1

d�N+1
(TN > T cut

N ) +
d�B�C

�N+1

d�N+1
(TN > T cut

N ) , (4.9)

Case 2:
d�mc

�N+1

d�N+1
(TN > T cut

N ) =

⇢

d�C
�N

d�N
+

de�C�S
N

d�N
(TN )

�

�N=�̂N

SN+1(�N+1)

BN (�̂N )
✓(TN > T cut

N )
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case, since SN+1 contains the full singular structure also above T cut
N , there is no implicit T cut

N

dependence. Strictly speaking, this is true as long as ⇥m and F do not introduce a sensitivity

to small TN .

The full �N+1 dependence in d�mc
�N+1 in eq. (3.7) is determined by SN+1(�N+1) in

the resummation term, i.e., by the approximate �N+1 dependence in the splitting factor

that determines the Sudakov factor. The FO matching correction, d�B�S
�N+1 ⇠ (BN+1 �

SN+1)(�N+1), additively corrects the approximate �N+1 dependence in SN+1 to the full

LON+1 dependence given by BN+1. Another possible approach is to also multiply this term

by the Sudakov factor, or equivalently, directly use the full BN+1 dependence in the resummed

spectrum, such that

d�mc
N

d�N
(T cut

N ) =
d�S

�N

d�N
�N (�N ; T cut

N ) +
d�B�S

N

d�N
(T cut

N ) , (3.15)

d�mc
�N+1

d�N+1
(TN > T cut

N ) =
X

m

⇢

d�S
�N

d�N

�

�

�

�

�N=�̂N

BN+1(�N+1)

BN (�̂N )
�N (�̂N ; TN ) ✓(TN > T cut

N )

�

m

.

This corresponds to the usual CKKW procedure for LON,N+1+LL in eq. (3.4). It is also

analogous to the Geneva method in ref. [22], where the �N+1-di↵erential FO calculation is

multiplicatively combined with the TN spectrum resummed to higher order. In eq. (3.15), the

spectrum is not the exact derivative of the cumulant anymore, resulting in a residual T cut
N

dependence in the integrated cross section. The e↵ective correction term by which eq. (3.3)

is violated and that gets added to the correct NLON cross section is given by
Z

d�N+1

d�N
(BN+1 � SN+1)(�N+1)

⇥

�N (�̂N ; TN )� 1
⇤

✓(TN > T cut
N ) . (3.16)

In fixed order this is O(↵2
s) and beyond NLON . However, its impact on the perturbative

accuracy depends again on the extent to which the IR singularities of BN+1 are correctly

reproduced by SN+1. If SN+1 contains the full IR singularities, so BN+1 � SN+1 is fi-

nite for TN ! 0, then the leading term in eq. (3.16) scales as T cut
N ↵2

s ln
2(T cut

N /Q) which

is Ocut(↵sT cut
N ). Therefore, in this case the correction can be regarded as a power correction.

If SN+1 does not reproduce the full IR singularities, so that BN+1�SN+1 contains subleading

divergences ⇠ ↵s/TN , then the leading term scales as ↵2
s ln

3(T cut
N /Q). Hence, in this case the

correction is of Ocut(↵
1/2
s ) and clearly violates the NLON+LL accuracy, which allows at most

Ocut(↵2
s) corrections (see the first column of table 1). Note that the perturbative accuracy of

the residual T cut
N dependence in either case here is the same as in eq. (3.4) at LON,N+1+LL.

The reason is that it is determined by the resummation counting and the NLO matching by

itself only improves the FO accuracy.

4 Combining NNLO calculations with LL resummation

As we saw in section 2.2, at NNLO we need events representing N , (N + 1), and (N + 2)

partonic jets, defined through the N -jet and (N + 1)-jet resolution variables TN and TN+1.
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case, since SN+1 contains the full singular structure also above T cut
N , there is no implicit T cut

N

dependence. Strictly speaking, this is true as long as ⇥m and F do not introduce a sensitivity

to small TN .

The full �N+1 dependence in d�mc
�N+1 in eq. (3.7) is determined by SN+1(�N+1) in

the resummation term, i.e., by the approximate �N+1 dependence in the splitting factor

that determines the Sudakov factor. The FO matching correction, d�B�S
�N+1 ⇠ (BN+1 �

SN+1)(�N+1), additively corrects the approximate �N+1 dependence in SN+1 to the full

LON+1 dependence given by BN+1. Another possible approach is to also multiply this term

by the Sudakov factor, or equivalently, directly use the full BN+1 dependence in the resummed

spectrum, such that

d�mc
N

d�N
(T cut

N ) =
d�S

�N

d�N
�N (�N ; T cut

N ) +
d�B�S

N

d�N
(T cut

N ) , (3.15)

d�mc
�N+1

d�N+1
(TN > T cut

N ) =
X

m

⇢

d�S
�N

d�N

�

�

�

�

�N=�̂N

BN+1(�N+1)

BN (�̂N )
�N (�̂N ; TN ) ✓(TN > T cut

N )

�

m

.

This corresponds to the usual CKKW procedure for LON,N+1+LL in eq. (3.4). It is also

analogous to the Geneva method in ref. [22], where the �N+1-di↵erential FO calculation is

multiplicatively combined with the TN spectrum resummed to higher order. In eq. (3.15), the

spectrum is not the exact derivative of the cumulant anymore, resulting in a residual T cut
N

dependence in the integrated cross section. The e↵ective correction term by which eq. (3.3)

is violated and that gets added to the correct NLON cross section is given by
Z

d�N+1

d�N
(BN+1 � SN+1)(�N+1)

⇥

�N (�̂N ; TN )� 1
⇤

✓(TN > T cut
N ) . (3.16)

In fixed order this is O(↵2
s) and beyond NLON . However, its impact on the perturbative

accuracy depends again on the extent to which the IR singularities of BN+1 are correctly

reproduced by SN+1. If SN+1 contains the full IR singularities, so BN+1 � SN+1 is fi-

nite for TN ! 0, then the leading term in eq. (3.16) scales as T cut
N ↵2

s ln
2(T cut

N /Q) which

is Ocut(↵sT cut
N ). Therefore, in this case the correction can be regarded as a power correction.

If SN+1 does not reproduce the full IR singularities, so that BN+1�SN+1 contains subleading

divergences ⇠ ↵s/TN , then the leading term scales as ↵2
s ln

3(T cut
N /Q). Hence, in this case the

correction is of Ocut(↵
1/2
s ) and clearly violates the NLON+LL accuracy, which allows at most

Ocut(↵2
s) corrections (see the first column of table 1). Note that the perturbative accuracy of

the residual T cut
N dependence in either case here is the same as in eq. (3.4) at LON,N+1+LL.

The reason is that it is determined by the resummation counting and the NLO matching by

itself only improves the FO accuracy.

4 Combining NNLO calculations with LL resummation

As we saw in section 2.2, at NNLO we need events representing N , (N + 1), and (N + 2)

partonic jets, defined through the N -jet and (N + 1)-jet resolution variables TN and TN+1.
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N
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nite for TN ! 0, then the leading term in eq. (3.16) scales as T cut
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N /Q) which
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divergences ⇠ ↵s/TN , then the leading term scales as ↵2
s ln
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N /Q). Hence, in this case the

correction is of Ocut(↵
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s ) and clearly violates the NLON+LL accuracy, which allows at most
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s) corrections (see the first column of table 1). Note that the perturbative accuracy of

the residual T cut
N dependence in either case here is the same as in eq. (3.4) at LON,N+1+LL.

The reason is that it is determined by the resummation counting and the NLO matching by

itself only improves the FO accuracy.

4 Combining NNLO calculations with LL resummation

As we saw in section 2.2, at NNLO we need events representing N , (N + 1), and (N + 2)

partonic jets, defined through the N -jet and (N + 1)-jet resolution variables TN and TN+1.
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4.1.2 Case 2

For this case, we use d�mc
N (T cut

N ) as given in eq. (4.7), with its corresponding inclusive

d�mc
�N+1(TN > T cut

N ) given in eq. (4.10), which we repeat here for completeness:

d�mc
N

d�N
(T cut

N ) =



d�C
�N

d�N
+

de�C�S
N

d�N
(T cut

N )

�

�N (�N ; T cut
N ) +

d�B�C
N

d�N
(T cut

N ) ,

d�mc
�N+1

d�N+1
(TN > T cut

N ) =

⇢

d�C
�N

d�N
+

de�C�S
N

d�N
(TN )

�

�N=�̂N

SN+1(�N+1)

BN (�̂N )
✓(TN > T cut

N )

+
de�C�S

�N+1

d�N+1
(TN > T cut

N )

�

�N (�̂N ; TN ) +
d�B�C

�N+1

d�N+1
(TN > T cut

N ) .

The explicit expressions for all ingredients are given in the following. As for case 1, these are

correct to NNLON and NLON+1 and include the correct LL resummation for T cut
N and TN ,

respectively. The resummation terms involving d�C
�N�N and the nonsingular FO matching

terms, d�B�C , are the same as in case 1 [see eq. (4.14) and eqs. (??) and (4.16)] and separately

satisfy the consistency relations in eqs. (3.2) and (3.3).

The di↵erence to case 1 is how the singular matching corrections, de�S�C , are included.

For the cumulant, we have

de�C�S
N

d�N
(T cut

N ) =



d�C�S
N

d�N
(T cut

N )
1

�(1)
N (�N ; T cut

N )

�

NNLON

=
d�C�S

N

d�N
(T cut

N ) (4.20)

+�(1)
N (�N ; T cut

N )

Z

d�N+1

d�N
(CN+1 � S(1)

N+1)(�N+1) ✓[TN (�N+1) > T cut
N ] ,

where d�C�S
N (T cut

N ) is given in eq. (??). The corresponding di↵erential result in the spectrum

is obtained by requiring eq. (3.3),

de�C�S
�N+1

d�N+1
(TN > T cut

N )

=
d�C�S

�N+1

d�N+1
(TN > T cut

N )�
⇢

�(1)
N (�̂N ; TN ) (CN+1 � S(1)

N+1)(�N+1) (4.21)

+
S(1)
N+1(�N+1)

BN (�̂N )

Z

d�0
N+1

d�N

�

CN+1 � S(1)
N+1

�

(�0
N+1) ✓[TN (�0

N+1) > TN ]

�

✓(TN > T cut
N ) ,

where d�C�S
�N+1(TN > T cut

N ) is given in eq. (4.19). One can easily check that with this result

the expression for d�mc
�N+1 in case 2 expands to the correct NLON+1 result.
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+
de�C�S

�N+1

d�N+1
(TN > T cut

N )

�

�N (�̂N ; TN ) +
d�B�C

�N+1

d�N+1
(TN > T cut

N ),

(4.10)

where the various ingredients are discussed in detail in sections 4.1.1 and 4.1.2. For case 1,

the FO singular and nonsingular matching terms are pure FO corrections and to obtain them

it is su�cient to enforce that d�mc
�N+1 expands to the correct NLO cross section. For case 2,

the singular matching correction is more complicated, and its TN dependence is obtained by

taking the derivative of de�C�S
N (T cut

N )�N (T cut
N ) in eq. (4.7) with respect to T cut

N . This ensures

that the singular matching corrections in the spectrum correctly integrate up to cancel the

corresponding T cut
N dependence in the cumulant.10

Before we give the detailed expressions for all ingredients required to construct eqs. (4.4),

(4.7), (4.9), and (4.10), it is instructive to see how the NLO+LL case arises from this notation.

At NLO, we have

d�C
�N

d�N
= (BN + VN )(�N ) +

Z

d�N+1

d�N
CN+1(�N+1) , (4.11)

and the singular matching corrections for the cumulant, d�C�S
N , are given in the second line

of eq. (4.6) [or eq. (4.8) for de�C�S
N ]. The nonsingular matching correction is

d�B�C
N

d�N
(T cut

N ) =

Z

d�N+1

�N
(BN+1 � CN+1)(�N+1) ✓(TN < T cut

N ) . (4.12)

The corresponding results for the di↵erential spectrum are

d�C�S
�N+1

d�N+1
(TN > T cut

N ) =
de�C�S

�N+1

d�N+1
(TN > T cut

N ) = (CN+1 � SN+1)(�N+1) ✓(TN > T cut
N ) ,

d�B�C
�N+1

d�N+1
(TN > T cut

N ) = (BN+1 � CN+1)(�N+1) ✓(TN > T cut
N ) .

(4.13)

Note that d�C�S and de�C�S are equal at this order. They only start to di↵er at NNLO,

where the cross terms in the FO expansion of the product de�C�S
N �N become relevant.

As discussed in section 3.3, the splitting function of Powheg given in eq. (3.14) repro-

duces the full singular dependence of the real emission. Thus, one can choose CN+1 = SN+1,

such that d�C�S
N = 0 and d�C

�N = d�S
�N , and cases 1 and 2 both reduce to eq. (3.7).

For MC@NLO, the splitting function is given in eq. (3.12). It depends on a function

G(TN ), which for the sake of illustration we can choose asG(TN ) = ✓(TN > T cut
N ) (even though

this is not the choice made in the MC@NLO implementation). In this case, the expression

10Notice that there might be points in �N+1

for which BN (�̂N ) = 0 due to either kinematical or PDF

e↵ects. To avoid that the ratio SN+1

(�N+1

)/BN (�̂N ) goes to infinity, one has to define SN+1

such that it

vanishes for these points. This implies that the contributions from these phase space regions are contained in

d�C�S or de�C�S .
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At NLO we find

+
de�C�S

�N+1

d�N+1
(TN > T cut

N )

�

�N (�̂N ; TN ) +
d�B�C

�N+1

d�N+1
(TN > T cut

N ),

(4.10)

where the various ingredients are discussed in detail in sections 4.1.1 and 4.1.2. For case 1,

the FO singular and nonsingular matching terms are pure FO corrections and to obtain them

it is su�cient to enforce that d�mc
�N+1 expands to the correct NLO cross section. For case 2,

the singular matching correction is more complicated, and its TN dependence is obtained by
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N ) in eq. (4.7) with respect to T cut

N . This ensures
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corresponding T cut
N dependence in the cumulant.10

Before we give the detailed expressions for all ingredients required to construct eqs. (4.4),
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Note that d�C�S and de�C�S are equal at this order. They only start to di↵er at NNLO,

where the cross terms in the FO expansion of the product de�C�S
N �N become relevant.

As discussed in section 3.3, the splitting function of Powheg given in eq. (3.14) repro-

duces the full singular dependence of the real emission. Thus, one can choose CN+1 = SN+1,

such that d�C�S
N = 0 and d�C

�N = d�S
�N , and cases 1 and 2 both reduce to eq. (3.7).

For MC@NLO, the splitting function is given in eq. (3.12). It depends on a function

G(TN ), which for the sake of illustration we can choose asG(TN ) = ✓(TN > T cut
N ) (even though

this is not the choice made in the MC@NLO implementation). In this case, the expression

10Notice that there might be points in �N+1

for which BN (�̂N ) = 0 due to either kinematical or PDF

e↵ects. To avoid that the ratio SN+1
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)/BN (�̂N ) goes to infinity, one has to define SN+1

such that it

vanishes for these points. This implies that the contributions from these phase space regions are contained in
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↵sLcut at NLO and ↵2
sL

3
cut at NNLO, which contribute at Ocut(↵

1/2
s ) with the counting of

eq. (2.28).

A potential problem with implementing eq. (4.4) is the presence of explicit logarithms in

d�C�S
N (T cut

N ), which become large as T cut
N is reduced, and in particular d�C�S

N (T cut
N ) diverges

for T cut
N ! 0. While by construction this divergence cancels in physical observables, it could

give rise to events with large or even negative weights. To circumvent this and regulate the

logarithmic divergence, we can alternatively choose to multiply the singular matching terms

with the Sudakov factor and write

Case 2:
d�mc

N

d�N
(T cut

N ) =



d�C
�N

d�N
+

de�C�S
N

d�N
(T cut

N )

�

�N (�N ; T cut
N ) +

d�B�C
N

d�N
(T cut

N ) , (4.7)

where the FO singular matching corrections are now given by

de�C�S
N

d�N
(T cut

N ) =



d�C�S
N

d�N
(T cut

N )
1

�N (�N ; T cut
N )

�

FO

= �
Z

d�N+1

�N
(CN+1 � SN+1)(�N+1) ✓(TN > T cut

N ) +O(↵2
s) . (4.8)

Note that while multiplying with the Sudakov factor helps to suppress the FO T cut
N logarithms

in de�C�S
N (T cut

N ), this choice does not amount to an actual resummation of these logarithms.

A downside of this choice is that it introduces a more complicated T cut
N dependence at all

orders that must be canceled in inclusive N -jet observables. Since de�C�S
N (T cut

N ) can contain

logarithms ↵2
sL

3
cut, multiplying with the Sudakov factor introduces terms of order ↵n

sL
2n�1
cut .

The singular matching correction is always required if the resummation term does not

contain all logarithms of T cut
N to the desired fixed order. Even if SN+1 in eq. (4.6) contains the

full subleading singularities at NLO, as in Powheg where CN+1 = SN+1 so d�C�S
N (T cut

N ) = 0,

at NNLO d�C�S
N (T cut

N ) can still contain terms ⇠ ↵2
sL

2
cut ⇠ Ocut(↵s). Hence, to achieve

NNLON+LL accuracy it is essential to enforce the consistency conditions in eqs. (3.2) and

(3.3) for the d�C�S
N or de�C�S

N contributions. Otherwise these terms can easily generate a

residual T cut
N dependence in inclusive observables that destroys their perturbative accuracy.

To construct the inclusive (N + 1)-jet MC cross section, d�mc
�N+1(TN > T cut

N ), like d�mc
N

we split it into a resummed contribution and FO singular and nonsingular matching correc-

tions. Following the above discussion, these di↵erent contributions are constructed from their

corresponding counterparts in eqs. (4.4) and (4.7) by explicitly enforcing eqs. (3.2) and (3.3).

This gives

Case 1:
d�mc

�N+1

d�N+1
(TN > T cut

N ) =
d�C

�N

d�N

�

�

�

�

�N=�̂N

SN+1(�N+1)

BN (�̂N )
�N (�̂N ; TN ) ✓(TN > T cut

N )

+
d�C�S

�N+1

d�N+1
(TN > T cut

N ) +
d�B�C

�N+1

d�N+1
(TN > T cut

N ) , (4.9)

Case 2:
d�mc

�N+1

d�N+1
(TN > T cut

N ) =

⇢

d�C
�N

d�N
+

de�C�S
N

d�N
(TN )

�

�N=�̂N

SN+1(�N+1)

BN (�̂N )
✓(TN > T cut

N )
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↵sLcut at NLO and ↵2
sL

3
cut at NNLO, which contribute at Ocut(↵

1/2
s ) with the counting of

eq. (2.28).

A potential problem with implementing eq. (4.4) is the presence of explicit logarithms in

d�C�S
N (T cut

N ), which become large as T cut
N is reduced, and in particular d�C�S

N (T cut
N ) diverges

for T cut
N ! 0. While by construction this divergence cancels in physical observables, it could

give rise to events with large or even negative weights. To circumvent this and regulate the

logarithmic divergence, we can alternatively choose to multiply the singular matching terms

with the Sudakov factor and write
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where the FO singular matching corrections are now given by
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Note that while multiplying with the Sudakov factor helps to suppress the FO T cut
N logarithms

in de�C�S
N (T cut

N ), this choice does not amount to an actual resummation of these logarithms.

A downside of this choice is that it introduces a more complicated T cut
N dependence at all

orders that must be canceled in inclusive N -jet observables. Since de�C�S
N (T cut

N ) can contain

logarithms ↵2
sL

3
cut, multiplying with the Sudakov factor introduces terms of order ↵n

sL
2n�1
cut .

The singular matching correction is always required if the resummation term does not

contain all logarithms of T cut
N to the desired fixed order. Even if SN+1 in eq. (4.6) contains the

full subleading singularities at NLO, as in Powheg where CN+1 = SN+1 so d�C�S
N (T cut

N ) = 0,

at NNLO d�C�S
N (T cut

N ) can still contain terms ⇠ ↵2
sL

2
cut ⇠ Ocut(↵s). Hence, to achieve

NNLON+LL accuracy it is essential to enforce the consistency conditions in eqs. (3.2) and

(3.3) for the d�C�S
N or de�C�S

N contributions. Otherwise these terms can easily generate a

residual T cut
N dependence in inclusive observables that destroys their perturbative accuracy.

To construct the inclusive (N + 1)-jet MC cross section, d�mc
�N+1(TN > T cut

N ), like d�mc
N

we split it into a resummed contribution and FO singular and nonsingular matching correc-

tions. Following the above discussion, these di↵erent contributions are constructed from their

corresponding counterparts in eqs. (4.4) and (4.7) by explicitly enforcing eqs. (3.2) and (3.3).

This gives
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d�N+1
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N ) =
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�
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+
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Let’s make the choice BN+1 = CN+1 = SN+1

+
de�C�S

�N+1

d�N+1
(TN > T cut

N )

�

�N (�̂N ; TN ) +
d�B�C

�N+1

d�N+1
(TN > T cut

N ),

(4.10)

where the various ingredients are discussed in detail in sections 4.1.1 and 4.1.2. For case 1,

the FO singular and nonsingular matching terms are pure FO corrections and to obtain them

it is su�cient to enforce that d�mc
�N+1 expands to the correct NLO cross section. For case 2,

the singular matching correction is more complicated, and its TN dependence is obtained by

taking the derivative of de�C�S
N (T cut

N )�N (T cut
N ) in eq. (4.7) with respect to T cut

N . This ensures

that the singular matching corrections in the spectrum correctly integrate up to cancel the

corresponding T cut
N dependence in the cumulant.10

Before we give the detailed expressions for all ingredients required to construct eqs. (4.4),

(4.7), (4.9), and (4.10), it is instructive to see how the NLO+LL case arises from this notation.

At NLO, we have

d�C
�N

d�N
= (BN + VN )(�N ) +

Z

d�N+1

d�N
CN+1(�N+1) , (4.11)

d�NLO
�N

d�N
= (BN + VN )(�N ) +

Z

d�N+1

d�N
BN+1(�N+1) , (4.12)

and the singular matching corrections for the cumulant, d�C�S
N , are given in the second line

of eq. (4.6) [or eq. (4.8) for de�C�S
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Note that d�C�S and de�C�S are equal at this order. They only start to di↵er at NNLO,

where the cross terms in the FO expansion of the product de�C�S
N �N become relevant.

As discussed in section 3.3, the splitting function of Powheg given in eq. (3.14) repro-

duces the full singular dependence of the real emission. Thus, one can choose CN+1 = SN+1,

such that d�C�S
N = 0 and d�C

�N = d�S
�N , and cases 1 and 2 both reduce to eq. (3.7).

10Notice that there might be points in �N+1

for which BN (�̂N ) = 0 due to either kinematical or PDF

e↵ects. To avoid that the ratio SN+1

(�N+1

)/BN (�̂N ) goes to infinity, one has to define SN+1

such that it

vanishes for these points. This implies that the contributions from these phase space regions are contained in

d�C�S or de�C�S .
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↵sLcut at NLO and ↵2
sL

3
cut at NNLO, which contribute at Ocut(↵

1/2
s ) with the counting of

eq. (2.28).

A potential problem with implementing eq. (4.4) is the presence of explicit logarithms in

d�C�S
N (T cut

N ), which become large as T cut
N is reduced, and in particular d�C�S

N (T cut
N ) diverges

for T cut
N ! 0. While by construction this divergence cancels in physical observables, it could

give rise to events with large or even negative weights. To circumvent this and regulate the

logarithmic divergence, we can alternatively choose to multiply the singular matching terms

with the Sudakov factor and write

Case 2:
d�mc

N

d�N
(T cut

N ) =



d�C
�N

d�N
+

de�C�S
N

d�N
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�
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N ) +
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N ) , (4.7)

where the FO singular matching corrections are now given by
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�
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Z
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(CN+1 � SN+1)(�N+1) ✓(TN > T cut

N ) +O(↵2
s) . (4.8)

Note that while multiplying with the Sudakov factor helps to suppress the FO T cut
N logarithms

in de�C�S
N (T cut

N ), this choice does not amount to an actual resummation of these logarithms.

A downside of this choice is that it introduces a more complicated T cut
N dependence at all

orders that must be canceled in inclusive N -jet observables. Since de�C�S
N (T cut

N ) can contain

logarithms ↵2
sL

3
cut, multiplying with the Sudakov factor introduces terms of order ↵n

sL
2n�1
cut .

The singular matching correction is always required if the resummation term does not

contain all logarithms of T cut
N to the desired fixed order. Even if SN+1 in eq. (4.6) contains the

full subleading singularities at NLO, as in Powheg where CN+1 = SN+1 so d�C�S
N (T cut

N ) = 0,

at NNLO d�C�S
N (T cut

N ) can still contain terms ⇠ ↵2
sL

2
cut ⇠ Ocut(↵s). Hence, to achieve

NNLON+LL accuracy it is essential to enforce the consistency conditions in eqs. (3.2) and

(3.3) for the d�C�S
N or de�C�S

N contributions. Otherwise these terms can easily generate a

residual T cut
N dependence in inclusive observables that destroys their perturbative accuracy.

To construct the inclusive (N + 1)-jet MC cross section, d�mc
�N+1(TN > T cut

N ), like d�mc
N

we split it into a resummed contribution and FO singular and nonsingular matching correc-

tions. Following the above discussion, these di↵erent contributions are constructed from their

corresponding counterparts in eqs. (4.4) and (4.7) by explicitly enforcing eqs. (3.2) and (3.3).

This gives
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0

case, since SN+1 contains the full singular structure also above T cut
N , there is no implicit T cut

N

dependence. Strictly speaking, this is true as long as ⇥m and F do not introduce a sensitivity

to small TN .

The full �N+1 dependence in d�mc
�N+1 in eq. (3.7) is determined by SN+1(�N+1) in

the resummation term, i.e., by the approximate �N+1 dependence in the splitting factor

that determines the Sudakov factor. The FO matching correction, d�B�S
�N+1 ⇠ (BN+1 �

SN+1)(�N+1), additively corrects the approximate �N+1 dependence in SN+1 to the full

LON+1 dependence given by BN+1. Another possible approach is to also multiply this term

by the Sudakov factor, or equivalently, directly use the full BN+1 dependence in the resummed

spectrum, such that

d�mc
N

d�N
(T cut

N ) =
d�S

�N

d�N
�N (�N ; T cut

N ) +
d�B�S

N

d�N
(T cut

N ) , (3.15)

d�mc
�N+1

d�N+1
(TN > T cut

N ) =
X

m

⇢

d�S
�N

d�N

�

�

�

�

�N=�̂N

BN+1(�N+1)

BN (�̂N )
�N (�̂N ; TN ) ✓(TN > T cut

N )

�

m

.

This corresponds to the usual CKKW procedure for LON,N+1+LL in eq. (3.4). It is also

analogous to the Geneva method in ref. [22], where the �N+1-di↵erential FO calculation is

multiplicatively combined with the TN spectrum resummed to higher order. In eq. (3.15), the

spectrum is not the exact derivative of the cumulant anymore, resulting in a residual T cut
N

dependence in the integrated cross section. The e↵ective correction term by which eq. (3.3)

is violated and that gets added to the correct NLON cross section is given by
Z

d�N+1

d�N
(BN+1 � SN+1)(�N+1)

⇥

�N (�̂N ; TN )� 1
⇤

✓(TN > T cut
N ) . (3.16)

In fixed order this is O(↵2
s) and beyond NLON . However, its impact on the perturbative

accuracy depends again on the extent to which the IR singularities of BN+1 are correctly

reproduced by SN+1. If SN+1 contains the full IR singularities, so BN+1 � SN+1 is fi-

nite for TN ! 0, then the leading term in eq. (3.16) scales as T cut
N ↵2

s ln
2(T cut

N /Q) which

is Ocut(↵sT cut
N ). Therefore, in this case the correction can be regarded as a power correction.

If SN+1 does not reproduce the full IR singularities, so that BN+1�SN+1 contains subleading

divergences ⇠ ↵s/TN , then the leading term scales as ↵2
s ln

3(T cut
N /Q). Hence, in this case the

correction is of Ocut(↵
1/2
s ) and clearly violates the NLON+LL accuracy, which allows at most

Ocut(↵2
s) corrections (see the first column of table 1). Note that the perturbative accuracy of

the residual T cut
N dependence in either case here is the same as in eq. (3.4) at LON,N+1+LL.

The reason is that it is determined by the resummation counting and the NLO matching by

itself only improves the FO accuracy.

4 Combining NNLO calculations with LL resummation

As we saw in section 2.2, at NNLO we need events representing N , (N + 1), and (N + 2)

partonic jets, defined through the N -jet and (N + 1)-jet resolution variables TN and TN+1.
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�

�
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BN+1(�N+1)

BN (�̂N )
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N )

�

m
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This corresponds to the usual CKKW procedure for LON,N+1+LL in eq. (3.4). It is also

analogous to the Geneva method in ref. [22], where the �N+1-di↵erential FO calculation is

multiplicatively combined with the TN spectrum resummed to higher order. In eq. (3.15), the

spectrum is not the exact derivative of the cumulant anymore, resulting in a residual T cut
N

dependence in the integrated cross section. The e↵ective correction term by which eq. (3.3)

is violated and that gets added to the correct NLON cross section is given by
Z

d�N+1

d�N
(BN+1 � SN+1)(�N+1)

⇥

�N (�̂N ; TN )� 1
⇤

✓(TN > T cut
N ) . (3.16)

In fixed order this is O(↵2
s) and beyond NLON . However, its impact on the perturbative

accuracy depends again on the extent to which the IR singularities of BN+1 are correctly

reproduced by SN+1. If SN+1 contains the full IR singularities, so BN+1 � SN+1 is fi-

nite for TN ! 0, then the leading term in eq. (3.16) scales as T cut
N ↵2

s ln
2(T cut

N /Q) which

is Ocut(↵sT cut
N ). Therefore, in this case the correction can be regarded as a power correction.

If SN+1 does not reproduce the full IR singularities, so that BN+1�SN+1 contains subleading

divergences ⇠ ↵s/TN , then the leading term scales as ↵2
s ln

3(T cut
N /Q). Hence, in this case the

correction is of Ocut(↵
1/2
s ) and clearly violates the NLON+LL accuracy, which allows at most

Ocut(↵2
s) corrections (see the first column of table 1). Note that the perturbative accuracy of

the residual T cut
N dependence in either case here is the same as in eq. (3.4) at LON,N+1+LL.

The reason is that it is determined by the resummation counting and the NLO matching by

itself only improves the FO accuracy.

4 Combining NNLO calculations with LL resummation

As we saw in section 2.2, at NNLO we need events representing N , (N + 1), and (N + 2)

partonic jets, defined through the N -jet and (N + 1)-jet resolution variables TN and TN+1.
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In fixed order this is O(↵2
s) and beyond NLON . However, its impact on the perturbative

accuracy depends again on the extent to which the IR singularities of BN+1 are correctly
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If SN+1 does not reproduce the full IR singularities, so that BN+1�SN+1 contains subleading

divergences ⇠ ↵s/TN , then the leading term scales as ↵2
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N /Q). Hence, in this case the
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s ) and clearly violates the NLON+LL accuracy, which allows at most
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s) corrections (see the first column of table 1). Note that the perturbative accuracy of

the residual T cut
N dependence in either case here is the same as in eq. (3.4) at LON,N+1+LL.

The reason is that it is determined by the resummation counting and the NLO matching by

itself only improves the FO accuracy.

4 Combining NNLO calculations with LL resummation
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4.1.2 Case 2

For this case, we use d�mc
N (T cut

N ) as given in eq. (4.7), with its corresponding inclusive

d�mc
�N+1(TN > T cut

N ) given in eq. (4.10), which we repeat here for completeness:

d�mc
N

d�N
(T cut

N ) =



d�C
�N

d�N
+

de�C�S
N

d�N
(T cut

N )

�

�N (�N ; T cut
N ) +

d�B�C
N

d�N
(T cut

N ) ,

d�mc
�N+1

d�N+1
(TN > T cut

N ) =

⇢

d�C
�N

d�N
+

de�C�S
N

d�N
(TN )

�

�N=�̂N

SN+1(�N+1)

BN (�̂N )
✓(TN > T cut

N )

+
de�C�S

�N+1

d�N+1
(TN > T cut

N )

�

�N (�̂N ; TN ) +
d�B�C

�N+1

d�N+1
(TN > T cut

N ) .

The explicit expressions for all ingredients are given in the following. As for case 1, these are

correct to NNLON and NLON+1 and include the correct LL resummation for T cut
N and TN ,

respectively. The resummation terms involving d�C
�N�N and the nonsingular FO matching

terms, d�B�C , are the same as in case 1 [see eq. (4.14) and eqs. (??) and (4.16)] and separately

satisfy the consistency relations in eqs. (3.2) and (3.3).

The di↵erence to case 1 is how the singular matching corrections, de�S�C , are included.

For the cumulant, we have

de�C�S
N

d�N
(T cut

N ) =



d�C�S
N

d�N
(T cut

N )
1

�(1)
N (�N ; T cut

N )

�

NNLON

=
d�C�S

N

d�N
(T cut

N ) (4.20)

+�(1)
N (�N ; T cut

N )

Z

d�N+1

d�N
(CN+1 � S(1)

N+1)(�N+1) ✓[TN (�N+1) > T cut
N ] ,

where d�C�S
N (T cut

N ) is given in eq. (??). The corresponding di↵erential result in the spectrum

is obtained by requiring eq. (3.3),

de�C�S
�N+1

d�N+1
(TN > T cut

N )

=
d�C�S

�N+1

d�N+1
(TN > T cut

N )�
⇢

�(1)
N (�̂N ; TN ) (CN+1 � S(1)

N+1)(�N+1) (4.21)

+
S(1)
N+1(�N+1)

BN (�̂N )

Z

d�0
N+1

d�N

�

CN+1 � S(1)
N+1

�

(�0
N+1) ✓[TN (�0

N+1) > TN ]

�

✓(TN > T cut
N ) ,

where d�C�S
�N+1(TN > T cut

N ) is given in eq. (4.19). One can easily check that with this result

the expression for d�mc
�N+1 in case 2 expands to the correct NLON+1 result.
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+
de�C�S

�N+1

d�N+1
(TN > T cut

N )

�

�N (�̂N ; TN ) +
d�B�C

�N+1

d�N+1
(TN > T cut

N ),

(4.10)

where the various ingredients are discussed in detail in sections 4.1.1 and 4.1.2. For case 1,

the FO singular and nonsingular matching terms are pure FO corrections and to obtain them

it is su�cient to enforce that d�mc
�N+1 expands to the correct NLO cross section. For case 2,

the singular matching correction is more complicated, and its TN dependence is obtained by

taking the derivative of de�C�S
N (T cut

N )�N (T cut
N ) in eq. (4.7) with respect to T cut

N . This ensures

that the singular matching corrections in the spectrum correctly integrate up to cancel the

corresponding T cut
N dependence in the cumulant.10

Before we give the detailed expressions for all ingredients required to construct eqs. (4.4),

(4.7), (4.9), and (4.10), it is instructive to see how the NLO+LL case arises from this notation.

At NLO, we have

d�C
�N

d�N
= (BN + VN )(�N ) +

Z

d�N+1

d�N
CN+1(�N+1) , (4.11)

d�NLO
�N

d�N
= (BN + VN )(�N ) +

Z

d�N+1

d�N
BN+1(�N+1) , (4.12)

and the singular matching corrections for the cumulant, d�C�S
N , are given in the second line

of eq. (4.6) [or eq. (4.8) for de�C�S
N ]. The nonsingular matching correction is

d�B�C
N

d�N
(T cut

N ) =

Z

d�N+1

�N
(BN+1 � CN+1)(�N+1) ✓(TN < T cut

N ) . (4.13)

The corresponding results for the di↵erential spectrum are

d�C�S
�N+1

d�N+1
(TN > T cut

N ) =
de�C�S

�N+1

d�N+1
(TN > T cut

N ) = (CN+1 � SN+1)(�N+1) ✓(TN > T cut
N ) ,

d�B�C
�N+1

d�N+1
(TN > T cut

N ) = (BN+1 � CN+1)(�N+1) ✓(TN > T cut
N ) .

(4.14)

Note that d�C�S and de�C�S are equal at this order. They only start to di↵er at NNLO,

where the cross terms in the FO expansion of the product de�C�S
N �N become relevant.

As discussed in section 3.3, the splitting function of Powheg given in eq. (3.14) repro-

duces the full singular dependence of the real emission. Thus, one can choose CN+1 = SN+1,

such that d�C�S
N = 0 and d�C

�N = d�S
�N , and cases 1 and 2 both reduce to eq. (3.7).

10Notice that there might be points in �N+1

for which BN (�̂N ) = 0 due to either kinematical or PDF

e↵ects. To avoid that the ratio SN+1

(�N+1

)/BN (�̂N ) goes to infinity, one has to define SN+1

such that it

vanishes for these points. This implies that the contributions from these phase space regions are contained in

d�C�S or de�C�S .
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case, since SN+1 contains the full singular structure also above T cut
N , there is no implicit T cut

N

dependence. Strictly speaking, this is true as long as ⇥m and F do not introduce a sensitivity

to small TN .

The full �N+1 dependence in d�mc
�N+1 in eq. (3.7) is determined by SN+1(�N+1) in

the resummation term, i.e., by the approximate �N+1 dependence in the splitting factor

that determines the Sudakov factor. The FO matching correction, d�B�S
�N+1 ⇠ (BN+1 �

SN+1)(�N+1), additively corrects the approximate �N+1 dependence in SN+1 to the full

LON+1 dependence given by BN+1. Another possible approach is to also multiply this term

by the Sudakov factor, or equivalently, directly use the full BN+1 dependence in the resummed

spectrum, such that

d�mc
N

d�N
(T cut

N ) =
d�S

�N

d�N
�N (�N ; T cut

N ) +
d�B�S

N

d�N
(T cut

N ) , (3.15)

d�mc
�N+1

d�N+1
(TN > T cut

N ) =
X

m

⇢

d�S
�N

d�N

�

�

�

�

�N=�̂N

BN+1(�N+1)

BN (�̂N )
�N (�̂N ; TN ) ✓(TN > T cut

N )

�

m

.

This corresponds to the usual CKKW procedure for LON,N+1+LL in eq. (3.4). It is also

analogous to the Geneva method in ref. [22], where the �N+1-di↵erential FO calculation is

multiplicatively combined with the TN spectrum resummed to higher order. In eq. (3.15), the

spectrum is not the exact derivative of the cumulant anymore, resulting in a residual T cut
N

dependence in the integrated cross section. The e↵ective correction term by which eq. (3.3)

is violated and that gets added to the correct NLON cross section is given by
Z

d�N+1

d�N
(BN+1 � SN+1)(�N+1)

⇥

�N (�̂N ; TN )� 1
⇤

✓(TN > T cut
N ) . (3.16)

In fixed order this is O(↵2
s) and beyond NLON . However, its impact on the perturbative

accuracy depends again on the extent to which the IR singularities of BN+1 are correctly

reproduced by SN+1. If SN+1 contains the full IR singularities, so BN+1 � SN+1 is fi-

nite for TN ! 0, then the leading term in eq. (3.16) scales as T cut
N ↵2

s ln
2(T cut

N /Q) which

is Ocut(↵sT cut
N ). Therefore, in this case the correction can be regarded as a power correction.

If SN+1 does not reproduce the full IR singularities, so that BN+1�SN+1 contains subleading

divergences ⇠ ↵s/TN , then the leading term scales as ↵2
s ln

3(T cut
N /Q). Hence, in this case the

correction is of Ocut(↵
1/2
s ) and clearly violates the NLON+LL accuracy, which allows at most

Ocut(↵2
s) corrections (see the first column of table 1). Note that the perturbative accuracy of

the residual T cut
N dependence in either case here is the same as in eq. (3.4) at LON,N+1+LL.

The reason is that it is determined by the resummation counting and the NLO matching by

itself only improves the FO accuracy.

4 Combining NNLO calculations with LL resummation

As we saw in section 2.2, at NNLO we need events representing N , (N + 1), and (N + 2)

partonic jets, defined through the N -jet and (N + 1)-jet resolution variables TN and TN+1.
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SN+1)(�N+1), additively corrects the approximate �N+1 dependence in SN+1 to the full
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spectrum, such that
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This corresponds to the usual CKKW procedure for LON,N+1+LL in eq. (3.4). It is also

analogous to the Geneva method in ref. [22], where the �N+1-di↵erential FO calculation is

multiplicatively combined with the TN spectrum resummed to higher order. In eq. (3.15), the

spectrum is not the exact derivative of the cumulant anymore, resulting in a residual T cut
N

dependence in the integrated cross section. The e↵ective correction term by which eq. (3.3)

is violated and that gets added to the correct NLON cross section is given by
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In fixed order this is O(↵2
s) and beyond NLON . However, its impact on the perturbative

accuracy depends again on the extent to which the IR singularities of BN+1 are correctly

reproduced by SN+1. If SN+1 contains the full IR singularities, so BN+1 � SN+1 is fi-

nite for TN ! 0, then the leading term in eq. (3.16) scales as T cut
N ↵2

s ln
2(T cut

N /Q) which

is Ocut(↵sT cut
N ). Therefore, in this case the correction can be regarded as a power correction.

If SN+1 does not reproduce the full IR singularities, so that BN+1�SN+1 contains subleading

divergences ⇠ ↵s/TN , then the leading term scales as ↵2
s ln

3(T cut
N /Q). Hence, in this case the

correction is of Ocut(↵
1/2
s ) and clearly violates the NLON+LL accuracy, which allows at most

Ocut(↵2
s) corrections (see the first column of table 1). Note that the perturbative accuracy of

the residual T cut
N dependence in either case here is the same as in eq. (3.4) at LON,N+1+LL.

The reason is that it is determined by the resummation counting and the NLO matching by

itself only improves the FO accuracy.

4 Combining NNLO calculations with LL resummation

As we saw in section 2.2, at NNLO we need events representing N , (N + 1), and (N + 2)

partonic jets, defined through the N -jet and (N + 1)-jet resolution variables TN and TN+1.
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+
de�C�S

�N+1

d�N+1
(TN > T cut

N )

�

�N (�̂N ; TN ) +
d�B�C

�N+1

d�N+1
(TN > T cut

N ),

(4.10)

where the various ingredients are discussed in detail in sections 4.1.1 and 4.1.2. For case 1,

the FO singular and nonsingular matching terms are pure FO corrections and to obtain them

it is su�cient to enforce that d�mc
�N+1 expands to the correct NLO cross section. For case 2,

the singular matching correction is more complicated, and its TN dependence is obtained by

taking the derivative of de�C�S
N (T cut

N )�N (T cut
N ) in eq. (4.7) with respect to T cut

N . This ensures

that the singular matching corrections in the spectrum correctly integrate up to cancel the

corresponding T cut
N dependence in the cumulant.10

Before we give the detailed expressions for all ingredients required to construct eqs. (4.4),

(4.7), (4.9), and (4.10), it is instructive to see how the NLO+LL case arises from this notation.

At NLO, we have

d�C
�N

d�N
= (BN + VN )(�N ) +

Z

d�N+1

d�N
CN+1(�N+1) , (4.11)

d�NLO
�N

d�N
= (BN + VN )(�N ) +

Z

d�N+1

d�N
BN+1(�N+1) , (4.12)

and the singular matching corrections for the cumulant, d�C�S
N , are given in the second line

of eq. (4.6) [or eq. (4.8) for de�C�S
N ]. The nonsingular matching correction is

d�B�C
N

d�N
(T cut

N ) =

Z

d�N+1

�N
(BN+1 � CN+1)(�N+1) ✓(TN < T cut

N ) . (4.13)

The corresponding results for the di↵erential spectrum are

d�C�S
�N+1

d�N+1
(TN > T cut

N ) =
de�C�S

�N+1

d�N+1
(TN > T cut

N ) = (CN+1 � SN+1)(�N+1) ✓(TN > T cut
N ) ,

d�B�C
�N+1

d�N+1
(TN > T cut

N ) = (BN+1 � CN+1)(�N+1) ✓(TN > T cut
N ) .

(4.14)

Note that d�C�S and de�C�S are equal at this order. They only start to di↵er at NNLO,

where the cross terms in the FO expansion of the product de�C�S
N �N become relevant.

As discussed in section 3.3, the splitting function of Powheg given in eq. (3.14) repro-

duces the full singular dependence of the real emission. Thus, one can choose CN+1 = SN+1,

such that d�C�S
N = 0 and d�C

�N = d�S
�N , and cases 1 and 2 both reduce to eq. (3.7).

10Notice that there might be points in �N+1

for which BN (�̂N ) = 0 due to either kinematical or PDF

e↵ects. To avoid that the ratio SN+1

(�N+1

)/BN (�̂N ) goes to infinity, one has to define SN+1

such that it

vanishes for these points. This implies that the contributions from these phase space regions are contained in

d�C�S or de�C�S .
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This corresponds to the usual CKKW procedure for LON,N+1+LL in eq. (3.4). It is also

analogous to the Geneva method in ref. [22], where the �N+1-di↵erential FO calculation is

multiplicatively combined with the TN spectrum resummed to higher order. In eq. (3.15), the

spectrum is not the exact derivative of the cumulant anymore, resulting in a residual T cut
N

dependence in the integrated cross section. The e↵ective correction term by which eq. (3.3)

is violated and that gets added to the correct NLON cross section is given by
Z
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d�N
(BN+1 � SN+1)(�N+1)

⇥

�N (�̂N ; TN )� 1
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✓(TN > T cut
N ) . (3.16)

In fixed order this is O(↵2
s) and beyond NLON . However, its impact on the perturbative

accuracy depends again on the extent to which the IR singularities of BN+1 are correctly

reproduced by SN+1. If SN+1 contains the full IR singularities, so BN+1 � SN+1 is fi-
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N /Q) which

is Ocut(↵sT cut
N ). Therefore, in this case the correction can be regarded as a power correction.

If SN+1 does not reproduce the full IR singularities, so that BN+1�SN+1 contains subleading

divergences ⇠ ↵s/TN , then the leading term scales as ↵2
s ln

3(T cut
N /Q). Hence, in this case the

correction is of Ocut(↵
1/2
s ) and clearly violates the NLON+LL accuracy, which allows at most

Ocut(↵2
s) corrections (see the first column of table 1). Note that the perturbative accuracy of

the residual T cut
N dependence in either case here is the same as in eq. (3.4) at LON,N+1+LL.

The reason is that it is determined by the resummation counting and the NLO matching by

itself only improves the FO accuracy.

4 Combining NNLO calculations with LL resummation

As we saw in section 2.2, at NNLO we need events representing N , (N + 1), and (N + 2)

partonic jets, defined through the N -jet and (N + 1)-jet resolution variables TN and TN+1.
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4.1.2 Case 2

For this case, we use d�mc
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N ) as given in eq. (4.7), with its corresponding inclusive

d�mc
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N ) given in eq. (4.10), which we repeat here for completeness:
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The explicit expressions for all ingredients are given in the following. As for case 1, these are

correct to NNLON and NLON+1 and include the correct LL resummation for T cut
N and TN ,

respectively. The resummation terms involving d�C
�N�N and the nonsingular FO matching

terms, d�B�C , are the same as in case 1 [see eq. (4.14) and eqs. (??) and (4.16)] and separately

satisfy the consistency relations in eqs. (3.2) and (3.3).

The di↵erence to case 1 is how the singular matching corrections, de�S�C , are included.

For the cumulant, we have
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where d�C�S
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N ) is given in eq. (??). The corresponding di↵erential result in the spectrum

is obtained by requiring eq. (3.3),
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where d�C�S
�N+1(TN > T cut

N ) is given in eq. (4.19). One can easily check that with this result

the expression for d�mc
�N+1 in case 2 expands to the correct NLON+1 result.
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The explicit expressions for all ingredients are given in the following. As for case 1, these are

correct to NNLON and NLON+1 and include the correct LL resummation for T cut
N and TN ,

respectively. The resummation terms involving d�C
�N�N and the nonsingular FO matching

terms, d�B�C , are the same as in case 1 [see eq. (4.14) and eqs. (??) and (4.16)] and separately

satisfy the consistency relations in eqs. (3.2) and (3.3).

The di↵erence to case 1 is how the singular matching corrections, de�S�C , are included.

For the cumulant, we have
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where d�C�S
N (T cut

N ) is given in eq. (??). The corresponding di↵erential result in the spectrum

is obtained by requiring eq. (3.3),
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where d�C�S
�N+1(TN > T cut

N ) is given in eq. (4.19). One can easily check that with this result

the expression for d�mc
�N+1 in case 2 expands to the correct NLON+1 result.
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the expression for d�mc
�N+1 in case 2 expands to the correct NLON+1 result.
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+
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�

�N (�̂N ; TN ) +
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�N+1

d�N+1
(TN > T cut
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(4.10)

where the various ingredients are discussed in detail in sections 4.1.1 and 4.1.2. For case 1,

the FO singular and nonsingular matching terms are pure FO corrections and to obtain them

it is su�cient to enforce that d�mc
�N+1 expands to the correct NLO cross section. For case 2,

the singular matching correction is more complicated, and its TN dependence is obtained by

taking the derivative of de�C�S
N (T cut

N )�N (T cut
N ) in eq. (4.7) with respect to T cut

N . This ensures

that the singular matching corrections in the spectrum correctly integrate up to cancel the

corresponding T cut
N dependence in the cumulant.10

Before we give the detailed expressions for all ingredients required to construct eqs. (4.4),

(4.7), (4.9), and (4.10), it is instructive to see how the NLO+LL case arises from this notation.

At NLO, we have

d�C
�N

d�N
= (BN + VN )(�N ) +

Z
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d�N
CN+1(�N+1) , (4.11)

d�NLO
�N

d�N
= (BN + VN )(�N ) +

Z

d�N+1

d�N
BN+1(�N+1) , (4.12)

and the singular matching corrections for the cumulant, d�C�S
N , are given in the second line

of eq. (4.6) [or eq. (4.8) for de�C�S
N ]. The nonsingular matching correction is

d�B�C
N

d�N
(T cut

N ) =

Z

d�N+1

�N
(BN+1 � CN+1)(�N+1) ✓(TN < T cut

N ) . (4.13)

The corresponding results for the di↵erential spectrum are

d�C�S
�N+1

d�N+1
(TN > T cut

N ) =
de�C�S

�N+1

d�N+1
(TN > T cut

N ) = (CN+1 � SN+1)(�N+1) ✓(TN > T cut
N ) ,

d�B�C
�N+1

d�N+1
(TN > T cut

N ) = (BN+1 � CN+1)(�N+1) ✓(TN > T cut
N ) .

(4.14)

Note that d�C�S and de�C�S are equal at this order. They only start to di↵er at NNLO,

where the cross terms in the FO expansion of the product de�C�S
N �N become relevant.

As discussed in section 3.3, the splitting function of Powheg given in eq. (3.14) repro-

duces the full singular dependence of the real emission. Thus, one can choose CN+1 = SN+1,

such that d�C�S
N = 0 and d�C

�N = d�S
�N , and cases 1 and 2 both reduce to eq. (3.7).

10Notice that there might be points in �N+1

for which BN (�̂N ) = 0 due to either kinematical or PDF

e↵ects. To avoid that the ratio SN+1

(�N+1

)/BN (�̂N ) goes to infinity, one has to define SN+1

such that it

vanishes for these points. This implies that the contributions from these phase space regions are contained in

d�C�S or de�C�S .
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case, since SN+1 contains the full singular structure also above T cut
N , there is no implicit T cut

N

dependence. Strictly speaking, this is true as long as ⇥m and F do not introduce a sensitivity

to small TN .

The full �N+1 dependence in d�mc
�N+1 in eq. (3.7) is determined by SN+1(�N+1) in

the resummation term, i.e., by the approximate �N+1 dependence in the splitting factor

that determines the Sudakov factor. The FO matching correction, d�B�S
�N+1 ⇠ (BN+1 �

SN+1)(�N+1), additively corrects the approximate �N+1 dependence in SN+1 to the full

LON+1 dependence given by BN+1. Another possible approach is to also multiply this term

by the Sudakov factor, or equivalently, directly use the full BN+1 dependence in the resummed

spectrum, such that

d�mc
N

d�N
(T cut

N ) =
d�S

�N

d�N
�N (�N ; T cut

N ) +
d�B�S

N

d�N
(T cut

N ) , (3.15)

d�mc
�N+1

d�N+1
(TN > T cut

N ) =
X

m

⇢

d�S
�N

d�N

�

�

�

�

�N=�̂N

BN+1(�N+1)

BN (�̂N )
�N (�̂N ; TN ) ✓(TN > T cut

N )

�

m

.

This corresponds to the usual CKKW procedure for LON,N+1+LL in eq. (3.4). It is also

analogous to the Geneva method in ref. [22], where the �N+1-di↵erential FO calculation is

multiplicatively combined with the TN spectrum resummed to higher order. In eq. (3.15), the

spectrum is not the exact derivative of the cumulant anymore, resulting in a residual T cut
N

dependence in the integrated cross section. The e↵ective correction term by which eq. (3.3)

is violated and that gets added to the correct NLON cross section is given by
Z

d�N+1

d�N
(BN+1 � SN+1)(�N+1)

⇥

�N (�̂N ; TN )� 1
⇤

✓(TN > T cut
N ) . (3.16)

In fixed order this is O(↵2
s) and beyond NLON . However, its impact on the perturbative

accuracy depends again on the extent to which the IR singularities of BN+1 are correctly

reproduced by SN+1. If SN+1 contains the full IR singularities, so BN+1 � SN+1 is fi-

nite for TN ! 0, then the leading term in eq. (3.16) scales as T cut
N ↵2

s ln
2(T cut

N /Q) which

is Ocut(↵sT cut
N ). Therefore, in this case the correction can be regarded as a power correction.

If SN+1 does not reproduce the full IR singularities, so that BN+1�SN+1 contains subleading

divergences ⇠ ↵s/TN , then the leading term scales as ↵2
s ln

3(T cut
N /Q). Hence, in this case the

correction is of Ocut(↵
1/2
s ) and clearly violates the NLON+LL accuracy, which allows at most

Ocut(↵2
s) corrections (see the first column of table 1). Note that the perturbative accuracy of

the residual T cut
N dependence in either case here is the same as in eq. (3.4) at LON,N+1+LL.

The reason is that it is determined by the resummation counting and the NLO matching by

itself only improves the FO accuracy.

4 Combining NNLO calculations with LL resummation

As we saw in section 2.2, at NNLO we need events representing N , (N + 1), and (N + 2)

partonic jets, defined through the N -jet and (N + 1)-jet resolution variables TN and TN+1.
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the residual T cut
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itself only improves the FO accuracy.
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With the same choice BN+1 = CN+1 = SN+1

4.1.2 Case 2

For this case, we use d�mc
N (T cut

N ) as given in eq. (4.7), with its corresponding inclusive

d�mc
�N+1(TN > T cut

N ) given in eq. (4.10), which we repeat here for completeness:
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The explicit expressions for all ingredients are given in the following. As for case 1, these are

correct to NNLON and NLON+1 and include the correct LL resummation for T cut
N and TN ,

respectively. The resummation terms involving d�C
�N�N and the nonsingular FO matching

terms, d�B�C , are the same as in case 1 [see eq. (4.14) and eqs. (??) and (4.16)] and separately

satisfy the consistency relations in eqs. (3.2) and (3.3).

The di↵erence to case 1 is how the singular matching corrections, de�S�C , are included.

For the cumulant, we have
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where d�C�S
N (T cut

N ) is given in eq. (??). The corresponding di↵erential result in the spectrum

is obtained by requiring eq. (3.3),
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where d�C�S
�N+1(TN > T cut

N ) is given in eq. (4.19). One can easily check that with this result

the expression for d�mc
�N+1 in case 2 expands to the correct NLON+1 result.
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where the various ingredients are discussed in detail in sections 4.1.1 and 4.1.2. For case 1,

the FO singular and nonsingular matching terms are pure FO corrections and to obtain them

it is su�cient to enforce that d�mc
�N+1 expands to the correct NLO cross section. For case 2,

the singular matching correction is more complicated, and its TN dependence is obtained by

taking the derivative of de�C�S
N (T cut

N )�N (T cut
N ) in eq. (4.7) with respect to T cut

N . This ensures

that the singular matching corrections in the spectrum correctly integrate up to cancel the

corresponding T cut
N dependence in the cumulant.10

Before we give the detailed expressions for all ingredients required to construct eqs. (4.4),

(4.7), (4.9), and (4.10), it is instructive to see how the NLO+LL case arises from this notation.

At NLO, we have
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and the singular matching corrections for the cumulant, d�C�S
N , are given in the second line

of eq. (4.6) [or eq. (4.8) for de�C�S
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The corresponding results for the di↵erential spectrum are
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Note that d�C�S and de�C�S are equal at this order. They only start to di↵er at NNLO,

where the cross terms in the FO expansion of the product de�C�S
N �N become relevant.

As discussed in section 3.3, the splitting function of Powheg given in eq. (3.14) repro-

duces the full singular dependence of the real emission. Thus, one can choose CN+1 = SN+1,

such that d�C�S
N = 0 and d�C

�N = d�S
�N , and cases 1 and 2 both reduce to eq. (3.7).

10Notice that there might be points in �N+1

for which BN (�̂N ) = 0 due to either kinematical or PDF

e↵ects. To avoid that the ratio SN+1

(�N+1

)/BN (�̂N ) goes to infinity, one has to define SN+1

such that it

vanishes for these points. This implies that the contributions from these phase space regions are contained in

d�C�S or de�C�S .
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d�mc
N

d�N
(T cut

N ) =



d�C
�N

d�N
+

de�C�S
N

d�N
(T cut

N )

�

�N (�N ; T cut
N ) +

d�B�C
N

d�N
(T cut

N ) ,

d�mc
�N+1

d�N+1
(TN > T cut

N ) =

⇢

d�C
�N

d�N
+

de�C�S
N

d�N
(TN )

�

�N=�̂N

SN+1(�N+1)

BN (�̂N )
✓(TN > T cut

N )

+
de�C�S

�N+1

d�N+1
(TN > T cut

N )

�

�N (�̂N ; TN ) +
d�B�C

�N+1

d�N+1
(TN > T cut

N ) .

The explicit expressions for all ingredients are given in the following. As for case 1, these are

correct to NNLON and NLON+1 and include the correct LL resummation for T cut
N and TN ,

respectively. The resummation terms involving d�C
�N�N and the nonsingular FO matching

terms, d�B�C , are the same as in case 1 [see eq. (4.14) and eqs. (??) and (4.16)] and separately

satisfy the consistency relations in eqs. (3.2) and (3.3).

The di↵erence to case 1 is how the singular matching corrections, de�S�C , are included.

For the cumulant, we have

de�C�S
N

d�N
(T cut

N ) =



d�C�S
N

d�N
(T cut

N )
1

�(1)
N (�N ; T cut

N )

�

NNLON

=
d�C�S

N

d�N
(T cut

N ) (4.20)

+�(1)
N (�N ; T cut

N )

Z

d�N+1

d�N
(CN+1 � S(1)

N+1)(�N+1) ✓[TN (�N+1) > T cut
N ] ,

where d�C�S
N (T cut

N ) is given in eq. (??). The corresponding di↵erential result in the spectrum

is obtained by requiring eq. (3.3),

de�C�S
�N+1

d�N+1
(TN > T cut

N )

=
d�C�S

�N+1

d�N+1
(TN > T cut

N )�
⇢

�(1)
N (�̂N ; TN ) (CN+1 � S(1)

N+1)(�N+1) (4.21)

+
S(1)
N+1(�N+1)

BN (�̂N )

Z

d�0
N+1

d�N

�

CN+1 � S(1)
N+1

�

(�0
N+1) ✓[TN (�0

N+1) > TN ]

�

✓(TN > T cut
N ) ,

where d�C�S
�N+1(TN > T cut

N ) is given in eq. (4.19). One can easily check that with this result

the expression for d�mc
�N+1 in case 2 expands to the correct NLON+1 result.
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=

+
de�C�S

�N+1

d�N+1
(TN > T cut

N )

�

�N (�̂N ; TN ) +
d�B�C

�N+1

d�N+1
(TN > T cut

N ),

(4.10)

where the various ingredients are discussed in detail in sections 4.1.1 and 4.1.2. For case 1,

the FO singular and nonsingular matching terms are pure FO corrections and to obtain them

it is su�cient to enforce that d�mc
�N+1 expands to the correct NLO cross section. For case 2,

the singular matching correction is more complicated, and its TN dependence is obtained by

taking the derivative of de�C�S
N (T cut

N )�N (T cut
N ) in eq. (4.7) with respect to T cut

N . This ensures

that the singular matching corrections in the spectrum correctly integrate up to cancel the

corresponding T cut
N dependence in the cumulant.10

Before we give the detailed expressions for all ingredients required to construct eqs. (4.4),

(4.7), (4.9), and (4.10), it is instructive to see how the NLO+LL case arises from this notation.

At NLO, we have

d�C
�N

d�N
= (BN + VN )(�N ) +

Z

d�N+1

d�N
CN+1(�N+1) , (4.11)

d�NLO
�N

d�N
= (BN + VN )(�N ) +

Z

d�N+1

d�N
BN+1(�N+1) , (4.12)

and the singular matching corrections for the cumulant, d�C�S
N , are given in the second line

of eq. (4.6) [or eq. (4.8) for de�C�S
N ]. The nonsingular matching correction is

d�B�C
N

d�N
(T cut

N ) =

Z

d�N+1

�N
(BN+1 � CN+1)(�N+1) ✓(TN < T cut

N ) . (4.13)

The corresponding results for the di↵erential spectrum are

d�C�S
�N+1

d�N+1
(TN > T cut

N ) =
de�C�S

�N+1

d�N+1
(TN > T cut

N ) = (CN+1 � SN+1)(�N+1) ✓(TN > T cut
N ) ,

d�B�C
�N+1

d�N+1
(TN > T cut

N ) = (BN+1 � CN+1)(�N+1) ✓(TN > T cut
N ) .

(4.14)

Note that d�C�S and de�C�S are equal at this order. They only start to di↵er at NNLO,

where the cross terms in the FO expansion of the product de�C�S
N �N become relevant.

As discussed in section 3.3, the splitting function of Powheg given in eq. (3.14) repro-

duces the full singular dependence of the real emission. Thus, one can choose CN+1 = SN+1,

such that d�C�S
N = 0 and d�C

�N = d�S
�N , and cases 1 and 2 both reduce to eq. (3.7).

10Notice that there might be points in �N+1

for which BN (�̂N ) = 0 due to either kinematical or PDF

e↵ects. To avoid that the ratio SN+1

(�N+1

)/BN (�̂N ) goes to infinity, one has to define SN+1

such that it

vanishes for these points. This implies that the contributions from these phase space regions are contained in

d�C�S or de�C�S .
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+
de�C�S

�N+1

d�N+1
(TN > T cut

N )

�

�N (�̂N ; TN ) +
d�B�C

�N+1

d�N+1
(TN > T cut

N ),

(4.10)

where the various ingredients are discussed in detail in sections 4.1.1 and 4.1.2. For case 1,

the FO singular and nonsingular matching terms are pure FO corrections and to obtain them

it is su�cient to enforce that d�mc
�N+1 expands to the correct NLO cross section. For case 2,

the singular matching correction is more complicated, and its TN dependence is obtained by

taking the derivative of de�C�S
N (T cut

N )�N (T cut
N ) in eq. (4.7) with respect to T cut

N . This ensures

that the singular matching corrections in the spectrum correctly integrate up to cancel the

corresponding T cut
N dependence in the cumulant.10

Before we give the detailed expressions for all ingredients required to construct eqs. (4.4),

(4.7), (4.9), and (4.10), it is instructive to see how the NLO+LL case arises from this notation.

At NLO, we have

d�C
�N

d�N
= (BN + VN )(�N ) +

Z

d�N+1

d�N
CN+1(�N+1) , (4.11)

d�NLO
�N

d�N
= (BN + VN )(�N ) +

Z

d�N+1

d�N
BN+1(�N+1) , (4.12)

and the singular matching corrections for the cumulant, d�C�S
N , are given in the second line

of eq. (4.6) [or eq. (4.8) for de�C�S
N ]. The nonsingular matching correction is

d�B�C
N

d�N
(T cut

N ) =

Z

d�N+1

�N
(BN+1 � CN+1)(�N+1) ✓(TN < T cut

N ) . (4.13)

The corresponding results for the di↵erential spectrum are

d�C�S
�N+1

d�N+1
(TN > T cut

N ) =
de�C�S

�N+1

d�N+1
(TN > T cut

N ) = (CN+1 � SN+1)(�N+1) ✓(TN > T cut
N ) ,

d�B�C
�N+1

d�N+1
(TN > T cut

N ) = (BN+1 � CN+1)(�N+1) ✓(TN > T cut
N ) .

(4.14)

Note that d�C�S and de�C�S are equal at this order. They only start to di↵er at NNLO,

where the cross terms in the FO expansion of the product de�C�S
N �N become relevant.

As discussed in section 3.3, the splitting function of Powheg given in eq. (3.14) repro-

duces the full singular dependence of the real emission. Thus, one can choose CN+1 = SN+1,

such that d�C�S
N = 0 and d�C

�N = d�S
�N , and cases 1 and 2 both reduce to eq. (3.7).

10Notice that there might be points in �N+1

for which BN (�̂N ) = 0 due to either kinematical or PDF

e↵ects. To avoid that the ratio SN+1

(�N+1

)/BN (�̂N ) goes to infinity, one has to define SN+1

such that it

vanishes for these points. This implies that the contributions from these phase space regions are contained in

d�C�S or de�C�S .
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+
de�C�S

�N+1

d�N+1
(TN > T cut

N )

�

�N (�̂N ; TN ) +
d�B�C

�N+1

d�N+1
(TN > T cut

N ),

(4.10)

where the various ingredients are discussed in detail in sections 4.1.1 and 4.1.2. For case 1,

the FO singular and nonsingular matching terms are pure FO corrections and to obtain them

it is su�cient to enforce that d�mc
�N+1 expands to the correct NLO cross section. For case 2,

the singular matching correction is more complicated, and its TN dependence is obtained by

taking the derivative of de�C�S
N (T cut

N )�N (T cut
N ) in eq. (4.7) with respect to T cut

N . This ensures

that the singular matching corrections in the spectrum correctly integrate up to cancel the

corresponding T cut
N dependence in the cumulant.10

Before we give the detailed expressions for all ingredients required to construct eqs. (4.4),

(4.7), (4.9), and (4.10), it is instructive to see how the NLO+LL case arises from this notation.

At NLO, we have

d�C
�N

d�N
= (BN + VN )(�N ) +

Z

d�N+1

d�N
CN+1(�N+1) , (4.11)

d�NLO
�N

d�N
= (BN + VN )(�N ) +

Z

d�N+1

d�N
BN+1(�N+1) , (4.12)

and the singular matching corrections for the cumulant, d�C�S
N , are given in the second line

of eq. (4.6) [or eq. (4.8) for de�C�S
N ]. The nonsingular matching correction is

d�B�C
N

d�N
(T cut

N ) =

Z

d�N+1

�N
(BN+1 � CN+1)(�N+1) ✓(TN < T cut

N ) . (4.13)

The corresponding results for the di↵erential spectrum are

d�C�S
�N+1

d�N+1
(TN > T cut

N ) =
de�C�S

�N+1

d�N+1
(TN > T cut

N ) = (CN+1 � SN+1)(�N+1) ✓(TN > T cut
N ) ,

d�B�C
�N+1

d�N+1
(TN > T cut

N ) = (BN+1 � CN+1)(�N+1) ✓(TN > T cut
N ) .

(4.14)

Note that d�C�S and de�C�S are equal at this order. They only start to di↵er at NNLO,

where the cross terms in the FO expansion of the product de�C�S
N �N become relevant.

As discussed in section 3.3, the splitting function of Powheg given in eq. (3.14) repro-

duces the full singular dependence of the real emission. Thus, one can choose CN+1 = SN+1,

such that d�C�S
N = 0 and d�C

�N = d�S
�N , and cases 1 and 2 both reduce to eq. (3.7).

10Notice that there might be points in �N+1

for which BN (�̂N ) = 0 due to either kinematical or PDF

e↵ects. To avoid that the ratio SN+1

(�N+1

)/BN (�̂N ) goes to infinity, one has to define SN+1

such that it

vanishes for these points. This implies that the contributions from these phase space regions are contained in

d�C�S or de�C�S .
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↵sLcut at NLO and ↵2
sL

3
cut at NNLO, which contribute at Ocut(↵

1/2
s ) with the counting of

eq. (2.28).

A potential problem with implementing eq. (4.4) is the presence of explicit logarithms in

d�C�S
N (T cut

N ), which become large as T cut
N is reduced, and in particular d�C�S

N (T cut
N ) diverges

for T cut
N ! 0. While by construction this divergence cancels in physical observables, it could

give rise to events with large or even negative weights. To circumvent this and regulate the

logarithmic divergence, we can alternatively choose to multiply the singular matching terms

with the Sudakov factor and write

Case 2:
d�mc

N

d�N
(T cut

N ) =



d�C
�N

d�N
+

de�C�S
N

d�N
(T cut

N )

�

�N (�N ; T cut
N ) +

d�B�C
N

d�N
(T cut

N ) , (4.7)

where the FO singular matching corrections are now given by

de�C�S
N

d�N
(T cut

N ) =



d�C�S
N

d�N
(T cut

N )
1

�N (�N ; T cut
N )

�

FO

= �
Z

d�N+1

�N
(CN+1 � SN+1)(�N+1) ✓(TN > T cut

N ) +O(↵2
s) . (4.8)

Note that while multiplying with the Sudakov factor helps to suppress the FO T cut
N logarithms

in de�C�S
N (T cut

N ), this choice does not amount to an actual resummation of these logarithms.

A downside of this choice is that it introduces a more complicated T cut
N dependence at all

orders that must be canceled in inclusive N -jet observables. Since de�C�S
N (T cut

N ) can contain

logarithms ↵2
sL

3
cut, multiplying with the Sudakov factor introduces terms of order ↵n

sL
2n�1
cut .

The singular matching correction is always required if the resummation term does not

contain all logarithms of T cut
N to the desired fixed order. Even if SN+1 in eq. (4.6) contains the

full subleading singularities at NLO, as in Powheg where CN+1 = SN+1 so d�C�S
N (T cut

N ) = 0,

at NNLO d�C�S
N (T cut

N ) can still contain terms ⇠ ↵2
sL

2
cut ⇠ Ocut(↵s). Hence, to achieve

NNLON+LL accuracy it is essential to enforce the consistency conditions in eqs. (3.2) and

(3.3) for the d�C�S
N or de�C�S

N contributions. Otherwise these terms can easily generate a

residual T cut
N dependence in inclusive observables that destroys their perturbative accuracy.

To construct the inclusive (N + 1)-jet MC cross section, d�mc
�N+1(TN > T cut

N ), like d�mc
N

we split it into a resummed contribution and FO singular and nonsingular matching correc-

tions. Following the above discussion, these di↵erent contributions are constructed from their

corresponding counterparts in eqs. (4.4) and (4.7) by explicitly enforcing eqs. (3.2) and (3.3).

This gives

Case 1:
d�mc

�N+1

d�N+1
(TN > T cut

N ) =
d�C

�N

d�N

�

�

�

�

�N=�̂N

SN+1(�N+1)

BN (�̂N )
�N (�̂N ; TN ) ✓(TN > T cut

N )

+
d�C�S

�N+1

d�N+1
(TN > T cut

N ) +
d�B�C

�N+1

d�N+1
(TN > T cut

N ) , (4.9)

Case 2:
d�mc

�N+1

d�N+1
(TN > T cut

N ) =

⇢

d�C
�N

d�N
+

de�C�S
N

d�N
(TN )

�

�N=�̂N

SN+1(�N+1)

BN (�̂N )
✓(TN > T cut

N )
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+
de�C�S

�N+1

d�N+1
(TN > T cut

N )

�

�N (�̂N ; TN ) +
d�B�C

�N+1

d�N+1
(TN > T cut

N ),

(4.10)

where the various ingredients are discussed in detail in sections 4.1.1 and 4.1.2. For case 1,

the FO singular and nonsingular matching terms are pure FO corrections and to obtain them

it is su�cient to enforce that d�mc
�N+1 expands to the correct NLO cross section. For case 2,

the singular matching correction is more complicated, and its TN dependence is obtained by

taking the derivative of de�C�S
N (T cut

N )�N (T cut
N ) in eq. (4.7) with respect to T cut

N . This ensures

that the singular matching corrections in the spectrum correctly integrate up to cancel the

corresponding T cut
N dependence in the cumulant.10

Before we give the detailed expressions for all ingredients required to construct eqs. (4.4),

(4.7), (4.9), and (4.10), it is instructive to see how the NLO+LL case arises from this notation.

At NLO, we have

d�C
�N

d�N
= (BN + VN )(�N ) +

Z

d�N+1

d�N
CN+1(�N+1) , (4.11)

d�NLO
�N

d�N
= (BN + VN )(�N ) +

Z

d�N+1

d�N
BN+1(�N+1) , (4.12)

and the singular matching corrections for the cumulant, d�C�S
N , are given in the second line

of eq. (4.6) [or eq. (4.8) for de�C�S
N ]. The nonsingular matching correction is

d�B�C
N

d�N
(T cut

N ) =

Z

d�N+1

�N
(BN+1 � CN+1)(�N+1) ✓(TN < T cut

N ) . (4.13)

The corresponding results for the di↵erential spectrum are

d�C�S
�N+1

d�N+1
(TN > T cut

N ) =
de�C�S

�N+1

d�N+1
(TN > T cut

N ) = (CN+1 � SN+1)(�N+1) ✓(TN > T cut
N ) ,

d�B�C
�N+1

d�N+1
(TN > T cut

N ) = (BN+1 � CN+1)(�N+1) ✓(TN > T cut
N ) .

(4.14)

Note that d�C�S and de�C�S are equal at this order. They only start to di↵er at NNLO,

where the cross terms in the FO expansion of the product de�C�S
N �N become relevant.

As discussed in section 3.3, the splitting function of Powheg given in eq. (3.14) repro-

duces the full singular dependence of the real emission. Thus, one can choose CN+1 = SN+1,

such that d�C�S
N = 0 and d�C

�N = d�S
�N , and cases 1 and 2 both reduce to eq. (3.7).

10Notice that there might be points in �N+1

for which BN (�̂N ) = 0 due to either kinematical or PDF

e↵ects. To avoid that the ratio SN+1

(�N+1

)/BN (�̂N ) goes to infinity, one has to define SN+1

such that it

vanishes for these points. This implies that the contributions from these phase space regions are contained in

d�C�S or de�C�S .
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case, since SN+1 contains the full singular structure also above T cut
N , there is no implicit T cut

N

dependence. Strictly speaking, this is true as long as ⇥m and F do not introduce a sensitivity

to small TN .

The full �N+1 dependence in d�mc
�N+1 in eq. (3.7) is determined by SN+1(�N+1) in

the resummation term, i.e., by the approximate �N+1 dependence in the splitting factor

that determines the Sudakov factor. The FO matching correction, d�B�S
�N+1 ⇠ (BN+1 �

SN+1)(�N+1), additively corrects the approximate �N+1 dependence in SN+1 to the full

LON+1 dependence given by BN+1. Another possible approach is to also multiply this term

by the Sudakov factor, or equivalently, directly use the full BN+1 dependence in the resummed

spectrum, such that

d�mc
N

d�N
(T cut

N ) =
d�S

�N

d�N
�N (�N ; T cut

N ) +
d�B�S

N

d�N
(T cut

N ) , (3.15)

d�mc
�N+1

d�N+1
(TN > T cut

N ) =
X

m

⇢

d�S
�N

d�N

�

�

�

�

�N=�̂N

BN+1(�N+1)

BN (�̂N )
�N (�̂N ; TN ) ✓(TN > T cut

N )

�

m

.

This corresponds to the usual CKKW procedure for LON,N+1+LL in eq. (3.4). It is also

analogous to the Geneva method in ref. [22], where the �N+1-di↵erential FO calculation is

multiplicatively combined with the TN spectrum resummed to higher order. In eq. (3.15), the

spectrum is not the exact derivative of the cumulant anymore, resulting in a residual T cut
N

dependence in the integrated cross section. The e↵ective correction term by which eq. (3.3)

is violated and that gets added to the correct NLON cross section is given by
Z

d�N+1

d�N
(BN+1 � SN+1)(�N+1)

⇥

�N (�̂N ; TN )� 1
⇤

✓(TN > T cut
N ) . (3.16)

In fixed order this is O(↵2
s) and beyond NLON . However, its impact on the perturbative

accuracy depends again on the extent to which the IR singularities of BN+1 are correctly

reproduced by SN+1. If SN+1 contains the full IR singularities, so BN+1 � SN+1 is fi-

nite for TN ! 0, then the leading term in eq. (3.16) scales as T cut
N ↵2

s ln
2(T cut

N /Q) which

is Ocut(↵sT cut
N ). Therefore, in this case the correction can be regarded as a power correction.

If SN+1 does not reproduce the full IR singularities, so that BN+1�SN+1 contains subleading

divergences ⇠ ↵s/TN , then the leading term scales as ↵2
s ln

3(T cut
N /Q). Hence, in this case the

correction is of Ocut(↵
1/2
s ) and clearly violates the NLON+LL accuracy, which allows at most

Ocut(↵2
s) corrections (see the first column of table 1). Note that the perturbative accuracy of

the residual T cut
N dependence in either case here is the same as in eq. (3.4) at LON,N+1+LL.

The reason is that it is determined by the resummation counting and the NLO matching by

itself only improves the FO accuracy.

4 Combining NNLO calculations with LL resummation

As we saw in section 2.2, at NNLO we need events representing N , (N + 1), and (N + 2)

partonic jets, defined through the N -jet and (N + 1)-jet resolution variables TN and TN+1.
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case, since SN+1 contains the full singular structure also above T cut
N , there is no implicit T cut

N

dependence. Strictly speaking, this is true as long as ⇥m and F do not introduce a sensitivity

to small TN .

The full �N+1 dependence in d�mc
�N+1 in eq. (3.7) is determined by SN+1(�N+1) in

the resummation term, i.e., by the approximate �N+1 dependence in the splitting factor

that determines the Sudakov factor. The FO matching correction, d�B�S
�N+1 ⇠ (BN+1 �

SN+1)(�N+1), additively corrects the approximate �N+1 dependence in SN+1 to the full

LON+1 dependence given by BN+1. Another possible approach is to also multiply this term

by the Sudakov factor, or equivalently, directly use the full BN+1 dependence in the resummed

spectrum, such that

d�mc
N

d�N
(T cut

N ) =
d�S

�N

d�N
�N (�N ; T cut

N ) +
d�B�S

N

d�N
(T cut

N ) , (3.15)

d�mc
�N+1

d�N+1
(TN > T cut

N ) =
X

m

⇢

d�S
�N

d�N

�

�

�

�

�N=�̂N

BN+1(�N+1)

BN (�̂N )
�N (�̂N ; TN ) ✓(TN > T cut

N )

�

m

.

This corresponds to the usual CKKW procedure for LON,N+1+LL in eq. (3.4). It is also

analogous to the Geneva method in ref. [22], where the �N+1-di↵erential FO calculation is

multiplicatively combined with the TN spectrum resummed to higher order. In eq. (3.15), the

spectrum is not the exact derivative of the cumulant anymore, resulting in a residual T cut
N
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In fixed order this is O(↵2
s) and beyond NLON . However, its impact on the perturbative

accuracy depends again on the extent to which the IR singularities of BN+1 are correctly
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N /Q) which
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N ). Therefore, in this case the correction can be regarded as a power correction.
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As we saw in section 2.2, at NNLO we need events representing N , (N + 1), and (N + 2)

partonic jets, defined through the N -jet and (N + 1)-jet resolution variables TN and TN+1.
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4.1.2 Case 2

For this case, we use d�mc
N (T cut

N ) as given in eq. (4.7), with its corresponding inclusive

d�mc
�N+1(TN > T cut

N ) given in eq. (4.10), which we repeat here for completeness:
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N ) =


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�

�N (�N ; T cut
N ) +

d�B�C
N

d�N
(T cut

N ) ,

d�mc
�N+1

d�N+1
(TN > T cut

N ) =

⇢

d�C
�N

d�N
+

de�C�S
N

d�N
(TN )

�

�N=�̂N
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d�B�C

�N+1

d�N+1
(TN > T cut

N ) .

The explicit expressions for all ingredients are given in the following. As for case 1, these are

correct to NNLON and NLON+1 and include the correct LL resummation for T cut
N and TN ,

respectively. The resummation terms involving d�C
�N�N and the nonsingular FO matching

terms, d�B�C , are the same as in case 1 [see eq. (4.14) and eqs. (??) and (4.16)] and separately

satisfy the consistency relations in eqs. (3.2) and (3.3).

The di↵erence to case 1 is how the singular matching corrections, de�S�C , are included.

For the cumulant, we have
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
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N )
1

�(1)
N (�N ; T cut
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NNLON
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(T cut

N ) (4.20)

+�(1)
N (�N ; T cut

N )

Z

d�N+1

d�N
(CN+1 � S(1)

N+1)(�N+1) ✓[TN (�N+1) > T cut
N ] ,

where d�C�S
N (T cut

N ) is given in eq. (??). The corresponding di↵erential result in the spectrum

is obtained by requiring eq. (3.3),
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⇢
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N+1) > TN ]

�

✓(TN > T cut
N ) ,

where d�C�S
�N+1(TN > T cut

N ) is given in eq. (4.19). One can easily check that with this result

the expression for d�mc
�N+1 in case 2 expands to the correct NLON+1 result.
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The explicit expressions for all ingredients are given in the following. As for case 1, these are

correct to NNLON and NLON+1 and include the correct LL resummation for T cut
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�N�N and the nonsingular FO matching

terms, d�B�C , are the same as in case 1 [see eq. (4.14) and eqs. (??) and (4.16)] and separately
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the expression for d�mc
�N+1 in case 2 expands to the correct NLON+1 result.
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(4.10)

where the various ingredients are discussed in detail in sections 4.1.1 and 4.1.2. For case 1,

the FO singular and nonsingular matching terms are pure FO corrections and to obtain them

it is su�cient to enforce that d�mc
�N+1 expands to the correct NLO cross section. For case 2,

the singular matching correction is more complicated, and its TN dependence is obtained by

taking the derivative of de�C�S
N (T cut

N )�N (T cut
N ) in eq. (4.7) with respect to T cut

N . This ensures

that the singular matching corrections in the spectrum correctly integrate up to cancel the

corresponding T cut
N dependence in the cumulant.10

Before we give the detailed expressions for all ingredients required to construct eqs. (4.4),

(4.7), (4.9), and (4.10), it is instructive to see how the NLO+LL case arises from this notation.

At NLO, we have

d�C
�N

d�N
= (BN + VN )(�N ) +

Z

d�N+1

d�N
CN+1(�N+1) , (4.11)

d�NLO
�N

d�N
= (BN + VN )(�N ) +

Z

d�N+1

d�N
BN+1(�N+1) , (4.12)

and the singular matching corrections for the cumulant, d�C�S
N , are given in the second line

of eq. (4.6) [or eq. (4.8) for de�C�S
N ]. The nonsingular matching correction is

d�B�C
N

d�N
(T cut

N ) =

Z

d�N+1

�N
(BN+1 � CN+1)(�N+1) ✓(TN < T cut

N ) . (4.13)

The corresponding results for the di↵erential spectrum are
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(TN > T cut
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�N+1

d�N+1
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d�N+1
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N ) = (BN+1 � CN+1)(�N+1) ✓(TN > T cut
N ) .

(4.14)

Note that d�C�S and de�C�S are equal at this order. They only start to di↵er at NNLO,

where the cross terms in the FO expansion of the product de�C�S
N �N become relevant.

As discussed in section 3.3, the splitting function of Powheg given in eq. (3.14) repro-

duces the full singular dependence of the real emission. Thus, one can choose CN+1 = SN+1,

such that d�C�S
N = 0 and d�C

�N = d�S
�N , and cases 1 and 2 both reduce to eq. (3.7).

10Notice that there might be points in �N+1

for which BN (�̂N ) = 0 due to either kinematical or PDF

e↵ects. To avoid that the ratio SN+1

(�N+1

)/BN (�̂N ) goes to infinity, one has to define SN+1

such that it

vanishes for these points. This implies that the contributions from these phase space regions are contained in

d�C�S or de�C�S .
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case, since SN+1 contains the full singular structure also above T cut
N , there is no implicit T cut

N

dependence. Strictly speaking, this is true as long as ⇥m and F do not introduce a sensitivity

to small TN .

The full �N+1 dependence in d�mc
�N+1 in eq. (3.7) is determined by SN+1(�N+1) in

the resummation term, i.e., by the approximate �N+1 dependence in the splitting factor

that determines the Sudakov factor. The FO matching correction, d�B�S
�N+1 ⇠ (BN+1 �

SN+1)(�N+1), additively corrects the approximate �N+1 dependence in SN+1 to the full

LON+1 dependence given by BN+1. Another possible approach is to also multiply this term

by the Sudakov factor, or equivalently, directly use the full BN+1 dependence in the resummed

spectrum, such that
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d�N
�N (�N ; T cut
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N

d�N
(T cut
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(TN > T cut

N ) =
X

m

⇢

d�S
�N

d�N

�

�

�

�

�N=�̂N

BN+1(�N+1)

BN (�̂N )
�N (�̂N ; TN ) ✓(TN > T cut

N )

�

m

.

This corresponds to the usual CKKW procedure for LON,N+1+LL in eq. (3.4). It is also

analogous to the Geneva method in ref. [22], where the �N+1-di↵erential FO calculation is

multiplicatively combined with the TN spectrum resummed to higher order. In eq. (3.15), the

spectrum is not the exact derivative of the cumulant anymore, resulting in a residual T cut
N

dependence in the integrated cross section. The e↵ective correction term by which eq. (3.3)

is violated and that gets added to the correct NLON cross section is given by
Z

d�N+1

d�N
(BN+1 � SN+1)(�N+1)

⇥

�N (�̂N ; TN )� 1
⇤

✓(TN > T cut
N ) . (3.16)

In fixed order this is O(↵2
s) and beyond NLON . However, its impact on the perturbative

accuracy depends again on the extent to which the IR singularities of BN+1 are correctly

reproduced by SN+1. If SN+1 contains the full IR singularities, so BN+1 � SN+1 is fi-

nite for TN ! 0, then the leading term in eq. (3.16) scales as T cut
N ↵2

s ln
2(T cut

N /Q) which

is Ocut(↵sT cut
N ). Therefore, in this case the correction can be regarded as a power correction.

If SN+1 does not reproduce the full IR singularities, so that BN+1�SN+1 contains subleading

divergences ⇠ ↵s/TN , then the leading term scales as ↵2
s ln

3(T cut
N /Q). Hence, in this case the

correction is of Ocut(↵
1/2
s ) and clearly violates the NLON+LL accuracy, which allows at most

Ocut(↵2
s) corrections (see the first column of table 1). Note that the perturbative accuracy of

the residual T cut
N dependence in either case here is the same as in eq. (3.4) at LON,N+1+LL.

The reason is that it is determined by the resummation counting and the NLO matching by

itself only improves the FO accuracy.

4 Combining NNLO calculations with LL resummation

As we saw in section 2.2, at NNLO we need events representing N , (N + 1), and (N + 2)

partonic jets, defined through the N -jet and (N + 1)-jet resolution variables TN and TN+1.
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4.1.2 Case 2

For this case, we use d�mc
N (T cut

N ) as given in eq. (4.7), with its corresponding inclusive

d�mc
�N+1(TN > T cut

N ) given in eq. (4.10), which we repeat here for completeness:

d�mc
N

d�N
(T cut

N ) =



d�C
�N

d�N
+

de�C�S
N

d�N
(T cut

N )

�

�N (�N ; T cut
N ) +

d�B�C
N

d�N
(T cut

N ) ,

d�mc
�N+1

d�N+1
(TN > T cut

N ) =

⇢

d�C
�N

d�N
+

de�C�S
N

d�N
(TN )

�

�N=�̂N

SN+1(�N+1)

BN (�̂N )
✓(TN > T cut

N )

+
de�C�S

�N+1

d�N+1
(TN > T cut

N )

�

�N (�̂N ; TN ) +
d�B�C

�N+1

d�N+1
(TN > T cut

N ) .

The explicit expressions for all ingredients are given in the following. As for case 1, these are

correct to NNLON and NLON+1 and include the correct LL resummation for T cut
N and TN ,

respectively. The resummation terms involving d�C
�N�N and the nonsingular FO matching

terms, d�B�C , are the same as in case 1 [see eq. (4.14) and eqs. (??) and (4.16)] and separately

satisfy the consistency relations in eqs. (3.2) and (3.3).

The di↵erence to case 1 is how the singular matching corrections, de�S�C , are included.

For the cumulant, we have

de�C�S
N

d�N
(T cut

N ) =



d�C�S
N

d�N
(T cut

N )
1

�(1)
N (�N ; T cut

N )

�

NNLON

=
d�C�S

N

d�N
(T cut

N ) (4.20)

+�(1)
N (�N ; T cut

N )

Z

d�N+1

d�N
(CN+1 � S(1)

N+1)(�N+1) ✓[TN (�N+1) > T cut
N ] ,

where d�C�S
N (T cut

N ) is given in eq. (??). The corresponding di↵erential result in the spectrum

is obtained by requiring eq. (3.3),

de�C�S
�N+1

d�N+1
(TN > T cut

N )

=
d�C�S

�N+1

d�N+1
(TN > T cut

N )�
⇢

�(1)
N (�̂N ; TN ) (CN+1 � S(1)

N+1)(�N+1) (4.21)

+
S(1)
N+1(�N+1)

BN (�̂N )

Z

d�0
N+1

d�N

�

CN+1 � S(1)
N+1

�

(�0
N+1) ✓[TN (�0

N+1) > TN ]

�

✓(TN > T cut
N ) ,

where d�C�S
�N+1(TN > T cut

N ) is given in eq. (4.19). One can easily check that with this result

the expression for d�mc
�N+1 in case 2 expands to the correct NLON+1 result.
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where d�C�S
N (T cut

N ) is given in eq. (??). The corresponding di↵erential result in the spectrum

is obtained by requiring eq. (3.3),
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the expression for d�mc
�N+1 in case 2 expands to the correct NLON+1 result.
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+
de�C�S

�N+1

d�N+1
(TN > T cut

N )

�

�N (�̂N ; TN ) +
d�B�C

�N+1

d�N+1
(TN > T cut

N ),

(4.10)

where the various ingredients are discussed in detail in sections 4.1.1 and 4.1.2. For case 1,

the FO singular and nonsingular matching terms are pure FO corrections and to obtain them

it is su�cient to enforce that d�mc
�N+1 expands to the correct NLO cross section. For case 2,

the singular matching correction is more complicated, and its TN dependence is obtained by

taking the derivative of de�C�S
N (T cut

N )�N (T cut
N ) in eq. (4.7) with respect to T cut

N . This ensures

that the singular matching corrections in the spectrum correctly integrate up to cancel the

corresponding T cut
N dependence in the cumulant.10

Before we give the detailed expressions for all ingredients required to construct eqs. (4.4),

(4.7), (4.9), and (4.10), it is instructive to see how the NLO+LL case arises from this notation.

At NLO, we have

d�C
�N

d�N
= (BN + VN )(�N ) +

Z

d�N+1

d�N
CN+1(�N+1) , (4.11)

d�NLO
�N

d�N
= (BN + VN )(�N ) +

Z

d�N+1

d�N
BN+1(�N+1) , (4.12)

and the singular matching corrections for the cumulant, d�C�S
N , are given in the second line

of eq. (4.6) [or eq. (4.8) for de�C�S
N ]. The nonsingular matching correction is

d�B�C
N

d�N
(T cut

N ) =

Z

d�N+1

�N
(BN+1 � CN+1)(�N+1) ✓(TN < T cut

N ) . (4.13)

The corresponding results for the di↵erential spectrum are

d�C�S
�N+1

d�N+1
(TN > T cut

N ) =
de�C�S

�N+1

d�N+1
(TN > T cut

N ) = (CN+1 � SN+1)(�N+1) ✓(TN > T cut
N ) ,

d�B�C
�N+1

d�N+1
(TN > T cut

N ) = (BN+1 � CN+1)(�N+1) ✓(TN > T cut
N ) .

(4.14)

Note that d�C�S and de�C�S are equal at this order. They only start to di↵er at NNLO,

where the cross terms in the FO expansion of the product de�C�S
N �N become relevant.

As discussed in section 3.3, the splitting function of Powheg given in eq. (3.14) repro-

duces the full singular dependence of the real emission. Thus, one can choose CN+1 = SN+1,

such that d�C�S
N = 0 and d�C

�N = d�S
�N , and cases 1 and 2 both reduce to eq. (3.7).

10Notice that there might be points in �N+1

for which BN (�̂N ) = 0 due to either kinematical or PDF

e↵ects. To avoid that the ratio SN+1

(�N+1

)/BN (�̂N ) goes to infinity, one has to define SN+1

such that it

vanishes for these points. This implies that the contributions from these phase space regions are contained in

d�C�S or de�C�S .
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The corresponding results for the di↵erential spectrum are
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Note that d�C�S and de�C�S are equal at this order. They only start to di↵er at NNLO,

where the cross terms in the FO expansion of the product de�C�S
N �N become relevant.

As discussed in section 3.3, the splitting function of Powheg given in eq. (3.14) repro-

duces the full singular dependence of the real emission. Thus, one can choose CN+1 = SN+1,

such that d�C�S
N = 0 and d�C

�N = d�S
�N , and cases 1 and 2 both reduce to eq. (3.7).

10Notice that there might be points in �N+1

for which BN (�̂N ) = 0 due to either kinematical or PDF

e↵ects. To avoid that the ratio SN+1

(�N+1

)/BN (�̂N ) goes to infinity, one has to define SN+1

such that it

vanishes for these points. This implies that the contributions from these phase space regions are contained in

d�C�S or de�C�S .
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case, since SN+1 contains the full singular structure also above T cut
N , there is no implicit T cut

N

dependence. Strictly speaking, this is true as long as ⇥m and F do not introduce a sensitivity

to small TN .

The full �N+1 dependence in d�mc
�N+1 in eq. (3.7) is determined by SN+1(�N+1) in

the resummation term, i.e., by the approximate �N+1 dependence in the splitting factor

that determines the Sudakov factor. The FO matching correction, d�B�S
�N+1 ⇠ (BN+1 �

SN+1)(�N+1), additively corrects the approximate �N+1 dependence in SN+1 to the full

LON+1 dependence given by BN+1. Another possible approach is to also multiply this term

by the Sudakov factor, or equivalently, directly use the full BN+1 dependence in the resummed

spectrum, such that

d�mc
N

d�N
(T cut

N ) =
d�S

�N

d�N
�N (�N ; T cut

N ) +
d�B�S

N

d�N
(T cut

N ) , (3.15)

d�mc
�N+1

d�N+1
(TN > T cut

N ) =
X

m

⇢

d�S
�N

d�N

�

�

�

�

�N=�̂N

BN+1(�N+1)

BN (�̂N )
�N (�̂N ; TN ) ✓(TN > T cut

N )

�

m

.

This corresponds to the usual CKKW procedure for LON,N+1+LL in eq. (3.4). It is also

analogous to the Geneva method in ref. [22], where the �N+1-di↵erential FO calculation is

multiplicatively combined with the TN spectrum resummed to higher order. In eq. (3.15), the

spectrum is not the exact derivative of the cumulant anymore, resulting in a residual T cut
N

dependence in the integrated cross section. The e↵ective correction term by which eq. (3.3)

is violated and that gets added to the correct NLON cross section is given by
Z

d�N+1

d�N
(BN+1 � SN+1)(�N+1)

⇥

�N (�̂N ; TN )� 1
⇤

✓(TN > T cut
N ) . (3.16)

In fixed order this is O(↵2
s) and beyond NLON . However, its impact on the perturbative

accuracy depends again on the extent to which the IR singularities of BN+1 are correctly

reproduced by SN+1. If SN+1 contains the full IR singularities, so BN+1 � SN+1 is fi-

nite for TN ! 0, then the leading term in eq. (3.16) scales as T cut
N ↵2

s ln
2(T cut

N /Q) which

is Ocut(↵sT cut
N ). Therefore, in this case the correction can be regarded as a power correction.

If SN+1 does not reproduce the full IR singularities, so that BN+1�SN+1 contains subleading

divergences ⇠ ↵s/TN , then the leading term scales as ↵2
s ln

3(T cut
N /Q). Hence, in this case the

correction is of Ocut(↵
1/2
s ) and clearly violates the NLON+LL accuracy, which allows at most

Ocut(↵2
s) corrections (see the first column of table 1). Note that the perturbative accuracy of

the residual T cut
N dependence in either case here is the same as in eq. (3.4) at LON,N+1+LL.

The reason is that it is determined by the resummation counting and the NLO matching by

itself only improves the FO accuracy.

4 Combining NNLO calculations with LL resummation

As we saw in section 2.2, at NNLO we need events representing N , (N + 1), and (N + 2)

partonic jets, defined through the N -jet and (N + 1)-jet resolution variables TN and TN+1.
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the residual T cut
N dependence in either case here is the same as in eq. (3.4) at LON,N+1+LL.

The reason is that it is determined by the resummation counting and the NLO matching by

itself only improves the FO accuracy.
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4.1.2 Case 2

For this case, we use d�mc
N (T cut

N ) as given in eq. (4.7), with its corresponding inclusive

d�mc
�N+1(TN > T cut

N ) given in eq. (4.10), which we repeat here for completeness:

d�mc
N

d�N
(T cut

N ) =



d�C
�N

d�N
+

de�C�S
N

d�N
(T cut

N )

�

�N (�N ; T cut
N ) +

d�B�C
N

d�N
(T cut

N ) ,

d�mc
�N+1

d�N+1
(TN > T cut

N ) =

⇢

d�C
�N

d�N
+

de�C�S
N

d�N
(TN )

�

�N=�̂N

SN+1(�N+1)

BN (�̂N )
✓(TN > T cut

N )

+
de�C�S

�N+1

d�N+1
(TN > T cut

N )

�

�N (�̂N ; TN ) +
d�B�C

�N+1

d�N+1
(TN > T cut

N ) .

The explicit expressions for all ingredients are given in the following. As for case 1, these are

correct to NNLON and NLON+1 and include the correct LL resummation for T cut
N and TN ,

respectively. The resummation terms involving d�C
�N�N and the nonsingular FO matching

terms, d�B�C , are the same as in case 1 [see eq. (4.14) and eqs. (??) and (4.16)] and separately

satisfy the consistency relations in eqs. (3.2) and (3.3).

The di↵erence to case 1 is how the singular matching corrections, de�S�C , are included.

For the cumulant, we have

de�C�S
N

d�N
(T cut

N ) =



d�C�S
N

d�N
(T cut

N )
1

�(1)
N (�N ; T cut

N )

�

NNLON

=
d�C�S

N

d�N
(T cut

N ) (4.20)

+�(1)
N (�N ; T cut

N )

Z

d�N+1

d�N
(CN+1 � S(1)

N+1)(�N+1) ✓[TN (�N+1) > T cut
N ] ,

where d�C�S
N (T cut

N ) is given in eq. (??). The corresponding di↵erential result in the spectrum

is obtained by requiring eq. (3.3),

de�C�S
�N+1

d�N+1
(TN > T cut

N )

=
d�C�S

�N+1

d�N+1
(TN > T cut

N )�
⇢

�(1)
N (�̂N ; TN ) (CN+1 � S(1)

N+1)(�N+1) (4.21)

+
S(1)
N+1(�N+1)

BN (�̂N )

Z

d�0
N+1

d�N

�

CN+1 � S(1)
N+1

�

(�0
N+1) ✓[TN (�0

N+1) > TN ]

�

✓(TN > T cut
N ) ,

where d�C�S
�N+1(TN > T cut

N ) is given in eq. (4.19). One can easily check that with this result

the expression for d�mc
�N+1 in case 2 expands to the correct NLON+1 result.
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The explicit expressions for all ingredients are given in the following. As for case 1, these are

correct to NNLON and NLON+1 and include the correct LL resummation for T cut
N and TN ,

respectively. The resummation terms involving d�C
�N�N and the nonsingular FO matching

terms, d�B�C , are the same as in case 1 [see eq. (4.14) and eqs. (??) and (4.16)] and separately

satisfy the consistency relations in eqs. (3.2) and (3.3).

The di↵erence to case 1 is how the singular matching corrections, de�S�C , are included.

For the cumulant, we have
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where d�C�S
N (T cut

N ) is given in eq. (??). The corresponding di↵erential result in the spectrum

is obtained by requiring eq. (3.3),
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where the various ingredients are discussed in detail in sections 4.1.1 and 4.1.2. For case 1,

the FO singular and nonsingular matching terms are pure FO corrections and to obtain them
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the singular matching correction is more complicated, and its TN dependence is obtained by

taking the derivative of de�C�S
N (T cut

N )�N (T cut
N ) in eq. (4.7) with respect to T cut

N . This ensures

that the singular matching corrections in the spectrum correctly integrate up to cancel the

corresponding T cut
N dependence in the cumulant.10

Before we give the detailed expressions for all ingredients required to construct eqs. (4.4),

(4.7), (4.9), and (4.10), it is instructive to see how the NLO+LL case arises from this notation.

At NLO, we have
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The corresponding results for the di↵erential spectrum are
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N ) .

(4.14)

Note that d�C�S and de�C�S are equal at this order. They only start to di↵er at NNLO,

where the cross terms in the FO expansion of the product de�C�S
N �N become relevant.

As discussed in section 3.3, the splitting function of Powheg given in eq. (3.14) repro-

duces the full singular dependence of the real emission. Thus, one can choose CN+1 = SN+1,

such that d�C�S
N = 0 and d�C

�N = d�S
�N , and cases 1 and 2 both reduce to eq. (3.7).

10Notice that there might be points in �N+1

for which BN (�̂N ) = 0 due to either kinematical or PDF

e↵ects. To avoid that the ratio SN+1

(�N+1

)/BN (�̂N ) goes to infinity, one has to define SN+1

such that it

vanishes for these points. This implies that the contributions from these phase space regions are contained in

d�C�S or de�C�S .
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paper. We first write the results of ref. [38] in terms of the MC cross sections d�mc
0 (T cut

0 ) and

d�mc
�1(T0 > T cut

0 ), corresponding to the exclusive Higgs + 0-jet and inclusive Higgs + 1-jet

cross sections. We then show how these expressions follow directly from our general results

by making specific choices.

The 0-jet resolution variable used in ref. [38] to separate 0 from 1 or more extra jets is

the transverse momentum of the Higgs boson, so

T0 ⌘ qT . (6.3)

We do not need to discuss how to separate the inclusive 1-jet sample into an exclusive 1-jet

and an inclusive 2-jet sample. For this purpose, ref. [38] uses the standard Powheg approach,

which we have already shown in section 3.3 to be a special case of our approach.

As mentioned already, the Higgs + 0-jet cross is not included in ref. [38], since it vanishes

in the limit T cut
0 ! 0. The inclusive MC cross section for one or more jets is then given by

d�ref. [38]
�1

d�1
(T0 > T cut

0 ) = eR(�0; T cut
0 )

d�HJ-MiNLO
�1

d�1
✓(T0 > T cut

0 ) . (6.4)

Here, the inclusive 1-jet cross section, d�HJ-MiNLO
�1 , is equivalent to the modified B̄ function

from HJ-MiNLO, which is obtained from the usual B̄ function in Powheg by multiplying

with the Sudakov factor e�0(T0), and subtracting its first-order expansion to maintain the

NLO1 accuracy,

d�HJ-MiNLO
�1

d�1
=

⇢

B1(�1)
⇥

1� e�(1)
0 (�̂0; T0)

⇤

+ V1(�1) +

Z

d�2

d�1
B2(�2)

�

e�0(�̂0, T0) . (6.5)

The term in curly brackets contains the full singular T0 dependence at NLO1. The crucial

ingredient [24] is the fact that the exponent of the Sudakov factor e�0(T0) contains the full

NNLL set of T0 logarithms to O(↵2
s). This causes the spectrum to become the total derivative

of the NLO0 correct 0-jet cumulant, d�NLO
�0

e�0(T cut
0 ), up to nonsingular corrections in T0 and

higher orders in ↵s. As a result, the spectrum integrates to the correct NLO0 cross section

up to power corrections that vanish as T cut
0 ! 0,

Z

d�1

d�0

d�HJ-MiNLO
�1

d�1
✓(T0 > T cut

0 ) =
d�NLO

�0

d�0
+O(↵sT cut

0 ) +O(↵2
s) . (6.6)

The reweighting factor eR(�0, T cut
0 ) in eq. (6.4) is then given by the ratio

eR(�0; T cut
0 ) =

d�NNLO
�0

d�0

�

Z

d�1

d�0

d�HJ-MiNLO
�1

d�1
✓(T0 > T cut

0 ) , (6.7)

and by construction ensures that the Higgs + 1-jet spectrum in eq. (6.4) integrates to the

correct NNLO0 inclusive Higgs cross section. At the same time, because of eq. (6.6), the

reweighting factor has the form

eR(�0; T0) = 1 +O(↵sT cut
0 ) +O(↵2

s) , (6.8)
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We can reproduce this result from our formalism by making the following 
choices

and therefore does not a↵ect the NLO1 accuracy of the inclusive 1-jet cross section up to

power corrections in T cut
0 . By taking T cut

0 ! ⇤QCD these become negligible, and the result

becomes a valid NNLO+LL implementation.

To derive this result as a special case from our framework, we make the following two

choices:

1. Choose all singular terms equal to the exact tree-level and one-loop contributions,

C1(�1) = B1(�1) , C2(�2) = B2(�2) , V C1(�1) = V1(�1) . (6.9)

2. Choose the splitting functions as

S(1)
1 (�1) = B1(�1) (6.10)

S(2)
1 (�1) = V1(�1) +

Z

d�2

d�1
B2(�2)�B1(�1)



V C
0 (�̂0)

B0(�̂0)
+�(1)

0 (�̂0; T0)
�

.

With these two choices, the singular inclusive cross section defined in eq. (4.14) is given by

the full NNLO0 expression,

d�C
�0

d�0
=

d�NNLO
�0

d�0
, (6.11)

while all FO matching corrections vanish,

d�C�S
0

d�0
(T cut

0 ) =
d�B�C

0

d�0
(T cut

0 ) = 0 ,
d�C�S

�1

d�1
(T0 > T cut

0 ) =
d�B�C

�1

d�1
(T0 > T cut

0 ) = 0 . (6.12)

The choice of the splitting function S2(�2) is not relevant for this discussion, since its purpose

is to determine how to split the inclusive 1-jet cross section into an exclusive 1-jet and an

inclusive 2-jet cross section.

Using the results of section 4.1.1 (or section 4.1.2, which are identical in this case), we

then find for the exclusive 0-jet and inclusive 1-jet MC cross sections

d�mc
0

d�0
(T cut

0 ) =
d�NNLO

�0

d�0
�0(�0; T cut

0 )

d�mc
�1

d�1
(T0 > T cut

0 ) =
d�NNLO

�0

d�0

�

�

�

�

�
0

=�̂
0

S1(�1)

B0(�̂0)
�0(�̂0; T0) ✓(T0 > T cut

0 )

=
d�NNLO

�0

d�0

�

�

�

�

�
0

=�̂
0

1

B0(�̂0)

⇢

B1(�1)



1��(1)
0 (�̂0; T0)� V C

0 (�̂0)

B0(�̂0)

�

+ V1(�1)

+

Z

d�2

d�1
B2(�2)

�

�0(�̂0; T0) ✓(T0 > T cut
0 ) , (6.13)

where in the last equation we inserted the explicit expression for S1(�1) from eq. (6.10). We

can now compare this to the HJ-MiNLO result in eq. (6.4). Since the exclusive 0-jet cross
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then find for the exclusive 0-jet and inclusive 1-jet MC cross sections
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where in the last equation we inserted the explicit expression for S1(�1) from eq. (6.10). We

can now compare this to the HJ-MiNLO result in eq. (6.4). Since the exclusive 0-jet cross
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and therefore does not a↵ect the NLO1 accuracy of the inclusive 1-jet cross section up to

power corrections in T cut
0 . By taking T cut

0 ! ⇤QCD these become negligible, and the result

becomes a valid NNLO+LL implementation.

To derive this result as a special case from our framework, we make the following two

choices:

1. Choose all singular terms equal to the exact tree-level and one-loop contributions,

C1(�1) = B1(�1) , C2(�2) = B2(�2) , V C1(�1) = V1(�1) . (6.9)

2. Choose the splitting functions as
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With these two choices, the singular inclusive cross section defined in eq. (4.14) is given by

the full NNLO0 expression,
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, (6.11)

while all FO matching corrections vanish,

d�C�S
0

d�0
(T cut

0 ) =
d�B�C

0

d�0
(T cut

0 ) = 0 ,
d�C�S

�1

d�1
(T0 > T cut

0 ) =
d�B�C

�1

d�1
(T0 > T cut

0 ) = 0 . (6.12)

The choice of the splitting function S2(�2) is not relevant for this discussion, since its purpose

is to determine how to split the inclusive 1-jet cross section into an exclusive 1-jet and an
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and therefore does not a↵ect the NLO1 accuracy of the inclusive 1-jet cross section up to
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0 . By taking T cut

0 ! ⇤QCD these become negligible, and the result

becomes a valid NNLO+LL implementation.
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where in the last equation we inserted the explicit expression for S1(�1) from eq. (6.10). We

can now compare this to the HJ-MiNLO result in eq. (6.4). Since the exclusive 0-jet cross
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section is proportional to the Sudakov factor �0(�0; T cut
0 ), it vanishes in the limit T cut

0 ! 0.

Thus, in this limit the entire 0-jet cross section can be obtained by integrating the inclusive

1-jet result over all values of T0, precisely analogous to what happens in refs. [24, 38]. Since

in practice, T cut
0 ⇠ ⇤QCD ⇠ 1GeV, one could also keep the 0-jet cumulant, which would

avoid introducing any additional power corrections in T cut
0 . The term in curly brackets times

the Sudakov factor �0(�̂0; T0) is equivalent to d�HJ-MiNLO
�1 /d�1 in eq. (6.5), except for the

additional V C
0 (�̂0) term. By including this term, the prefactor in d�mc

�1 becomes simply the

inclusive NNLO cross section normalized to the tree-level result, d�NNLO
�0 /B0(�0), without

any need to reweight the events.

With the choice C1(�1) = B1(�1) from above, V C
0 (�0) is the NLO correction to the

inclusive cross section [see eq. (4.18)],

d�NLO
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d�0
= B0(�0) + V C

0 (�0) , (6.14)

and in particular T0 independent. Although in principle there is no need to do so, we can

rewrite d�mc
�1 and pull this term outside into the prefactor, which gives
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with the rescaling factor

R(�0) =
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1 (�1)�0(�0, T0)

�

. (6.16)

The last term in the denominator here is the O(↵3
s) cross term that arises from pulling

V C
0 (�0) out into the rescaling factor. It must be kept because it scales as ↵3

s(ln T0)/T0 which

upon integration over T0 becomes an ↵2
s correction. Equations (6.15) and (6.16) are now the

exact equivalent of the expressions in eqs. (6.4), (6.5), and (6.7). By writing the factor in

curly brackets in eq. (6.15) as S1(1 + V C
0 /B0) � (V C

0 /B0)S
(2)
1 , one can easily check that the

denominator in eq. (6.16) is exactly the integral of eq. (6.15) modulo the R(�0) prefactor.

As we have seen, with the two choices given above our method gives an expression with

an analogous structure as in ref. [38]. In fact, the result in eq. (6.13) that follows immedi-

ately from our approach is automatically correct to NNLO0 without requiring an additional

reweighting. Another di↵erence is the precise form of the Sudakov factors, �0(�0; T0) and
e�0(�0; T0). In our approach, �0 is constructed from the splitting functions S(i)

1 (�1), while in

ref. [24] e�0 is obtained from the analytic qT NNLL resummation formula. Both expressions

have the same logarithmic dependence on T0 expanded to O(↵2
s) in the exponent. We also

like to point out that in the approach of refs. [24, 38] the known NNLL structure of the

T0 = qT spectrum is essential to analytically control all singular logarithms through O(↵2
s).

In this respect, this approach is thus closely related to the Geneva approach [22] discussed

in section 6.1.
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paper. We first write the results of ref. [38] in terms of the MC cross sections d�mc
0 (T cut

0 ) and

d�mc
�1(T0 > T cut

0 ), corresponding to the exclusive Higgs + 0-jet and inclusive Higgs + 1-jet

cross sections. We then show how these expressions follow directly from our general results

by making specific choices.

The 0-jet resolution variable used in ref. [38] to separate 0 from 1 or more extra jets is

the transverse momentum of the Higgs boson, so

T0 ⌘ qT . (6.3)

We do not need to discuss how to separate the inclusive 1-jet sample into an exclusive 1-jet

and an inclusive 2-jet sample. For this purpose, ref. [38] uses the standard Powheg approach,

which we have already shown in section 3.3 to be a special case of our approach.

As mentioned already, the Higgs + 0-jet cross is not included in ref. [38], since it vanishes

in the limit T cut
0 ! 0. The inclusive MC cross section for one or more jets is then given by

d�ref. [38]
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(T0 > T cut

0 ) = eR(�0; T cut
0 )

d�HJ-MiNLO
�1

d�1
✓(T0 > T cut

0 ) . (6.4)

Here, the inclusive 1-jet cross section, d�HJ-MiNLO
�1 , is equivalent to the modified B̄ function

from HJ-MiNLO, which is obtained from the usual B̄ function in Powheg by multiplying

with the Sudakov factor e�0(T0), and subtracting its first-order expansion to maintain the

NLO1 accuracy,
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The term in curly brackets contains the full singular T0 dependence at NLO1. The crucial

ingredient [24] is the fact that the exponent of the Sudakov factor e�0(T0) contains the full

NNLL set of T0 logarithms to O(↵2
s). This causes the spectrum to become the total derivative

of the NLO0 correct 0-jet cumulant, d�NLO
�0

e�0(T cut
0 ), up to nonsingular corrections in T0 and

higher orders in ↵s. As a result, the spectrum integrates to the correct NLO0 cross section

up to power corrections that vanish as T cut
0 ! 0,
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The reweighting factor eR(�0, T cut
0 ) in eq. (6.4) is then given by the ratio

eR(�0; T cut
0 ) =

d�NNLO
�0

d�0

�

Z

d�1

d�0
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�1

d�1
✓(T0 > T cut

0 ) , (6.7)

and by construction ensures that the Higgs + 1-jet spectrum in eq. (6.4) integrates to the

correct NNLO0 inclusive Higgs cross section. At the same time, because of eq. (6.6), the

reweighting factor has the form

eR(�0; T0) = 1 +O(↵sT cut
0 ) +O(↵2

s) , (6.8)
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and therefore does not a↵ect the NLO1 accuracy of the inclusive 1-jet cross section up to

power corrections in T cut
0 . By taking T cut

0 ! ⇤QCD these become negligible, and the result

becomes a valid NNLO+LL implementation.

To derive this result as a special case from our framework, we make the following two

choices:

1. Choose all singular terms equal to the exact tree-level and one-loop contributions,

C1(�1) = B1(�1) , C2(�2) = B2(�2) , V C1(�1) = V1(�1) . (6.9)

2. Choose the splitting functions as

S(1)
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With these two choices, the singular inclusive cross section defined in eq. (4.14) is given by

the full NNLO0 expression,
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while all FO matching corrections vanish,
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The choice of the splitting function S2(�2) is not relevant for this discussion, since its purpose

is to determine how to split the inclusive 1-jet cross section into an exclusive 1-jet and an

inclusive 2-jet cross section.

Using the results of section 4.1.1 (or section 4.1.2, which are identical in this case), we

then find for the exclusive 0-jet and inclusive 1-jet MC cross sections
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where in the last equation we inserted the explicit expression for S1(�1) from eq. (6.10). We

can now compare this to the HJ-MiNLO result in eq. (6.4). Since the exclusive 0-jet cross
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section is proportional to the Sudakov factor �0(�0; T cut
0 ), it vanishes in the limit T cut

0 ! 0.

Thus, in this limit the entire 0-jet cross section can be obtained by integrating the inclusive

1-jet result over all values of T0, precisely analogous to what happens in refs. [24, 38]. Since

in practice, T cut
0 ⇠ ⇤QCD ⇠ 1GeV, one could also keep the 0-jet cumulant, which would

avoid introducing any additional power corrections in T cut
0 . The term in curly brackets times

the Sudakov factor �0(�̂0; T0) is equivalent to d�HJ-MiNLO
�1 /d�1 in eq. (6.5), except for the

additional V C
0 (�̂0) term. By including this term, the prefactor in d�mc

�1 becomes simply the

inclusive NNLO cross section normalized to the tree-level result, d�NNLO
�0 /B0(�0), without

any need to reweight the events.

With the choice C1(�1) = B1(�1) from above, V C
0 (�0) is the NLO correction to the

inclusive cross section [see eq. (4.18)],

d�NLO
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d�0
= B0(�0) + V C

0 (�0) , (6.14)

and in particular T0 independent. Although in principle there is no need to do so, we can

rewrite d�mc
�1 and pull this term outside into the prefactor, which gives
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with the rescaling factor
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The last term in the denominator here is the O(↵3
s) cross term that arises from pulling

V C
0 (�0) out into the rescaling factor. It must be kept because it scales as ↵3

s(ln T0)/T0 which

upon integration over T0 becomes an ↵2
s correction. Equations (6.15) and (6.16) are now the

exact equivalent of the expressions in eqs. (6.4), (6.5), and (6.7). By writing the factor in

curly brackets in eq. (6.15) as S1(1 + V C
0 /B0) � (V C

0 /B0)S
(2)
1 , one can easily check that the

denominator in eq. (6.16) is exactly the integral of eq. (6.15) modulo the R(�0) prefactor.

As we have seen, with the two choices given above our method gives an expression with

an analogous structure as in ref. [38]. In fact, the result in eq. (6.13) that follows immedi-

ately from our approach is automatically correct to NNLO0 without requiring an additional

reweighting. Another di↵erence is the precise form of the Sudakov factors, �0(�0; T0) and
e�0(�0; T0). In our approach, �0 is constructed from the splitting functions S(i)

1 (�1), while in

ref. [24] e�0 is obtained from the analytic qT NNLL resummation formula. Both expressions

have the same logarithmic dependence on T0 expanded to O(↵2
s) in the exponent. We also

like to point out that in the approach of refs. [24, 38] the known NNLL structure of the

T0 = qT spectrum is essential to analytically control all singular logarithms through O(↵2
s).

In this respect, this approach is thus closely related to the Geneva approach [22] discussed

in section 6.1.
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where in the last equation we inserted the explicit expression for S1(�1) from eq. (6.10). We

can now compare this to the HJ-MiNLO result in eq. (6.4). Since the exclusive 0-jet cross

section is proportional to the Sudakov factor �0(�0; T cut
0 ), it vanishes in the limit T cut
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Thus, in this limit the entire 0-jet cross section can be obtained by integrating the inclusive
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in practice, T cut
0 ⇠ ⇤QCD ⇠ 1GeV, one could also keep the 0-jet cumulant, which would

avoid introducing any additional power corrections in T cut
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additional V C
0 (�̂0) term. By including this term, the prefactor in d�mc

�1 becomes simply the

inclusive NNLO cross section normalized to the tree-level result, d�NNLO
�0 /B0(�0), without

any need to reweight the events.

With the choice C1(�1) = B1(�1) from above, V C
0 (�0) is the NLO correction to the

inclusive cross section [see eq. (4.18)],

d�NLO
�0

d�0
= B0(�0) + V C

0 (�0) , (6.14)

and in particular T0 independent. Although in principle there is no need to do so, we can

rewrite d�mc
�1 and pull this term outside into the prefactor, which gives

d�mc
�1

d�1
(T0 > T cut

0 ) = R(�̂0)

⇢

B1(�1)
⇥

1��(1)
0 (�̂0; T0)

⇤

+ V1(�1) +

Z

d�2

d�1
B2(�2)

�

⇥ �0(�̂0; T0) ✓(T0 > T cut
0 ) , (6.15)

with the rescaling factor

R(�0) =
d�NNLO

�0

d�0

�⇢

d�NLO
�0

d�0
� V C

0 (�0)

B0(�0)

Z

d�1

d�0
S(2)
1 (�1)�0(�0, T0)

�

. (6.16)

The last term in the denominator here is the O(↵3
s) cross term that arises from pulling

V C
0 (�0) out into the rescaling factor. It must be kept because it scales as ↵3

s(ln T0)/T0 which

upon integration over T0 becomes an ↵2
s correction. Equations (6.15) and (6.16) are now the

exact equivalent of the expressions in eqs. (6.4), (6.5), and (6.7). By writing the factor in

curly brackets in eq. (6.15) as S1(1 + V C
0 /B0) � (V C

0 /B0)S
(2)
1 , one can easily check that the

denominator in eq. (6.16) is exactly the integral of eq. (6.15) modulo the R(�0) prefactor.

As we have seen, with the two choices given above our method gives an expression with

an analogous structure as in ref. [38]. In fact, the result in eq. (6.13) that follows immedi-

ately from our approach is automatically correct to NNLO0 without requiring an additional

reweighting. Another di↵erence is the precise form of the Sudakov factors, �0(�0; T0) and
e�0(�0; T0). In our approach, �0 is constructed from the splitting functions S(i)

1 (�1), while in

ref. [24] e�0 is obtained from the analytic qT NNLL resummation formula. Both expressions

have the same logarithmic dependence on T0 expanded to O(↵2
s) in the exponent. We also

like to point out that in the approach of refs. [24, 38] the known NNLL structure of the
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Thus, our general formalism encompasses the MINLO reweighing 
approach, but it could be implemented without reweighing
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Thus, NNLO merging is automatically achieved, and the only thing 
missing is power suppressed non-singular pieces

pcut
T pcut

T

Figure 3. Illustration of the issues in defining an IR-safe phase space separation at NNLO using
single-parton variables in case of vector boson production. Limiting each emission to be below pcutT

(dashed lines) results in a miscancellation of IR divergences between the tree-level contribution on the
left, which would contribute to d�mc

0 (pcutT ), and the corresponding one-loop contribution on the right,
which would contribute to d�mc

�1(pT > pcutT ).

two emissions into account. Generally, it is not su�cient to only consider the two hardest

emissions, since they do not necessarily give the hardest jet. Therefore, the NNLO constraint

can only be imposed via a global veto after the showering. In case one uses a vetoed shower

with a single-emission local veto to enforce the LL constraints as described in section 5.1, the

additional NNLO constraint should be enforced separately.

6 Implementation and relation to existing approaches

In this section, we discuss the relation of our framework to recent related work, and the

NNLO+PS implementation given in ref. [38]. This will show that our method is indeed

quite general and encompasses these other approaches. It also illustrates that an actual

implementation of our results is indeed feasible.

6.1 GENEVA

The motivation to build an NNLO+LL event generator is to interface the most precise FO

calculations available with a parton shower routine to be able to simulate realistic events with

high perturbative accuracy. Whenever higher logarithmic resummation is also available (NLL

for several resolution variables, NNLL for certain resolution variables such as N -jettiness,

and NNLL0 for select processes12), it can be implemented to also improve the perturbative

accuracy in the resummation region (see figure 2) following the Geneva approach [22].

If NNLL0 resummation is available, the resummation order matches the fixed NNLO

accuracy in the sense that all NNLO singular terms are naturally included in the resummation.

Hence, the FO singular matching correction vanishes,

d�C�S
N

d�N
(T cut

N ) = 0 , (6.1)

12While NNLL resummation includes all logarithmic terms through NNLO, NNLL0 also includes delta func-

tion terms to capture all NNLO singular terms including the 2-loop virtual corrections.
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For any NNLL’ resummed calculation one automatically gets

because the FO expansion of the NNLL0 resummed result reproduces the full NNLO singular

corrections. The remaining contributions in theN -jet MC cross section can then be associated

as follows:

d�C
�N

d�N
�N (TN ;�N ) ! d�resummed

N

d�N
(T cut

N ) ,

�B�C
N (T cut

N ) ! d�nonsingular
N

d�N
(T cut

N ) . (6.2)

That is, the cross section takes the form of a traditional resummed calculation, with the

FO nonsingular corrections corresponding to d�B�C
N and the higher-order resummed cumu-

lant replacing the resummation term d�C
�N�N (T cut

N ). The same relations also apply for the

exclusive (N + 1)-jet and inclusive (N + 2)-jet cross sections.

The results in ref. [22] took this approach, using a jet resolution variable for which higher-

order logarithmic resummation is available. There, the NNLL0 resummation for e+e� ! jets

for small T2 was used together with the NLO2 nonsingular terms, combined with the fully

di↵erential 3-jet cross section at NLO3, and interfaced with a parton shower algorithm. As

discussed above, the resummation to NNLL0 already incorporates the full singular contri-

butions up to NNLO, including the two-loop virtual corrections. Thus, the only missing

contributions to make the calculation in ref. [22] correct to full NNLO2 are the nonsingular

corrections at NNLO2. Since they scale as a power correction in T cut
2 , one could also take the

value of T cut
2 small enough to make their numerical impact small.

6.2 NNLO+PS using HJ-MiNLO

Results combining the inclusive NNLO Higgs cross section with a parton shower algorithm

were presented recently in ref. [38]. This approach uses the Multi-Scale Improved NLO

(MiNLO) calculation for the production of Higgs in association with a jet [53], in which the

Powheg HJ calculation [54] is supplemented by an analytic Sudakov resummation factor,

which includes logarithmic terms that become large as the transverse momentum of the Higgs

boson tends to zero. The Sudakov factor e↵ectively regulates the divergences in the Powheg

HJ calculation when the transverse momentum of the Higgs boson, qT , goes to zero. As

a result, the HJ-MiNLO sample can be used over the whole phase space even in the limit

qT ! 0. In practice, it is used down to qT of order ⇤QCD ⇠ 1GeV.

It was shown in ref. [24] that by explicitly including NNLL information in the Sudakov

factor, the HJ-MiNLO cross section integrates up to the correct inclusive Higgs cross section

at NLO0. The HJ-MiNLO sample is then reweighted to the di↵erential NNLO0 Higgs cross

section, which is facilitated by the fact that it is only single-di↵erential in the Higgs rapidity.

This provides NNLO0 accurate predictions for 0-jet observables without spoiling the NLO1

accuracy of 1-jet observables. One feature of this approach is that it does not require a Higgs

+ 0-jet sample, since the full NNLO0 information of inclusive Higgs production is explicitly

included through the reweighting factor.
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These can be included with an explicit additional matching step
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Thank you!


