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To cast perturbative calculations as event generators, separate
the total hadronic event into different jet multiplicities
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With this step, the only question remains is what the
differential cross-section is
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At this point, this is a purely perturbative question



This leads to two conditions that each MC cross-section needs
to satisfy

Condition|:
Correct individual perturbative accuracy
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Resummed
order

Resummation required to be able to take resolution variable small



This leads to two conditions that each MC cross-section needs
to satisfy

Condition ll:
Correlation between different multiplicities
Jet resolution is artificial parameter. Inclusive cross-sections should not
depend on it to the perturbative order one is working
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This leads to two conditions that each MC cross-section needs
to satisfy

Condition ll:
Correlation between different multiplicities
Jet resolution is artificial parameter. Inclusive cross-sections should not
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This consistency can be written as
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This leads to two conditions that each MC cross-section needs
to satisfy

Condition |l
Correlation between different multiplicities

Jet resolution is artificial parameter. Inclusive cross-sections should not
depend on it to the perturbative order one is working
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This consistency can be written as
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If this Is enforced exactly, is unitarity talked about before



=xplicit construction of the MC cross-sections



At fixed order in perturbation theory, the expressions are
completely determined

Standard expression for an NNLO observable
o NEO (X)) = /d<I>N (By 4+ Vy + Wa)(®n) Mx (®N)

+ /d(I)NJrl (BN41+ VNg1)(@ni1) Mx (Pn 1)

+ /d(I)]\H_Q Bnio(Pn+2) Mx(Pn+2),

Want to write this in terms of MC cross sections
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At fixed order in perturbation theory, the expressions are
completely determined

Want to write this in terms of MC cross sections
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At fixed order in perturbation theory, the expressions are
completely determined

Want to write this in terms of MC cross sections

NNLO dO.]1\\4[C cut dg%(—jl—l cut cut
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Required expression at fixed order are
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At fixed order in perturbation theory, the expressions are
completely determined

Want to write this in terms of MC cross sections
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At fixed order in perturbation theory, the expressions are
completely determined

Want to write this in terms of MC cross sections
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Required expression at fixed order are

dal\ﬁg\[

>N+2 t
(TN > T]\C/'Ut, TN_H > T]f}il)
d®n o

— BN+2((I)N+2) H[TN((I)N+2) > T]\C[Ut] H[TN—I—l((I)N—FQ) > T]\Cflilicl]

How do | make these expression have the correct LL behavior?
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There are many possible ways to make the expression correct
to LL accuracy

Consider again the exclusive N-jet cross-section

do-ll\ffc cut
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Split this into a singular piece and a non-singular piece
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There are many possible ways to make the expression correct
to LL accuracy

Consider again the exclusive N-jet cross-section
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There are many possible ways to make the expression correct
to LL accuracy

Consider again the exclusive N-jet cross-section
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The singular piece contains all singular dependence on Ty
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There are many possible ways to make the expression correct

to LL accuracy

Consider again the exclusive N-jet cross-section

do’N* do§ doB—¢
Jeuty  — 7N (gqeuty g N cut
d® ( N ) dd (TN ) dd (TN )

The singular piece contains all singular dependence on Ty
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Non-singular piece has at most power dependence on Ty
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There are many possible ways to make the expression correct
to LL accuracy

Consider again the exclusive N-jet cross-section
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Now, resum singular dependence on T to at least LL accuracy
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There are many possible ways to make the expression correct
to LL accuracy

Consider again the exclusive N-jet cross-section
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There are many possible ways to make the expression correct
to LL accuracy

Consider again the exclusive N-jet cross-section
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Now, resum singular dependence on T to at least LL accuracy

N
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Singular approximation to inclusive cross section
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There are many possible ways to make the expression correct
to LL accuracy

Consider again the exclusive N-jet cross-section
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cut — cut
T = e (T8 + i
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Now, resum singular dependence on T to at least LL accuracy
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Sudakov form factor
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There are many possible ways to make the expression correct
to LL accuracy

Consider again the exclusive N-jet cross-section

doy© do§ doB—¢
Tcut — N cut + N cut
Ton (T = ST + (7"

Now, resum singular dependence on T to at least LL accuracy
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Singular matching term
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There are many possible ways to make the expression correct
to LL accuracy

Consider again the exclusive N-jet cross-section

doX’© ; doly d~C 5 ; ¢ doB—¢
cu _ = cu A d cu N cut
) = |+ ST | A @ TR + 7

Given this expression, and Condition Il from before, the inclusive 1-jet
Cross section is determined by taking the derivative of the above
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There are many possible ways to make the expression correct
to LL accuracy
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Each term uniquely determined
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There are many possible ways to make the expression correct
to LL accuracy
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Each term uniquely determined

Terms shown before
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There are many possible ways to make the expression correct
to LL accuracy

dO_l\>/[?V-I—1 cut
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Each term uniquely determined

Singular matching
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There are many possible ways to make the expression correct
to LL accuracy

d MC
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Each term uniquely determined
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Given inclusive (N+1)-jet cross-section, can obtain the exclusive
(N+1)-jet and inclusive (N+2)-jet rate in a similar manner

One can write the general expressions as...

don
+ cut. Jcut
d(bN—|—1 (TN > TN 7TN—|—1)
do’S do$79 doB7¢
_ >N—+1 cut . g-cut N+1 N+1 cut, 4cut
N+1 N+1 N+1
~ ~~ d —_— =
resummed FO singular FO nonsing.
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S ) .
N2l AN+2) AN+1(Pn11; Tvg1) (T > T)

do’S
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>IN+ (TN > T]Sfut) A
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C—S
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...with explicit expressions for all terms in 1311.0286



Let’s take one step back
and do things at NLO...
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Let’s recover a well know NLO matched result from our
general setup

do¥e . doSy  d5{5 doB—5
cuty __ =V Tcu A (P ; cut N cut
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Let’s recover a well know NLO matched result from our
general setup

dO’C da:C’—S d B—S
N T = |+ S ()| A TR + 90

At NLO we find

dagN
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dO‘ﬁ_C cut dP N1 cut
T (TR = [ S (B~ Ov) @) 6T < T
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N (T = — [ TR (v — S (@) 0T > TR

25



Let’s recover a well know NLO matched result from our
general setup

dox© [dO Ov  do¥—s doB—5
Tcut _ =V N Tcut] A d ;TCUt N cut
At NLO we find
do¢ dd
e = By V(@) + [N Oy (@)
dO‘ﬁ_C cut d(I)N—i—l cut
T (TR = [ S (B~ Ov) @) 6T < T
N N
do{=" dd
N (TR =~ [ SR (Ot — S (@) 0T > TR
Let’'s make the choice Bni1 = Cne1 = SN+
dac d NLO ~C—8S : B-C
>N — UZN dUN (T]S[ut) — dON (T]\c[ut) — O

d® N d® d® d®
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Let’s recover a well know NLO matched result from our
general setup

NLO
dO'MC dO‘
N

cu >N cu
o0 TN = ~qgy An(@n TR
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Let’s recover a well know NLO matched result from our
general setup

dO_]h\dfC cut dgg%\fo
_ 2 A (P ;TCUt
oy N = g, ANENTNY)
do¥%riq { doSy 45" SN+1(Pn+1)
2 T >Tcut _ = 4 N T ] _ 0(T >7~cut
d<I>N+1( N> TN oy T ddy (Tw) B (o) (Tn > TN")
d59=3 ) dof3S
+ = (T > T]&H)} AN(®N; TN) + —=" (T > T
d(I)N+1 d(I)N—i—l
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Let’s recover a well know NLO matched result from our
general setup

cut O>N A (D ,Tcut
d(I)N (TN ) dd N( Ny N )
do¥%riq . { do$ dgj(\’;_s ] SN+1(Pn+1)
= > cuty __ = + 7' _ 9 T > Tcut
1Dy (Tn > TN") Dy T don (Tw) B (o) (Tn > TN")
d59=3 ) dof3S
+ == (T > T]%“t)} AN(ON;T) + == (T > TH™)
d® 41 d® 41

With the same choice Bnit = Cnet = SN+

dO'g N doNLO

— 2N S 0 = B o
— N+1(PN+1) N+1(PNt1)
dd dd
dG5 N4 doZngs 55
= TN > Tcut — >IN+ Tar > Tcut — N Tcut — O
XTI (Tn > TN"™) 1Dyt (Tn > TN") e (Tn'™)
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Let’s recover a well know NLO matched result from our
general setup

d0-]1\<[]C cut dgg%\fo . T cut
i (T80 = 1o An(Pn; TN)
doMe dO_NLO B d “
2N (> euty = 22N N1(Py1) 0Ty > TN™) An(®n;TN)
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Let’s recover a well know NLO matched result from our
general setup

do*® ¢ oS t
oy N = g, ANENTNY)

This is the usual Powheg formula
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Let’s recover a well know NLO matched result from our
general setup

dox© ¢ oS t
oy N = g, ANENTNY)

This is the usual Powheg formula

One can reproduce the MC@NLO expressions with similar choices
from our general framework
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Comparison to other approaches
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The MINLO reweighing approach appeared before our paper,
so wanted to show how it fits into our general framework

ldea is to reweigh a variant of the Powheg approach
(called MINLO)

do'sy N doHI-MINLO
— cuty _ . Tcut > cut
ao; 0> To7) = R0 ™) —=qg — 0T > To™)
dgHJ-MINLO N ) 0 o
FT {Bl(q)l)[l — A (90 To)] + Vi (®1) + /dTbi BQ(%)} Ro(do. 7o)

E((I)(); 76(:ut) _ 9(76 ~ %cut)

dgg(l;ILO d(I)l dUEiT—MINLO
ddy / / ddy  dd,
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The MINLO reweighing approach appeared before our paper,
so wanted to show how it fits into our general framework

d ref. [38] doHI-MINLO

0>1 cut > cut >1 cut
- — @ . -

We can reproduce this result from our formalism by making the following
choices

C1(P1) = B1(P1)
StV (@) = By (1)

Co(B) = Bo(Ds) de (@ I
2\=2 A2 SP@HZ%@D+/@5&@ﬂ—&@mfgé?+Aw@mm
VO (®1) = V1 (D) o
This gives
dO'g[C cut dggoNLO cut
dq)o (76 ) — d(I)Q AO((I) 776 )
doM¢ . 3 de
d(I)Zl (76 > %cut) _ R((I)O) {Bl(q)l) [1 — Aol)(q)o; 76)} + Vl(q)l) + /?; BQ((I)2)}
, 1
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The MINLO reweighing approach appeared before our paper,
so wanted to show how it fits into our general framework

doter 128 N dgrHI-MINLO
To (To > T8") = R(®0; T5") —= 15— 0(To > T5™")
This gives
dgglc cut dggONLO
uty) __ = An(Pan: cut
ddg (To™) dd, 0(®o; 7o)
d01\>4(13 cut A (1), 2 d(I)Q
15 (Jo>To) = R(®o) Bi(®1)[1— Ay (Po; To)] +V1(<I>1)+/£Bz(q>2)
! 1
X Ao(®0; T0) 0(To > T™).
With
_doSFO /pdofEO VP (@) [dPr o)
Rl®o) = d® /{ d®y  Bo(®o) /d<I>0 51 ((I)l)AO(q’oﬂf))}

Thus, our general formalism encompasses the MINLO reweighing
approach, but it could be implemented without reweighing



In Geneva, resum to high enough order that perturbative
expressions and consistency conditions automatically satisfied

For any NNLL' resummed calculation one automatically gets

C—-5S
dUN (Tcut) — 0
doy NV 7
do_gN d O.resummed
=V A . P N cut
B o do_nonsingular o
Uff C(TN o= & (TN™)
dd N

Thus, NNLO merging is automatically achieved, and the only thing
MISSINg IS power suppressed non-singular pieces

These can be included with an explicit additional matching step
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In conclusion, there is a very general approach to NNLO
merging, and many possible implementations

Thank you!
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