Tomáš Ježo

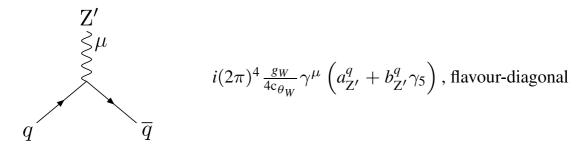
University of Liverpool

in collaboration with

R. Bonciani, M. Klasen,

F. Lyonnet, I. Schienbein

- the Standard Model of particle physics (SM)
 - successful in describing wealth of experimental data
 - widely believed to be incomplete
- many theories beyond the SM predict the existence of new resonances
 - properties similar to SM Z and W
 - ► heavy, spin-1, neutral and charged resonances, denoted Z' and W'
 - ▶ mediate the neutral and charged current interactions of SM fermions
- observable at the Large Hadron Collider (LHC)
 - ▶ searched for in di-lepton, lepton-neutrino, top-pair, single-top, ...
 - show up as peaks in invariant and transverse mass distributions
 - ► Z' and W' with SM-like couplings
 - ★ reachable up to masses of 5 TeV
 - ★ excluded with masses below 2.96 and 3.35 TeV

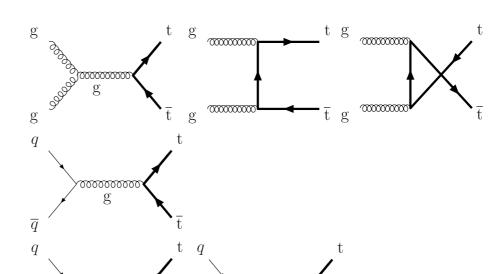

Münster 12 June

- top-pairs abundantly produced at LHC
 - ▶ 10 fb⁻¹, $\sqrt{s_{\text{had}}} = 14 \text{ TeV}$: over 10⁶ top-pairs
- top-pair SM precision calculations:
 - ► NLO QCD & EW
 - recently even NNLO QCD
- top-quark related observables likely sensitive to new physics
 - ▶ mass at the scale of EWSB ($m_{\rm t} = 173.2 \pm 0.9 \, {\rm GeV}$)
 - short lifetime, does not hadronize
- precise predictions required for accurate determination of model parameters

- NLO QCD corrections to EW top-pair production beyond SM
- implement them in POWHEG BOX Monte Carlo event generator

- NLO QCD corrections to EW top-pair production beyond SM
- implement them in POWHEG BOX Monte Carlo event generator
- top-pair production in the presence of:

- precise predictions for top-pair production beyond the SM O CS O
 - strongly coupled: calculated by Yuan et al.
 - weakly coupled: recently calculated by Melnikov et al. UNSTET

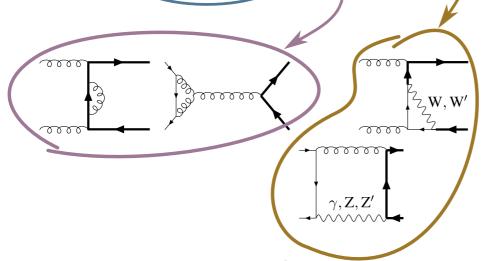

Born

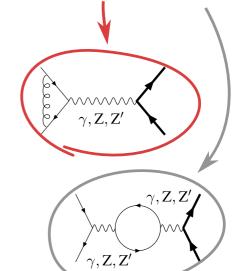
•
$$\hat{\sigma}^{\text{LO}} = \hat{\sigma}_S^{\text{LO}}(\alpha_S^2) + \hat{\sigma}_W^{\text{LO}}(\alpha_W^2)$$

- SM
 - gg, $\mathcal{O}(\alpha_S^2)$:

• $q\overline{q}$, $\mathcal{O}(\alpha_S^2)$:

- $q\overline{q}$, $\mathcal{O}(\alpha_W^2)$:
- beyond SM
 - $q\overline{q}$, $\mathcal{O}(\alpha_W^2)$:




PSR_tworkshop Münster 12 June

Virtual Corrections

• $\hat{\sigma}^{\text{NLO}} = (\hat{\sigma}(\alpha_S^2) + \hat{\sigma}(\alpha_W^2) + \hat{\sigma}(\alpha_S^3) + \hat{\sigma}(\alpha_S^2 \alpha_W) + \hat{\sigma}(\alpha_S \alpha_W^2) + \hat{\sigma}(\alpha_W^3)$



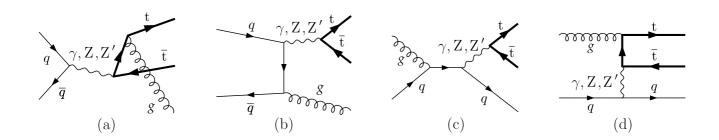
• $\mathcal{O}(\alpha_S^3)$ not affected by the presence of \mathbf{Z}'

• we calculate $\mathcal{O}(\alpha_S \alpha_W^2)$

PSR workshop Münster

Virtual Corrections

- calculated in dimensional regularization in $D=4-2\epsilon$ dimensions fully analytically in terms of HPL's
- γ_5 treated by Larin's prescription including finite renormalization


$$\gamma_{\mu}\gamma_{5} = \frac{i}{3!}\epsilon_{\mu\nu_{1}\nu_{2}\nu_{3}}\gamma_{\nu_{1}}\gamma_{\nu_{2}}\gamma_{\nu_{3}}, \quad \delta Z_{5} = -2C_{F}$$

- UV divergences taken care of by multiplicative renormalization
 - ► MS scheme for light quarks
 - ► OS scheme for top quark

PSR workshop

$$\mathcal{V} = \mathcal{V}_{\text{bare}} + \frac{\alpha_S}{\pi} \delta Z_{\text{WF,t}} \mathcal{B}, \quad \delta Z_{\text{WF,t}} = (4\pi)^{\epsilon} \Gamma(1+\epsilon) \left(\frac{\mu_r^2}{m_t^2}\right)^{\epsilon} C_F \left(\frac{3 + 1}{4\epsilon}\right)^{\epsilon} \mathcal{C}_F \left(\frac{3 + 1}{4\epsilon}\right)^{\epsilon} \mathcal{C$$

Real Corrections

- new channel opens up: qg
- IR divergences, after integration over 1 particle phase space
 - ► soft (S) divergences: radiation of a soft gluon (a), (b)
 - ► initial state collinear (ISC) divergences: (b), (d)
 - ► no final state collinear (FSC) divergences
- in qg channel, there are both QCD and QED ISC divergences KShop

 Münster

Divergences & POWHEG BOX

- UV divergences removed by UV renormalization
- IR S divergences cancel in the sum of real and virtual corrections, ISC divergences removed by collinear renormalization
- renormalized virtual and real corrections are separately IR divergent

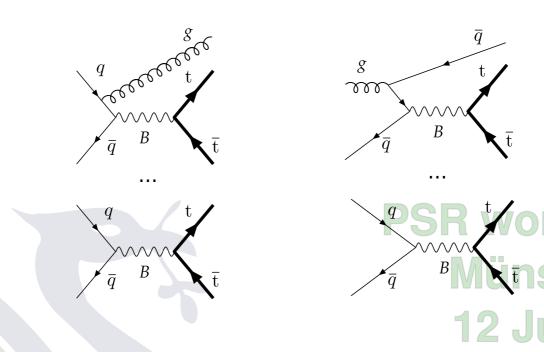
$$\sigma^{\text{NLO}} = \sigma^{\text{LO}} + \int_n d\hat{\sigma}^{\mathcal{V}} + \int_{n+1} d\hat{\sigma}^{\mathcal{R}}$$
, where $\int_n \dots, \int_{n+1} \dots$ separately divergent

• can be treated within some subtraction formalism

$$\sigma^{\text{NLO}} = \sigma^{\text{LO}} + \int_{n+1} \left(d\sigma^{\mathcal{R}} - d\sigma^{\mathcal{A}} \right) + \int_{n} \left(d\sigma^{\mathcal{V}} + \int_{1} d\sigma^{\mathcal{A}} \right)$$

- in POWHEG BOX (FKS)
 - \blacktriangleright virtual: divergences are poles in ϵ , user provides only the finite part
 - real: treated using plus distributions in each singular region

12 June


PSR workshop

Singular regions

• real cross section decomposes into the sum of contributions singular in one singular region only

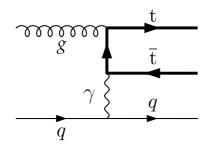
$$R = \sum_{\alpha} R_{\alpha}$$

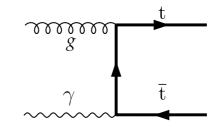
• singular regions:

Divergences & POWHEG-BOX

• in a singular region, the kinematics of the additional radiation

$$\xi = 2k_0/\sqrt{\hat{s}}, \quad y = \cos\theta, \quad \phi$$

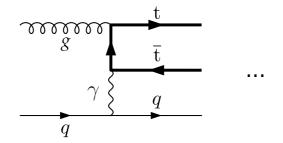

• in a final state region

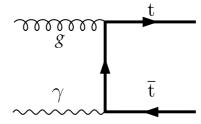

$$B_{\text{real}} = \int d\Phi_n d\phi dy \int_0^{X(y)} d\xi f(\xi, y) \left(\frac{1}{\xi}\right)_+ \left(\frac{1}{1-y}\right)_+, \text{ where } f \sim \left[(1-y)\xi^2 R_\alpha\right]$$

$$B_{\text{real}} = \int d\Phi_n d\phi \frac{dy}{1 - y} \int_0^1 d\tilde{\xi} \left[\frac{f(\tilde{\xi}X(y), y) - f(0, y)}{\tilde{\xi}} - \frac{f(\tilde{\xi}X(1), 1) - f(0, 1)}{\tilde{\xi}} \right] + \left[\log X(y) f(0, y) - \log X(1) f(0, 1) \right]$$

- where:
 - $\xi = 0 \dots \text{soft limit}$
 - y = 1 at fixed ξ ... collinear limit
 - $\xi = 0, y = 0 \dots$ soft-collinear limit

- QED divergences get properly treated provided
 - singular region is identified
 - correct soft and collinear limits have been implemented

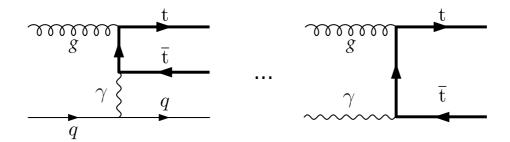


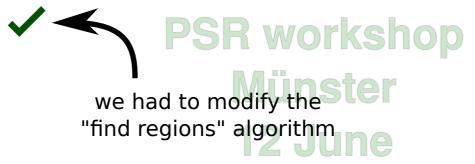


- POWHEG BOX v2 partly implements the treatment of QED divergences
 - ► singular region

- X
- soft and collinear limits
- collinear remnants

- QED divergences get properly treated provided
 - singular region is identified
 - correct soft and collinear limits have been implemented


- POWHEG BOX v2 partly implements the treatment of QED divergences
 - ► singular region
 - soft and collinear limits
 - collinear remnants

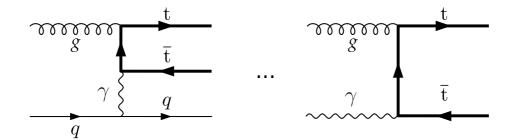

PSR workshop

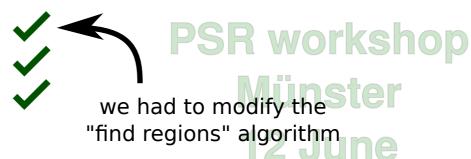
we had to modify the "find regions" algorithm

- QED divergences get properly treated provided
 - singular region is identified
 - correct soft and collinear limits have been implemented

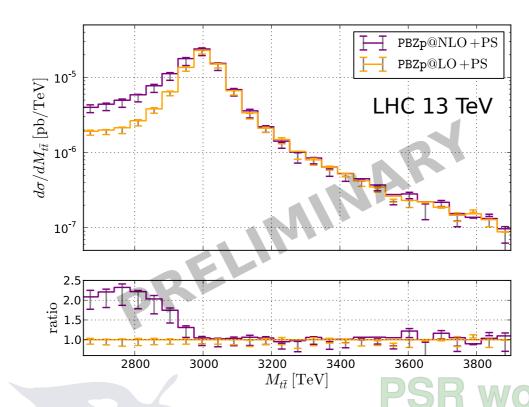
- POWHEG BOX v2 partly implements the treatment of QED divergences
 - singular region
 - soft and collinear limits
 - collinear remnants

- QED divergences get properly treated provided
 - singular region is identified
 - correct soft and collinear limits have been implemented


- POWHEG BOX v2 partly implements the treatment of QED divergences
 - singular region
 - soft and collinear limits
 - collinear remnants


PSR workshop

we had to modify the "find regions" algorithm


- QED divergences get properly treated provided
 - singular region is identified
 - correct soft and collinear limits have been implemented

- POWHEG BOX v2 partly implements the treatment of QED divergences
 - singular region
 - soft and collinear limits
 - collinear remnants

Results

top-pair invariant mass distribution of $pp \rightarrow A/Z/Z' \rightarrow t\bar{t}$ SSM Z', $m_{Z'} = 3TeV$, $G_{Z'} = 106.77GeV$

• SSM Z', $m_{Z'} = 3 TeV$, $G_{Z'} = 106.77 GeV$

Summary and outlook

- we calculated QCD corrections to $pp \to A/Z/Z' \to t\bar{t}$
- implemented in POWHEG BOX v2
 - ► including modifications to singular region search algorithm
- we are calculating single top including W'
- top-quark decay in NW approximation
- EW corrections to QCD top-pair production

