Jets in pp at NNLO

João Pires
* Universita di Milano-Bicocca and INFN, Sezione di Milano-Bicocca

PSR14 - Parton Showers, Event Generators and Resummation 2014 10-12 June 2014 Münster

* in collaboration with J.Currie, A.Gehrmann-De Ridder, T.Gehrmann, N.Glover

Inclusive jet and dijet cross sections

□ look at the production of jets of hadrons with large transverse energy in

- $\square \quad \text{inclusive jet events} \qquad pp \to j + X$
- $\square \quad \text{exclusive dijet events} \quad pp \to 2j$

 \Box cross sections measured as a function of the jet p_T , rapidity y and dijet invariant mass m_{jj} in double differential form

Inclusive jet cross section

Motivation for NNLO

- \square experimental uncertainties at high- p_T smaller than theoretical \rightarrow need pQCD predictions to NNLO accuracy
- collider jet data can be used to constrain parton distribution functions
- size of NNLO correction important for precise determination of PDF's
- inclusion of jet data in NNLO parton distribution fits requires NNLO corrections to jet cross sections

Inclusive jet cross section

Motivation for NNLO

- \square experimental uncertainties at high- p_T smaller than theoretical \rightarrow need pQCD predictions to NNLO accuracy
- collider jet data can be used to constrain parton distribution functions
- size of NNLO correction important for precise determination of PDF's
- inclusion of jet data in NNLO parton distribution fits requires NNLO corrections to jet cross sections
- α_s determination from hadronic jet observables limited by theoretical uncertainty due to scale choice

inclusive jet and dijet cross sections

State of the art:

- dijet production is completely known in NLO QCD [Ellis, Kunszt, Soper '92], [Giele, Glover, Kosower '94], [Nagy '02]
- NLO+Parton shower [Alioli, Hamilton, Nason, Oleari, Re '11]
- approximate NNLO threshold corrections [Kidonakis, Owens '00], [Florian, Hinderer, Mukherjee, Ringer, Vogelsang '13]

Goal:

obtain the jet cross sections at NNLO exact accuracy in double differential form

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}p_T\mathrm{d}|y|} \qquad \frac{\mathrm{d}^2\sigma}{\mathrm{d}m_{jj}\mathrm{d}y^*}$$

$pp \rightarrow 2j$ at NNLO: gluonic contributions

[Berends, Giele '87], [Mangano, Parke, Xu '87], [Britto, Cachazo, Feng '06] [Bern, Dixon, Kosower '93] [Anastasiou, Glover, Oleari, Tejeda-Yeomans '01],[Bern, De Freitas, Dixon '02]

$$\mathrm{d}\hat{\sigma}_{NNLO} \quad = \quad \int_{\mathrm{d}\Phi_4} \mathrm{d}\hat{\sigma}_{NNLO}^{RR} + \int_{\mathrm{d}\Phi_3} \mathrm{d}\hat{\sigma}_{NNLO}^{RV} + \int_{\mathrm{d}\Phi_2} \mathrm{d}\hat{\sigma}_{NNLO}^{VV}$$

- explicit infrared poles from loop integrations
- implicit poles in phase space regions for single and double unresolved gluon emission
- procedure to extract the infrared singularities and assemble all the parts in a parton-level generator
- □ differential cross sections→ kinematics of the final state intact to apply arbitrary phase space observable cuts

NNLO antenna subtraction

$$\begin{aligned} \mathrm{d}\hat{\sigma}_{NNLO} &= \int_{\mathrm{d}\Phi_4} \left(\mathrm{d}\hat{\sigma}_{NNLO}^{RR} - \mathrm{d}\hat{\sigma}_{NNLO}^S \right) \\ &+ \int_{\mathrm{d}\Phi_3} \left(\mathrm{d}\hat{\sigma}_{NNLO}^{RV} - \mathrm{d}\hat{\sigma}_{NNLO}^T \right) \\ &+ \int_{\mathrm{d}\Phi_2} \left(\mathrm{d}\hat{\sigma}_{NNLO}^{VV} - \mathrm{d}\hat{\sigma}_{NNLO}^U \right) \end{aligned}$$

- $\square d\hat{\sigma}^{S}_{NNLO}: \text{ real radiation subtraction term for } d\hat{\sigma}^{RR}_{NNLO}$
- $\square d\hat{\sigma}_{NNLO}^{T}: \text{ one-loop virtual subtraction term for } d\hat{\sigma}_{NNLO}^{RV}$
- $\square d\hat{\sigma}^{U}_{NNLO}: \text{ two-loop virtual subtraction term for } d\hat{\sigma}^{VV}_{NNLO}$
- □ subtraction terms constructed using the antenna subtraction method at NNLO for hadron colliders → presence of initial state partons to take into account
- contribution in each of the round brackets is finite, well behaved in the infrared singular regions and can be evaluated numerically

NNLO antenna subtraction

□ universal factorisation of both colour ordered matrix elements and the (m+2)- particle phase space \rightarrow colour connected unresolved particles

 $|M_{m+4}(\ldots,i,j,k,l,\ldots)|^2 J(\{p_{m+4}\}) \longrightarrow |M_{m+2}(\ldots,I,L,\ldots)|^2 J(\{p_{m+2}\}) \cdot X_4^0(i,j,k,l)$

- □ momentum map $\{p_i, p_j, p_k, p_l\} \rightarrow \{p_I, p_L\}$ enforces momentum conservation away from the unresolved limits
- phase-space factorisation

$$d\Phi_{m+2}(p_a,\ldots,p_i,p_j,p_k,p_l,\ldots,p_{m+2}) = d\Phi_m(p_a,\ldots,p_I,p_L,\ldots,p_{m+2})$$

$$d\Phi_{X_{ijkl}}(p_i,p_j,p_k,p_l)$$

integrated antennae is the inclusive integral

$$\mathcal{X}^0_{ijkl}(s_{ijkl}) = \frac{1}{C(\epsilon)^2} \int \mathrm{d}\Phi_{X_{ijkl}}(p_i, p_j, p_k, p_l) X^0_4(i, j, k, l)$$

Antenna functions and types

colour-ordered pair of hard partons (radiators) with radiation in between

- hard quark-antiquark pair
- hard quark-gluon pair
- hard gluon-gluon pair
- - can be at tree level or at one loop
- $\square \quad four-parton \ antenna \rightarrow two \ unresolved \ partons$
- can be massless or massive
- all have three antenna types
 - final-final antenna
 - initial-final antenna
 - initial-initial antenna
- □ all three-parton and four-parton antenna functions can be derived fom physical matrix elements, normalised to two-parton matrix elements

Integrated antennae

- antennae integrals are performed once and for all to become universal building blocks for subtraction of IR singularities at NNLO
- □ massless antennae (m = 0)

	NLO	NNLO
final-final	\checkmark^1	\checkmark^1
initial-final	\checkmark^2	$\sqrt{3}$
initial-initial	\checkmark^2	$\checkmark^{4,5,6}$

[1] A. Gehrmann-De Ridder, T. Gehrmann and E. W. N. Glover, *JHEP* 09 (2005) 056 [hep-ph/0505111];
[2] A. Daleo, T. Gehrmann and D. Maître, *JHEP* 04 (2007) 016 [hep-ph/0612257];

[3] A. Daleo, A. Gehrmann-De Ridder, T. Gehrmann and G. Luisoni, *JHEP* 01 (2010) 118 [0912.0374];

- [4] R. Boughezal, A. Gehrmann-De Ridder and M. Ritzmann, JHEP 02 (2011) 098 [1011.6631];
- [5] T. Gehrmann, P.F. Monni, JHEP 12 (2011) 049 [1107.4037];
- [6] A. Gehrmann-De Ridder, T. Gehrmann and M. Ritzmann, JHEP 10 (2012) 047 [1207.5779];

NNLO antenna subtraction

Implementation checks $pp \rightarrow 2j$ at NNLO:

□ subtraction terms correctly approximate the matrix elements in all unresolved configurations of partons *j*, *k*

$$\mathrm{d}\hat{\sigma}_{NNLO}^{RR,RV} \xrightarrow{\forall \{j,k\},\{j\} \to 0} \mathrm{d}\hat{\sigma}_{NNLO}^{S,T}$$

Iocal (pointwise) analytic cancellation of all infrared explicit
e-poles when integrated subtraction terms are combined with one, two-loop matrix elements

$$\mathcal{P}oles\left(\mathrm{d}\hat{\sigma}_{NNLO}^{RV}-\mathrm{d}\hat{\sigma}_{NNLO}^{T}\right)=0$$

$$\mathcal{P}oles\left(\mathrm{d}\hat{\sigma}_{NNLO}^{VV}-\mathrm{d}\hat{\sigma}_{NNLO}^{U}\right)=0$$

- leading and subleading colour
- process independent NNLO subtraction scheme
- allows the computation of multiple differential distributions in a single program run

Jet production partonic channels

Fraction of jets per initial state contribution LHC

- $\square \ gg \rightarrow gg \text{ dominates at low } p_T$
- $\label{eq:gamma} \ \ \ qg \to qg \ \text{important in all} \ p_T \ \text{regions}$
- $\square \quad qq \rightarrow qq \text{ dominant at high } p_T$

Tevatron

 \square qg and $q\bar{q}$ dominant

Present results at NNLO for

- $\label{eq:gg} \ \ gg \to gg \ \text{at leading colour}$
- $\label{eq:gg} \Box \ gg \to gg \text{ at subleading colour}$
- $\hfill q \bar q \to gg$ at leading colour

(J.Currie, A. Gehrmann-De Ridder, T.Gehrmann, N. Glover, JP '13)

- \square pp collisions at $\sqrt{s} = 8$ TeV
- \square jets identified with the anti- k_T jet algorithm with resolution parameter R = 0.7
- □ jets accepted at rapidities |y| < 4.4
- **\square** leading jet with transverse momentum $p_T > 80 \text{ GeV}$
- $\hfill\square$ subsequent jets required to have at least $p_T > 60~{\rm GeV}$
- MSTW2008nnlo PDF for all fixed-order predictions
- □ dynamical factorization and renormalization scales equal to the leading jet p_T $(\mu_R = \mu_F = \mu = p_{T1})$
- \square present results for full colour $gg \to gg$ scattering and $q\bar{q} \to gg$ leading colour combined at NNLO

Inclusive jet p_T distribution at NNLO

- all jets in an event are binned
- NNLO correction stabilizes the NLO k-factor growth with p_T
- $\hfill\square$ NNLO corrections 15-26% with respect to NLO

Double differential inclusive jet p_T distribution at NNLO

double differential k-factors

- NNLO prediction increases between 25% to 15% with respect to the NLO cross section
- similar behaviour between the rapidity slices

Double differential exclusive dijet mass distribution at NNLO

double differential k-factors

- NNLO corrections up to 20% with respect to the NLO cross section
- □ similar behaviour between the $y^* = 1/2|y_1 y_2|$ slices

Inclusive jet p_T scale dependence $(gg \rightarrow gg + X)$

- \square scale dependence study gluons only $N_F = 0$ channel at leading colour
- dynamical scale choice: leading jet p_{T1}
- flat scale dependence at NNLO

Threshold resummation approximation to exact NNLO

Approximate NNLO results from an improved threshold calculation for the single jet inclusive production

[de Florian, Hinderer, Mukherjee, Ringer, Vogelsang '13]

- \square $pp \rightarrow j + X$ with the threshold limit given by $s_4 = P_X^2 \rightarrow 0$
- near threshold phase space available for real-gluon emission is limited
- higher kth order coefficient functions dominated by large logarithmic corrections

NNLO benchmark predictions for jet production

S. Carrazza, JP (in preparation)

- understand and characterise the validity of the NNLO threshold approximation by comparing it with the exact computation using the gg-channel
- □ comparison performed differential in *p*_T and rapidity following the exact experimental setups
- NNPDF23_nnlo_as_0118 set for all fixed order predictions
- NLO benchmark curves
 - \square green dashed curves \rightarrow NLO-threshold *gg*-channel
 - black dashed curves \rightarrow NLO-exact gg-channel
 - $\hfill\square$ blue dashed curves $\hfill \rightarrow$ NLO-exact all channels

NNLO benchmark curves

□ pink long-dashed curves → NNLO-threshold gg-channel → $d\sigma_{gg,NNLO}^{thresh}/d\sigma_{gg,LO}$ □ black long-dashed curves → NNLO-exact gg-channel → $d\sigma_{gg,NNLO}^{exact}/d\sigma_{gg,LO}$

Tevatron CDF Run-II \sqrt{s} =1.96 TeV

S. Carrazza, JP (in preparation)

- **differences** \leq 15% at low- p_T in the central regions
- □ in the forward region differences \geq 40% for all p_T regions

LHC ATLAS 2010 \sqrt{s} =7 TeV

S. Carrazza, JP (in preparation)

K-Factors - ATLAS 2010 7 TeV, ml<0.3

K-Factors - ATLAS 2010 7 TeV. 0.3<ml<0.8 Experimental data NLOLO NLOiet++ (FastNLO) NLOLO NJA go-channel NLOLO threshold gg-channel NNLO/LO threshold gg-channel - - - NLOLO exact go-channel NNLO/LO exact op-channel 0 80L p_(GeV 1200

K-Factors - ATLAS 2010 7 TeV, 0.8<hl<1.2

K-Factors - ATLAS 2010 7 TeV, 2.8<ml<3.6

- differences large at small p_T and increase with rapidity
- exact NNLO k-factor decreases with rapidity, NNLO threshold k-factor increases with rapidity

Conclusions

- antenna subtraction method generalised for the calculation of NNLO QCD corrections for exclusive collider observables with partons in the initial-state
- explicit ε-poles in the matrix elements are analytically cancelled by the ε-poles in the subtraction terms
- non-trivial check of analytic cancellation of infrared singularities between double-real, real-virtual and double-virtual corrections
- successful inclusion of subleading colour contributions at NNLO with the antenna subtraction method
- □ first exact results for $gg \rightarrow gg + X$ and $q\bar{q} \rightarrow gg + X$ at NNLO
- perfomed comparison between exact NNLO results and approximate NNLO results from threshold resummation in the gg-channel
 - \Box largest differences arise at low- p_T for central rapidities and all p_T at large rapidities
 - differences are smaller at the Tevatron than at the LHC 7 TeV

Future work:

- include remaining channels involving the quark contributions
 - qg channel most important at the LHC
 - $\square \text{ leading colour } N_F \text{ pieces}$
 - \square qq channel important at high p_T

Back-up slides

QCD cross sections at subleading color beyond NLO

(J.Currie, A. Gehrmann-De Ridder, N. Glover, JP '13)

subleading colour matrix elements have incoherent interferences, gluon scattering

$$|\mathcal{M}_{6}^{0}|^{2} = g^{8}N^{4}(N^{2}-1)\sum_{\sigma\in S_{6}/Z_{6}}\left[|A_{6}^{(0)}(\sigma)|^{2} + \frac{2}{N^{2}}A_{6}^{0}(\sigma)\Big(A_{6}^{\dagger0}(\sigma') + A_{6}^{\dagger0}(\sigma'') + A_{6}^{\dagger0}(\sigma''')\Big)\right]$$

one-loop five parton matrix elements, gluon scattering

$$2\Re\left(\mathcal{M}_{5}^{0}\mathcal{M}_{5}^{\dagger 1}\right) = g^{8}N^{4}(N^{2}-1)\sum_{\sigma\in S_{5}/Z_{5}}2\Re\left[A_{5}^{\dagger 0}(\sigma)A_{5}^{1}(\sigma) + \frac{12}{N^{2}}A_{5}^{\dagger 0}(\sigma)A_{5,1}^{1}(\sigma')\right]$$

 $\hfill\hfi$

 \Rightarrow no single, double or triple collinear singularities at subleading colour \checkmark

□ subtract divergences associated with single and double soft gluons only which at subleading colour map completely to the tree-level single soft gluon current $\rightarrow X_3^0$ tree level three parton antenna