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The goal
The goal of this talk is to tell you about technology for NNLO computations that is 
being developed currently and to speculate about what we can realistically hope to 
achieve using it for the LHC physics  in the next several years.   I will do so 
assuming that we all agree that achieving NNLO QCD accuracy  for  hard collider 
processes is an important goal to pursue and I will not try to justify the importance 
of NNLO  and its place in the grand scheme of hadron collider physics.

I want to start with a few historic remarks. The first NNLO QCD computation for 
hadron collider processes was the Drell-Yan NNLO paper by van Neerven. This 
happened in 1990, i.e. almost quarter of a century ago!    The second NNLO 
computation -- the Higgs production in gluon fusion by Harlander and Kilgore -- 
appeared eleven years after that, in 2001. 

The above results refer to total cross-sections which are not measurable. First 
results for fiducial volume cross-sections  at NNLO appeared even later -- Higgs 
production with decay to two photons, fully differentially, was obtained in 2004.

First results with strongly interacting particles in the final state ( top pairs, jets etc.) 
-- which (in a certain sense) indicate  complete  understanding of a  NNLO 
technology --  appeared only in 2013, i.e. just about a year ago.    Therefore, things 
that  I will tell you about are a) relatively new and b)  took a while to understand, 
as the historical sketch shows.
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What I will not talk about
There is more than one method for NNLO computations, at different stages of 
developments.   Unfortunately, I can not talk about all of them because there is no 
time and because I am not an expert on technical details for  many of these them. 

I will focus on a method that, conceptually, is a generalization of the Frixione-Kunszt-Signer  
NLO subtraction framework to NNLO and I will try to explain how it works in detail.
However,  before I go there, I would like to  mention a number of recent result related to 
the development of a generic method for NNLO computations to indicate that this is a 
rather active field. 

1) Czakon, Fiedler, Mitov:   top quark pair production at NNLO;
2) J. Currie, T. Gehrmann, N.. Glover, A. Gehrmann - de Ridder, J. Pires  : dijet production at NNLO;
3) G. Abeloff, A. Gehrmann - de Ridder, P. Maierhofer, S. Pozzorini:  top quark pair production at 
NNLO;
4) R. Boughezal, F. Caola, K. Melnikov, F. Petriello and M. Schulze: H+jet at NNLO;
5) M. Bruscherseifer, F. Caola, K. Melnikov : top decay at NNLO;
6) M. Bruscherseifer, F. Caola, K. Melnikov:   t-channel single top production at NNLO ( large N);
7) F.  Cascioli, T. Gehrmann, M. Grazzini, et al. : ZZ production at NNLO ;
8) C. Anastasiou, A. Lazopoulos,  F. Herzog,  R.Mueller,  Higgs production in bottom fusion;

An alternative NNLO computational scheme is being developed by  P. Bolzoni, V. Del Duca, G. 
Somogyi  and  Z. Trosczanyi.  
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Perturbation theory for quark-gluon S-matrix

To describe collisions of quarks and gluons,  we use  conventional perturbation theory 
where a small parameter is the QCD coupling constant.  Our goal is to compute jet 
cross-sections for fixed number of jets and arbitrary number of colorless particles 
(Z,W,H, etc.) or massive  colored particles.

We start with identifying each jet with a single parton; this defines the leading order 
approximation.  We improve on it by adding both elastic (loops) and inelastic 
(additional gluons) corrections to the leading order approximation.

The need to combine elastic and inelastic contributions is related to the absence of 
mass gap in pQCD  and the ensuing infra-red and collinear divergences in processes 
with fixed parton multiplicities.   Kinoshita-Lee-Nauenberg theorem ensures their 
cancellation for properly-defined observables (infra-red and collinear safety).

Leading order process Elastic correction Inelastic correction
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Next-to-next-to-leading order computations

There are three contributions to NNLO cross-sections that differ by the number of 
partons in the final state; it is customary to refer to these contributions as double-
virtual, real-virtual and double-real. 

Since ``parton multiplicity’’ is not an infra-red safe concept,  these three 
contributions are unphysical, when taken separately.  For physical results defined in 
terms of, say, energy flows,  the three contributions need to be combined since 
higher-multiplicity contributions become indistinguishable from lower-multiplicity 
contributions if additional  partons become either soft or collinear or both.
Moreover, when this happens, higher-multiplicity matrix elements become singular 
and can not be integrated over the phase-space necessitating introduction of 
dimensional ( or other) regularization to isolate the divergencies. 

Double virtual Real-virtual Double-real
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Two-loop virtual corrections

A necessary ingredient of any NNLO  computation are the two-loop virtual corrections.
As with any virtual corrections computation, the complexity increases with larger number 
of external particles and with larger number of kinematic invariants ( masses included).

The technology that is currently used for these computations involves three steps:
a) diagrammatic analysis;
b) reduction of integrals using integration-by-parts identities; 
c) computation of master integrals.

u

ū W+

W�

To give you an idea  of how these computations 
are done, I will consider the production of a pair
of W-bosons (on- or off-shell) in the collisions of 
an up quark and and up antiquark

M = Aµ⌫(p1, p2, p3, p4)✏
µ
3 ✏

µ
4

p1

p2

p3

p4A(a)
µ⌫ = A(a)

µ⌫ + ngA(b)
µ⌫ +A(z)

µ⌫

We will focus on the first term that describes coupling of W-bosons to continuous 
(up-down-up) quark  line.
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Two-loop virtual corrections

The problem with two-loop computations is that no algebraic framework exists for 
expressing tensor integrals through Lorentz scalar integrals. This is in variance with 
the Passarino-Veltman procedure at one loop.    

At two-loops a similar task is accomplished by the integration-by-parts technique which  
requires that integrands contain enough ``propagators’’ to express any scalar product 
of loop momenta,  and  any scalar product of any loop momenta and any external 
vector through them.

1

2

3

4

k1 k2

k2 � k1p1 + k1 k2 � p3

p12 + k1 p12 + k2

⌦(k2 + p1)
2 (k1 � p3)

2

All Feynman diagrams should be written as linear combinations of these and similar integrals; 
this can be done but this is not the form in which Feynman integrals appear in Feynman 
diagrams.  
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Two-loop virtual corrections

To put Feynman diagrams into a required form, we need to do some algebra.  For 
example, we can write an amplitude in terms of form factors and  construct projection 
operators.  This procedure is straightforward but it becomes increasingly cumbersome 
for larger multiplicities.  

Aµ⌫ = v̄p2 p̂?up1A
(1,a)
µ⌫ + v̄p2�

µup1A
(2,a)
⌫ + v̄p2�

⌫up1A
(3,a)
µ + v̄p2�

[µp̂?�
⌫]up1A

(4,a)

p3,4 = ↵3,4p1 + �3,4p2 ± p?

p1

p2

p3

p4

p23 = m2
3 p24 = m2

4

A(1,a)
µ⌫ = T1gµ⌫ + T2p1µp1⌫ + T3p1µp2⌫ + T4p1,µp?⌫ + T5p2µp1⌫ + . . . ..T10p?µp?⌫

A(2a)
µ = T11p1µ + T12p2µ + T13p?µ

A(3a)
µ = T14p1µ + T15p2µ + T16p?µ

A4 = T17

M = Aµ⌫(p1, p2, p3, p4)✏
µ
3 ✏

µ
4

W+(p3) ! ⌫(p5) + e+(p6), ✏µ3 = h5|�µ|6]

W�(p4) ! e�(p7) + ⌫̄(p8), ✏⌫4 = h7|�µ|8]

Monday, June 9, 14



Two-loop virtual corrections

We can express the amplitude in a compact form using spinor-helicity notations

M(a) = �F1h57i[86]h23̂1] + F2h15ih17i[16][18]h23̂1] + F3h15ih27i[16][28]h23̂1]

+F5h17ih25i[18][26]h23̂1] + F6h25ih27i[26][28]h23̂1] + F14h15ih27i[16][18]
+F11h25ih17i[16][18] + F12h25ih27i[16][28] + F15h25ih27i[26][18]

F1 = �2T1, F2 = T2 � ↵3↵4T10 � ↵3T8 + ↵4T4,

F3 = T3 �
4T17

s
� ↵3�4T10 � ↵� 3T9 + �4T4

F15 = 2T15 � 2�3T16

. . . . . . ..

To compute the relevant form factors we construct projection operators

Aµ⌫ = v̄p2 �̂µ⌫up1 .
X

Aµ⌫ ⇥ ūp1Ôvp2 = Tr
h
p̂2�µ⌫ p̂1Ô

i
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Two-loop virtual corrections

G1 = �Tr [p̂2�µ⌫ p̂1p̂?]

4p2?(p1 · p2)3
⇥ pµ1p

⌫
1 , G1 = T6.

G2 = �Tr [p̂2�µ⌫ p̂1p̂?]

4p2?(p1 · p2)3
⇥ pµ2p

⌫
2 , G2 = T2.

. . . . . . . . . .

G17 = �Tr [p̂2�µ⌫ p̂1 (�⌫ p̂?�µ � µ $ ⌫)]

8p2?(p1p2)
, G17 = �(2d2 � 14d+ 20)T17 + (p1p2)T5 � (p1p2)T3.

T1 =
G10 �G9 �G4 �G3

d� 3
, T2 = G2, . . . . . . .., T17 = �G4 �G3 +G17

2(d� 3)(d� 4)
.

Finally, we can combine equations for T’s to obtain the form factors F;  these  form factors are 
expressed in terms of two-loop four-point integrals of the type shown earlier  These integrals 
satisfy many linear equations that originate from integration-by-parts identities that allow one to 
map all the integrals that are needed on a small set of integrals called ``master integrals’’.  
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Two-loop virtual corrections
Procedures for the reduction of two-loop integrals to master integrals are non-trivial.  
Large number of interesting ideas that facilitate this process appeared in the past O(10) 
years.  In addition, large effort went into an automation of integration-by-parts (IBP) 
procedure; now public programs (FIRE, REDUZE) and their more powerful private 
versions exist. The  complexity of the IBP process increases with the number of 
kinematic invariants and masses that are present in the problem.  At the moment,  2->2 
processes can be dealt with;  anything beyond that has never been tried. 

Calculations of master integrals is a much less straightforward procedure; it was 
traditionally done on a case-by-case basis.    An interesting recent development is  
related to  Henn’s conjecture that  postulates that it is always possible to choose a set 
of master integrals in such a way that they satisfy differential equations of the following 
type 

@

x

~

f = ✏Â

x

(x, y, z. . . )~f

The important point is that on  the right-hand side, the dimensional regularization 
parameter appears explicitly, and only as a multiplicative pre-factor. It is then possible 
to solve these equations iteratively  order by order in (d-4).

While differential equations were used to find master integrals for a long time 
starting from papers by Kotikov and Remiddi in early 1990s,  the idea by Henn 
streamlines and simplifies such computations significantly. This already lead to very 
impressive advances ( e.g. master integrals for Bhabha, V1 V2 production) that may 
have interesting consequences for phenomenology.
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Two-loop virtual corrections
To summarize the situation with the two-loop virtual corrections, let me say that 

1) they are needed since they are always part of any NNLO computation; 

2)  they can be computed in many ways ( direct Feynman parameter integration, numerics, 
Mellin-Barnes, differential equations) but their computation is always difficult;

3)  recent advances seem to streamline computations of master integrals so that one
can expect significant progress  in computing two-loop virtual corrections to various 2 -> 2 
processes;
 
4)  larger  number of kinematic invariants (multi-leg, masses etc). makes such computations 
increasingly complicated and, at the moment,  we do not know if two-loop computations for 
2->2 amplitudes with large number of kinematic invariants or 2->3 processes are feasible 
within this framework;

5) There are interesting attempts to understand if two-loop computations can be done using
unitarity techniques that turned out to be so powerful at one-loop.  While there was an 
impressive progress in this field related to classification of integrand residuals based on some 
algebraic geometry concepts,  there are still  many outstanding issues.  Currently , the main 
problem there seems to be the lack of understanding of how to avoid the use of integration-
by-parts.
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Two-loop virtual corrections

For the purpose of the following discussion,  we will assume that the relevant two-loop 
computation exists.  If so,  we will find the result whose essential features are easily expressed 
through Catani’s formula.

M =
⇣↵s

2⇡

⌘r
✓
M(0) +

↵s

2⇡
M(1) +

⇣↵s

2⇡

⌘2
M(2)

◆

M(1) = Î1M(0) +M(1)
fin

M(2) = Î2M(0) + Î1M(1) +M(2)
fin

Î1 =
1

2

e✏�E

�(1� ✏)

X

i

Vi

~T 2
i

X

j 6=i

~Ti · ~Tj

✓
µ2

�2pi · pj � i0

◆✏

Vi =
~T 2
i

✏2
+

�i
✏
.

Î2 = �1

2
Î1

✓
Î1 + 4⇡�0

1

✏

◆
+

e�✏�E�(1� 2✏)

�(1� ✏)

✓
2⇡�0

✏
+K

◆
Î
(1)
✏!2✏ +

H(2)

✏
.

The formula for the amplitude shows explicit poles in the dimensional regularization 
parameter.   Singularities are related to (color-correlated) tree- and one-loop amplitudes. 
To compute cross-sections, we need to take the d -> 4 limit;  to cancel  singularities that 
appear in the above formula for the virtual corrections we need to consider inelastic 
processes where additional partons are emitted into the final state.
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Differences between virtual and real

Explicit (d-4) poles in virtual corrections  should be contrasted with higher-multiplicity  
partonic processes  where such poles  are implicit.  

Indeed,  consider as an example,  the computation of NNLO QCD corrections to the 
production of the Higgs boson in association with a jet.   The leading order is computed 
using the matrix element for 0->gggH.   The next-to-next-to-leading order correction 
requires matrix element 0->gggggH, that needs to be  integrated over the phase-space 
of the Higgs boson and three final-state gluons. 

� ⇠
Z

dLipsgg!Hggg|M(0 ! ggggH)|2FJ .

However, the integrand of the above expression does not contain any poles in the dimensional
regularization parameter.  Indeed, depending on the measurement function, it can describe 
production of the Higgs boson in association  with 3 jets at tree-level ( in which case everything is 
finite);  production of the Higgs boson  in association with 2 jets at next-to-leading order ( in 
which case we should produce at most  two poles in (d-4) upon integration over the phase-
space) or  production of the Higgs boson in  association with 1 jet at NNLO ( in which case four 
poles in (d-4) should be produced to cancel singularities of the elastic cross-section.
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Differences between virtual and real

A properly-organized NNLO computation should be able to describe all of the above 
processes (Born, Born + jet, Born + 2 jets) and it should be able to describe all of them 
at a fully differential level.

Hence, we arrive at a somewhat paradoxical situation where , on one hand, the need to 
keep everything at a fully-differential level prevents us from integrating  over phase-
spaces for processes with additional emissions and, on the other hand,  the need to 
explicitly extract singularities in (d-4) forces us  to perform such integration.

It is straightforward to understand how one can resolve this issue,  as a matter of 
principle. Suppose we managed to reduce the problem to an integral of the type

1Z

0

dx

x

1+n✏
F (x)

1

x

1+n✏
= � 1

n✏

�(x) +


1

x

�

+

+ . . . ..

xZ

0

dx

x

1+n✏

F (x) = � 1

n✏

F (0) +

1Z

0

dx

x

[F (x)� F (0)]

Assuming that the function F(x) is non-singular at x = 0, we can use the 
expansion in plus-distributions to extract singularities without integration.

We can apply this general idea to real-emission singularities that need to be dealt with 
in pQCD computations.   We will first discuss the NLO since all the main steps can be  
illustrated already at that level. 
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Next-to-leading order 

Consider the production of the Higgs boson in association with a jet as an example. I 
will look at the gluon channel only; all quark-initiated contributions will be ignored.

H

g1 g2

g3 g4

� ⇠
Z

dLipsg1+g2!H+g3+g4 |M(g1 + g2 ! H + g3 + g4)|2FJ(g1, g2, g3, g4)

The immediate problem that we face with the above integral is that singularities can 
appear in different ways.  Indeed,  they appear when either g3 or g4 become soft or 
when either g3 or g4 become collinear to either g1 or g2 or to each other.

As the first step we would like to separate the different singular regions in the phase-
space.  To do this, we introduce partition of unity.

�(i)
p?

=
p?,j

p?,3 + p?,4
, j 6= i. �(3)

p?
+�(4)

p?
= 1

The resulting  expression defines the ``hard’’ gluon which 
in this case is g3.  Because of the damping factor,  when gluon
g3 becomes soft of collinear to g1 or g2,  no non-integrable 
singularities are developed.

1

2!
dLipsg1g2!g3g4H |M(g3, g4)|2

=
1

2!
dLipsg1g2!g3g4H

⇣
�(3)

p?
+�(4)

p?

⌘
|M(g3, g4)|2

= dLipsg1g2!g3g4H�(4)
p?

M(g3, g4)|2.
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Next-to-leading order 
It remains to isolate collinear singularities associated with gluon g4.  In this case, the 
phase-space partitioning involves scalar products of unit vectors that define directions 
of `` hard’’ gluons g1, g2 and g3 and the unit vector that defines direction of g4.  We 
again  introduce partition of unity, this time using the relative angles of gluons.

H

g1 g2

g3 g4

The above formula defines three sectors for the phase-space 
partitioning. In each of these sectors,  kinematic configurations
that lead to singularities are unique.  Indeed,
in sector 1, gluon g4 can be soft and/or collinear to incoming g1;
in sector 2, gluon g4 can be soft and/or collinear to incoming g2;
in sector 3, gluon g4 can be soft and/or collinear to outgoing  g3.

To extract singularities, in each of these sectors, we choose 
the reference frame which is most appropriate for this 
purpose, i.e. the z-axis is aligned with g1 in the 1st sector, with g2 
in the 2nd and with g3 in the  3rd.

1 = �(41)
✓ +�(42)

✓ +�(43)
✓ . �(4i)

✓ =
⇢j4⇢k4

⇢13⇢24 + ⇢14⇢34 + ⇢24⇢34
.

⇢ij = 1� ~nj · ~nj = 1� cos ✓ij

1

2!
dLipsg1g2!Hg3g4 |M|2 =

3X

↵=1

dLipsg1g2!Hg3g4�
(4)
p?

|M|2�4↵
✓
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Next-to-leading order 

In more detail, phase-space is parametrized by splitting it into regular and singular parts.

dLipsg1g2!Hg3g4�
(4)
p?

�4↵
✓ = �(4)

p?
�4↵

✓ dLipsQ(12)!3H ⇥ [dg4]
(4↵).

dLipsQ(12)!g3H =
dx4dx5

8⇡

2Eg3

Q0 � ~

Q · n3

 
E

2
g3 sin

2
✓3

p

2
?,H

!�✏

Q = p1 + p2 � p4, p3 = Eg3 (1,~n3) Eg3 =

Q2 �m2
H

2(Q0 � ~Q · ~n3

, ~n3 = (sin ✓3 cos�3, sin ✓3 sin�3, cos ✓3)

cos ✓3 = 1� 2x4, �3 = 2⇡x5

Parametrization of the singular phase-space depends on the sector; as we explained 
earlier, choice of the z-axis is important.  Consider for definiteness the first sector.  

p4 = Eg4 (1, sin ✓4 cos�4, sin ✓4 sin�4, cos ✓4)

Eg4 = E

max

x

1

dLips

(41)
12!34H = Norm⇥ PSw ⇥ PS

�✏ dx1dx2dx3dx4dx5

x

1+2✏
1 x

1+✏
2

⇥ [x

2
1x2].

p1 · p4 ⇠ (1� cos ✓4) ) cos ✓4 = 1� 2x2

Expression for the phase-space is such that all the implicit factors there, are non-singular 
in the limit x1 ->0 (gluon g4 soft) or x2 -> 0 ( gluon g4 collinear g1) -- the only two singular 
kinematic configurations that are relevant for  sector 1.

)
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Next-to-leading order 

dLips

(41)
12!34H = Norm⇥ PSw ⇥ PS

�✏ dx1dx2dx3dx4dx5

x

1+2✏
1 x

1+✏
2

⇥ [x

2
1x2].

We then  need to perform an integration over the phase-space of Sector  1. 

� ⇠
Z

dLips(41)12!34H |M|2 )
1Z

0

dx1

x

1+2✏
1

dx2

x

1+✏
2

F (x1, x2), F (x1, x2) = [x2
1x2]|M|2.

We can easily extract singularities from this expression provided that the function
F(x1,x2) is finite in the limit x1 -> 0 and x2 -> 0.  Is this so?

Recall that the physical meaning of x1->0 is that the gluon g4 becomes soft and the physical
meaning of x2->0 is that the gluon g4 becomes collinear to gluon g1.  We can use universal 
factorization properties of scattering amplitudes to  show that the function F(x1,x2) is finite 
in both of these limits.  We will do this on the next slide.  

1Z

0

dx1

x

1+2✏
1

dx2

x

1+✏
2

F (x1, x2) =

1Z

0

dx1dx2


1

2✏2
F (0, 0)� 1

2✏
(F (0, x2)� F (0, 0))� 1

✏

(F (x1, 0)� F (0, 0)) + . . . .

�

For now, let us assume  that the function F(x1,x2) is indeed smooth at the origin.  If so,  the  
divergencies can be easily extracted using the plus-distribution prescription that we already
described.

The last equation has large number of ``subtraction terms’’ that are generated automatically;  we 
will show now that all such terms can be obtained from universal limits of scattering amplitudes .
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Next-to-leading order 

The x2 -> 0 limit is also straightforward. Indeed,  x2 -> 0 corresponds to the collinear 
singularity of the matrix element. Therefore, the limiting behavior of the amplitude 
is given by the gluon splitting function ( note spin correlations).

|MH(g1, g2, g3, g4)|2 ! CAg2s
s14

Pµ⌫(z)Mµ
H(g1, g2, g3)M⌫,⇤

H (g1, g2, g3)

x2

s14
=

1

4Eg1Eg4

.

|MH(g1, g2, g3, g4)|2 ! CA

X

i 6=j

pipj
(pip4)(pjp4)

⇥ |MH(g1, g2, g3)|2.

x

2
1 ⇥

X

ij

pipj

(pip4)(pjp4)
!

X

i 6=j

1� ~ni~nj

(1� ~nin4)(1� ~nj~n4)
.

The soft x1->0 limit of the  amplitude gives a factorized expression that consists of 
eikonal factors and the reduced scattering amplitude 

The apparent collinear singularities  in the last expression are removed by the damping 
factors that we introduced when phase-space partitioning was discussed.

The important point is that this factorization does not depend on the details of the 
process;  it is universal. Hence,  the relevant limits can be computed once and for all.    

Pµ⌫
gg = 2CA


�gµ⌫

✓
z

1� z
+

1� z

z

◆
� 2(1� ✏)z(1� z)

kµ?k
⌫
?

k2?

�

lim
p4!0

�(4i)
✓ =

⇢j4⇢k4

⇢13⇢24 + ⇢14⇢34 + ⇢24⇢34
.

1� cos ✓14 = 2x2

lim
x1!0
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Next-to-leading order 
1) The above discussion applies to any NLO computation since generalization of 
phase-space partitioning to higher-multiplicity final states is straightforward.

2) The building blocks of this method are  

  a) phase-space partitioning,  
  b) scattering amplitudes, 
  c) universal soft-collinear limits 
  d) virtual corrections. 

3) Symmetries are very helpful in reducing the number of independent sectors that one has to 
deal with.

4) In the NLO community,  the procedure that I just described is known as Frixione-Kunszt-
Signer  (FKS) method that was suggested about 20 years ago and then neglected for about 10 
years in favor of Catani-Seymour dipole subtraction method. 

5) The FKS method made an impressive comeback and it is used  in   POWHEG and MadLoop 
interfaces of fixed order computations and parton showers.  

6) Given that the FKS method was always much less popular for NLO computations than the 
CS method,  it is ironic that generalization of the FKS method to NNLO happened in a seamless 
fashion. 
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Next-to-next-to-leading order (FKS@NNLO) 

Consider  the following process   g(1) + g(2) -> H + g(3) + g(4) + g(5) .  To partition the 
phase-space, we start by ordering gluons in their hardness using symmetries of phase-space
matrix elements and measurement functions.  Similar to NLO, we can use transverse momenta
of  final state gluons as a measure of hardness and introduce partition of unity

�(ij)
p?

=
p?,k

p?,3 + p?,4 + p?,5
, i 6= j 6= k, i, j, k 2 {3, 4, 5}.

�(45)
p?

+�(34)
p?

+�(35)
p?

= 1.

1

3!
dLips12!H345 =

1

3!
dLips12!H345

⇣X
�(ij)

?

⌘

=
1

2!
dLips12!H345�

(45)
p?

= dLips12!H345�
(45)
p?

✓(Eg4 � Eg5)

After the ordering, gluon g(3) becomes a designated jet and gluons g(4) and g(5) can be soft
or collinear to g(3) or to the incoming beam direction.  

H

g1 g2

g3 g4

g5

If we understand how NLO computations can be done within this framework,  it is also 
straightforward to understand extensions of the method  to NNLO.   For definiteness, I will 
consider Higgs  boson production in an association with a jet, gluons only.  
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The next step is to perform collinear partitioning.  Having identified a ``jet’’, we obtain  three 
collinear directions, that correspond to gluons g(1), g(2) and g(3). The gluons g(4) and g(5) 
can develop collinear singularities if  their momenta are aligned with  one of the three collinear 
directions or if  momentum of  g(4) is collinear to  g(5).

begin with a discussion of the phase-space partitioning. Similar to the one-loop case, we first

partition the phase-space in a way that allows us to identify the “hard” gluon by writing

∆(ij)
p⊥ =

p⊥,k

p⊥,3 + p⊥,4 + p⊥,5
, i != j != k, i, j, k ∈ [3, 4, 5]. (3.26)

Because ∆(34)+∆(35)+∆(45) = 1, we can use this partition of unity and the symmetry of the

phase-space, the measurement functions and the matrix elements with respect to permutations

of gluons g3, g4 and g5, to write

1

3!
dLips12→H345 =

1

3!
dLips12→H345

(

∆(34)
p⊥ +∆(35)

p⊥ +∆(45)
p⊥

)

=
1

2!
dLips12→H345∆

(45)
p⊥

= dLips12→H345∆
(45)
p⊥ θ(Eg4 − Eg5).

(3.27)

In the last step we introduced the energy ordering of the two gluons; this allows us to remove

the final symmetry factor.

We must next partition the phase-space to extract collinear singularities. To do so, we

closely follow the discussion of the next-to-leading order case in the previous Section. We split

the phase-space into nine different sectors that we denote by the possible collinear directions

of the gluons 4 and 5. We have three triple-collinear sectors 4||5||i, with i = 1, 2, 3 and six

double-collinear sectors 4||i⊗ 5||j, where i != j ∈ [1, 2, 3]. To write the weight for each of the

nine sectors, we introduce the auxiliary quantities

di∈[4,5] =
3
∑

j=1

ρij, di∈[4,5]k =
3
∑

j=1,j $=k

ρij , d45ij = ρ45 + ρ4i + ρ5j . (3.28)

Denoting the weight of a sector where gluon 4 is allowed to become collinear to gluon i and

gluon 5 to gluon j by w4i;5j , we write (k != n != 4 != 5 != i != j)

w4i;5j |i=j =
ρ4kρ4nρ5kρ5n

d4d5

[

(

1

d4k
+

1

d4n

)(

1

d5k
+

1

d5n

)

+

(

1

d4i
+

1

d4k

)(

1

d5k
+

1

d5n

)

ρ4i
d45ni

+

(

1

d4i
+

1

d4n

)(

1

d5k
+

1

d5n

)

ρ4i
d45ki

+

(

1

d4k
+

1

d4n

)(

1

d5i
+

1

d5k

)

ρ5i
d45in

+

(

1

d4k
+

1

d4n

)(

1

d5i
+

1

d5n

)

ρ5i
d45ik

]

,

(3.29)

and (k != n != 4 != 5 != i, l != m != 4 != 5 != j)

w4i;5j |i $=j =
ρ4kρ4nρ5lρ5m

d4d5

(

1

d4k
+

1

d4n

)(

1

d5l
+

1

d5m

)

ρ45
d45ij

. (3.30)

Using Eq. (3.27), we decompose the phase-space as

1

3!
dLips12→H345 =

∑

α∈S

dLips(α)12→H345, (3.31)
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and (k != n != 4 != 5 != i, l != m != 4 != 5 != j)

w4i;5j |i $=j =
ρ4kρ4nρ5lρ5m

d4d5

(

1

d4k
+

1

d4n

)(

1

d5l
+

1

d5m

)

ρ45
d45ij

. (3.30)

Using Eq. (3.27), we decompose the phase-space as

1

3!
dLips12→H345 =

∑

α∈S

dLips(α)12→H345, (3.31)
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and (k != n != 4 != 5 != i, l != m != 4 != 5 != j)

w4i;5j |i $=j =
ρ4kρ4nρ5lρ5m

d4d5

(

1

d4k
+

1

d4n

)(

1

d5l
+

1

d5m

)

ρ45
d45ij

. (3.30)

Using Eq. (3.27), we decompose the phase-space as

1

3!
dLips12→H345 =

∑

α∈S

dLips(α)12→H345, (3.31)
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element related to gluon g3 are unimportant, and we only need to consider cases when gluon

g4 becomes either soft or collinear to one of the three hard directions defined by the momenta

g1, g2 and g3. Note that g3 and g4 cannot both be soft, or collinear to the collision axis at

the same time, because we require a jet in the final state. To separate the collinear-singular

regions, we introduce another partition of unity

1 = ∆(41)
θ +∆(42)

θ +∆(43)
θ . (3.9)

In Eq. (3.9), we use

∆(4i)
θ =

ρj4ρk4

ρ14ρ24 + ρ14ρ34 + ρ24ρ34
, j, k != i, 4, (3.10)

where ρij = 1 − "ni · "nj and "ni is the three-vector that parametrizes momentum direction of

the particle i. Again, the ∆(4i)
θ are labeled in such a way that the subscript indicates a pair

of particles that can become collinear without forcing the angular damping factor to vanish.

Inserting this partition of unity Eq. (3.9) into the phase-space of Eq. (3.8), we obtain

1

2!
dLips12→34H →

3
∑

i=1

dLips(4i)12→34H , dLips(4i)12→34H = dLips12→34H∆(4)
p⊥∆

(4i)
θ . (3.11)

The above decomposition defines pre-sectors that we will refer to as Sc(4i). A phase-space

parametrization for each of these pre-sectors is chosen in such a way that the soft and collinear

singularities that are relevant for that pre-sector can be extracted in the easiest possible way.

We now describe these parametrizations explicitly. In general, we will parametrize the

phase-spaces by splitting them into “regular” and “singular” parts

dLips(4i)12→34H = ∆(4)
p⊥∆

(4i)
θ dLipsQ(12)→3H × [dg4]

(4i). (3.12)

The regular NLO phase-space is the same for all pre-sectors. It includes all particles except

the (potentially soft) gluon g4. We write it as

dLipsQ(12)→3H =
dx4dx5
(8π)

2Eg3

(Q0 − "Q · "n3)

(

E2
g3 sin

2 θ3

p2⊥,H

)−ε

, (3.13)

where we have introduced the notation Q = p1 + p2 − p4 and p3 = Eg3(1,"n3). Also,

Eg3 =
Q2 −m2

H

2(Q0 − "Q · "n3)
, "n3 = (sin θ3 cosϕ3, sin θ3 sinϕ3, cos θ3) ,

cos θ3 = 1− 2x4, sin θ3 = +
√

1− cos2 θ3, ϕ3 = 2πx5.

(3.14)

Following the discussion of the leading order phase-space parametrization, we have dropped

the ε-dependent part of the integral over azimuthal angle of the gluon g3, and have normalized

the remaining ε-dependent part of the phase-space to the transverse momentum of the Higgs

boson.
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In the last step we introduced the energy ordering of the two gluons; this allows us to remove

the final symmetry factor.

We must next partition the phase-space to extract collinear singularities. To do so, we

closely follow the discussion of the next-to-leading order case in the previous Section. We split

the phase-space into nine different sectors that we denote by the possible collinear directions

of the gluons 4 and 5. We have three triple-collinear sectors 4||5||i, with i = 1, 2, 3 and six

double-collinear sectors 4||i⊗ 5||j, where i != j ∈ [1, 2, 3]. To write the weight for each of the
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(

1
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)(

1

d5i
+

1

d5k
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ρ5i
d45in

+

(

1

d4k
+

1

d4n

)(

1

d5i
+

1

d5n

)

ρ5i
d45ik

]

,

(3.29)

and (k != n != 4 != 5 != i, l != m != 4 != 5 != j)

w4i;5j |i $=j =
ρ4kρ4nρ5lρ5m

d4d5

(

1

d4k
+

1

d4n

)(

1

d5l
+

1

d5m

)

ρ45
d45ij

. (3.30)

Using Eq. (3.27), we decompose the phase-space as

1

3!
dLips12→H345 =

∑

α∈S

dLips(α)12→H345, (3.31)
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dLips(↵)12!H345 = dLips12!H345�
(45)
p?

✓(Eg4 � Eg5)w↵

S = [(41, 51), (42, 52), (43, 53), (41, 52), (42, 51), (41, 53), (43, 51), (42, 53), (43, 52)] .

As the result of this procedure, we have nine sectors to consider. In each of the sectors, the 
structure of singularities is  clearly  exposed.    
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In each of the nine sectors, singularities can appear if gluons g(4) and g(5) become soft and/or if 
they become collinear to a well-defined direction(s).  In each sector we choose the phase-space 
parametrization that reflects this fact.   

Consider the sector S(14,15) (``triple collinear initial-initial, singularities appear when g4||g1 and 
g5|| g1’’).  Choose the momentum parametrization to make collinear singularities simple and find 
the ensuing parametrization of the ``unresolved’’ part of the phase-space.

where p14 = p1 − p4 and κ4 is the spin-correlation vector that tells us how the collinear

direction is approached (see Section 4 or [24] for details). Eq. (3.38) implies that the matrix

element depends on the four-vector p5 and, according to Eq. (3.35), p5 has ε-dimensional

components. This dependence is unfortunate, since it becomes unclear how to use four-

dimensional methods, such as spinor-helicity techniques, to simplify calculations of scattering

amplitudes in that situation. However, when p1||p4 we are left with only three different

directions n1, n3, n5. We can use d−dimensional rotational invariance to remove any ε-

dimensional components from the matrix elements in Eq. (3.38). To do so, we first remove the

y-component of p3 by rotating all momenta in the xy-plane by the angle −ϕ3. This rotation

does not change p14 ∼ (1, 0, 0, 1) and p2 ∼ (1, 0, 0,−1). We then perform another rotation

in the yε-plane, to remove the ε-dependent component of the vector p5. Because none of the

momenta in the matrix element has both y- and ε-dimensional components, such a rotation

does not change p14, p2 and p3, while it makes p5 four-dimensional. We note that, although we

rotated away the ε-dimensional components of the resolved four-vectors that are used in the

hard matrix elements, these vectors still depend on the ε-dimensional angle α. In addition,

because of spin correlations, we also must rotate the vector κµ4 = (0, cosϕ4, sinϕ4, 0, 0) that

enters Pµν
gg in Eq. (3.38). This rotated vector receives ε-dimensional components and becomes

α-dependent. The purpose of the rotation therefore is to move the ε-dimensional components

from the resolved momenta in the matrix element to the splitting function, where it is easy

to account for them explicitly. Finally, we stress that the very possibility to rotate away

the ε-dimensional components of particle momenta is connected to the rotational invariance

of spin-summed scattering amplitudes squared in d-dimensional space-time. This seems to

suggest that the easiest framework in which to implement this techniques is conventional

dimensional regularization, where the momenta of all external particles and their polarization

vectors are treated as d-dimensional. We will discuss this point in more detail shortly.

We now discuss the explicit parametrizations of the relevant phase-spaces. For the sector

Sc(41;51), the singular phase-space reads

[dg4][dg5]θ(Eg4 − Eg5) =
dΩ(d−3)dΩ(d−4)

24+2ε(2π)2d−2
dϕ4

[

sin2(ϕ4 − ϕ3)
]−ε

d cosα
[

sin2 α
]−1−ε

× [ξ1ξ2]
1−2ε [η4(1− η4)]

−ε [η5(1− η5)]
−ε [λ(1− λ)]−1/2−ε |η4 − η5|1−2ε

D1−2ε

× (2Emax)
4−4ε θ(ξ1 − ξ2)θ (ξmax − ξ2) dξ1dξ2dη4dη5dλ.

(3.39)

The variables introduced in the above formula parametrize the energies and angles of the

(potentially) unresolved gluons in the following way

Eg4,g5 = Emaxξ1,2, ξmax = min

[

1,
1− ξ1

1− (1−m2
h/s)ξ1η45

]

, (3.40)

and

η45 =
|η4 − η5|2

D
, sin2 ϕ5 = 4λ(1 − λ)

|η4 − η5|2

D2
,

D = η4 + η5 − 2η4η5 + 2(2λ− 1)
√

η4η5(1− η4)(1− η5).
(3.41)
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of spin-summed scattering amplitudes squared in d-dimensional space-time. This seems to

suggest that the easiest framework in which to implement this techniques is conventional

dimensional regularization, where the momenta of all external particles and their polarization

vectors are treated as d-dimensional. We will discuss this point in more detail shortly.

We now discuss the explicit parametrizations of the relevant phase-spaces. For the sector

Sc(41;51), the singular phase-space reads

[dg4][dg5]θ(Eg4 − Eg5) =
dΩ(d−3)dΩ(d−4)

24+2ε(2π)2d−2
dϕ4

[

sin2(ϕ4 − ϕ3)
]−ε

d cosα
[

sin2 α
]−1−ε

× [ξ1ξ2]
1−2ε [η4(1− η4)]

−ε [η5(1− η5)]
−ε [λ(1− λ)]−1/2−ε |η4 − η5|1−2ε

D1−2ε

× (2Emax)
4−4ε θ(ξ1 − ξ2)θ (ξmax − ξ2) dξ1dξ2dη4dη5dλ.

(3.39)

The variables introduced in the above formula parametrize the energies and angles of the

(potentially) unresolved gluons in the following way

Eg4,g5 = Emaxξ1,2, ξmax = min

[

1,
1− ξ1

1− (1−m2
h/s)ξ1η45

]

, (3.40)

and

η45 =
|η4 − η5|2

D
, sin2 ϕ5 = 4λ(1 − λ)

|η4 − η5|2

D2
,

D = η4 + η5 − 2η4η5 + 2(2λ− 1)
√

η4η5(1− η4)(1− η5).
(3.41)
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where p14 = p1 − p4 and κ4 is the spin-correlation vector that tells us how the collinear

direction is approached (see Section 4 or [24] for details). Eq. (3.38) implies that the matrix
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components. This dependence is unfortunate, since it becomes unclear how to use four-

dimensional methods, such as spinor-helicity techniques, to simplify calculations of scattering

amplitudes in that situation. However, when p1||p4 we are left with only three different

directions n1, n3, n5. We can use d−dimensional rotational invariance to remove any ε-

dimensional components from the matrix elements in Eq. (3.38). To do so, we first remove the
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suggest that the easiest framework in which to implement this techniques is conventional

dimensional regularization, where the momenta of all external particles and their polarization
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where S = [(41; 51), (42; 52), (43; 53), (41; 52), (42; 51), (41; 53), (43; 51), (42; 53), (43; 52)] and

dLips(α)12→H345 = dLips12→H345 ∆(45)
p⊥ θ(Eg4 − Eg5) wα. (3.32)

We now discuss the parametrization of the phase-spaces for individual pre-sectors. Be-

cause of the ∆(45)
p⊥ factor, we consider gluon g3 as part of the regular phase-space and gluons

g4, g5 as part of the singular phase-space. Regular phase-spaces are the same for all pre-sectors

and are parametrized in the same way as at NLO in Eq. (3.13), except that the vector Q in

that equation becomes Q = p1 + p2 − p4 − p5.

We begin with the triple-collinear sectors. We have three such sectors Sc(4i;5i), i ∈ [1, 2, 3].

In these sectors, singularities can appear if gluons g4,5 are soft, and if they are collinear to the

direction "ni, or to each other. The phase-space parametrization should enable us to extract

all of these singularities. We will start the discussion with the triple-collinear initial sector

Sc(41;51).

The first step is to find independent degrees of freedom, which is non-trivial because we

have to perform computations in dimensional regularization. To illustrate this point, we use

d-dimensional rotational invariance to choose the momenta of five gluons as follows

p1,2 =

√
s

2
(1, 0, 0,±1; 0) ,

p3 = Eg3 (1, sin θ3 cos ϕ̃3, sin θ3 sin ϕ̃3, cos θ3; 0) ,

p4 = Eg4 (1, sin θ4, 0, cos θ4; 0) ,

p5 = Eg5 (1, sin θ5 cosϕ5, sin θ5 sinϕ5 cosα, cos θ5; sin θ5 sinϕ5 sinα) .

(3.33)

Note that these momenta are shown as five-dimensional vectors; the fifth component corre-

sponds to one of the axes in the (d− 4)-dimensional space. The angle α parametrizes leakage

into the (d− 4)-dimensional vector space. Note also that we have chosen to give the (d− 4)-

dimensional component to the softer of the two gluons. The reason for this choice will be

explained shortly. With this parametrization, the angular part of the phase-space becomes

dΩ(d−1)
g3 dΩ(d−1)

g4 dΩ(d−1)
g5 ∼ d[cos θ3](sin

2 θ3)
−εdϕ̃3(sin

2 ϕ̃3)
−εdΩ(d−1)

g3

× d[cos θ4](sin
2 θ4)

−εdΩ(d−2)
g4 d[cos θ5](sin

2 θ5)
−ε

× dϕ5(sin
2 ϕ5)

−εd[cosα](sin2 α)−1−εdΩ(d−4)
g4 .

(3.34)

We can generalize the momentum parametrization in Eq. (3.33) by rotating all momenta

in the xy-plane by the angle ϕ4. Obviously, the momenta of the incoming gluons p1,2 do not

change, while the other momenta become

p4 = E4 (1, sin θ4 cosϕ4, sin θ4 cosϕ4, cos θ4; 0) ,

p5 = E5 (1, sin θ5 cosα(ϕ4 + ϕ5), sin θ5 sinα(ϕ4 + ϕ5), cos θ5; sin θ5 sinϕ5 sinα) ,

p3 = E3 (1, sin θ3 cosϕ3 sin θ3 sinϕ3, cos θ3; 0) .

(3.35)
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⌘4,5 = 1� ~n1 · ~n4,5

This parametrization still does not allow
for the resolution of all singularities;  further 
changes of variables are needed. They are inspired 
by the sector decomposition.

Czakon
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The two variables η4,5 are scalar products of the reference direction vector "n1 and the vectors

that parametrize directions of the two gluons

2η4,5 = 1− "n4,5 · "n1. (3.42)

The parametrization of triple-collinear phase-spaces in Eq. (3.39) is still too complicated to

extract all singularities; further decomposition is required. This is achieved by a sequence of

variable changes that we describe below, following Refs. [55, 56]. Specifically, we split the

triple-collinear initial-initial sector into five sectors

dLips(41;51) =
5
∑

i

dLips(41;51,i). (3.43)

To project onto individual contributions, we need to perform the following changes of variables

Sc(41;51,1) : ξ1 = x1, ξ2 = x1xmaxx2, η4 = x3, η5 =
x3x4
2

,

Sc(41;51,2) : ξ1 = x1, ξ2 = x1xmaxx2, η4 = x3, η5 = x3
(

1−
x4
2

)

,

Sc(41;51,3) : ξ1 = x1, ξ2 = x1xmaxx2x4, η4 =
x3x4
2

, η5 = x3,

Sc(41;51,4) : ξ1 = x1, ξ2 = x1xmaxx2, η4 =
x3x4x2

2
, η5 = x3,

Sc(41;51,5) : ξ1 = x1, ξ2 = x1xmaxx2, η4 = x3
(

1−
x4
2

)

, η5 = x3.

(3.44)

We also write λ = sin2(πx5/2). This change of variables introduces a factor of π in the

normalization of the phase-space that is included in the expressions below. The integration

region for x5 is always between zero and one.

We also note that the (d − 4)-dimensional angle α introduces singularities in the phase-

space parametrization. To take care of them, we calculate the integral over this angle,

Iα =

1
∫

−1

d cosα

[sin2 α]−1+ε
=

1

21+2ε

1
∫

0

dx9
x1+ε
9 (1− x9)1+ε

=
Γ(−ε)2

21+2εΓ(−2ε)
, (3.45)

and write

d [cosα]

[sin2 α]1+ε
= Iα ×

Γ(1− 2ε)

2Γ(1− ε)2
(−ε)

dx9
x1+ε
9 (1− x9)1+ε

→ Iα ×
Γ(1− 2ε)

Γ(1− ε)2
(−ε)

dx9(1− x9)−ε

x1+ε
9

,

(3.46)

where cosα = 1 − 2x9 and in the last step we used the symmetry of the matrix element

with respect to x9 ↔ 1 − x9, to simplify the integrand. We can expand Eq. (3.46) in plus-

distributions. Such an expansion does not introduce additional poles in ε. We find

−
ε

x1+ε
9

= δ(x9)− ε

[

1

x9

]

+

+ .. (3.47)
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All singularities are extracted if each sector is further split into five sectors using appropriate 
changes  of variables.  The required changes are shown below.  

Note that the first term in the expansion corresponds to α = 0, which reduces the parametriza-

tion of momenta of all final-state particles to their four-dimensional limits. The “extra-

dimensional” momenta components and the “extra-dimensional” angles appear with an ad-

ditional suppression in ε, but because of infra-red singularities, they start contributing to

differential cross-sections already at O(ε−2).

For each of the five sectors Sc(41;51,i), we write the phase-space in the form

dLips(i)41;51 ∼ Norm× PSw,iPS
−ε
i ×

(−ε)

x1+ε
9

9
∏

k=5

dxk ×
4
∏

j=1

dxj

x
1+a

(i)
j ε

j

×
[

x
b
(i)
1
1 x

b
(i)
2
2 x

b
(i)
3
3 x

b
(i)
4
4

]

. (3.48)

Below we present the functions PSw,i, PSi and the exponents a(i)j=1...4 and b(i)j=1...4 for each of

the sectors. First, we note that the normalization factor is common to all sectors; it reads

Norm =

[

Γ(1 + ε)

(4π)d/2

]2(

1−
π2

2
ε2 − 2ζ(3)ε3 +

3π4

40
ε4
)

. (3.49)

We also note that we can write

PSw,i =
1

2π2

E3E4
max

Q0 − %Q · %n3

PSw,i, PSi =
1024E2

3 sin
2 θ3E4

max(1− x9)

µ4p2⊥,H

sin2 (ϕ43) PSi, (3.50)

where ϕ43 = ϕ4 −ϕ3. The expressions for the exponents and the phase-space factors for each

of the five sectors read (we suppress the sector label everywhere in the equations below)

Sector Sc(41;51,1) : {a1 = 4, a2 = 2, a3 = 2, a4 = 1}, {b1 = 4, b2 = 2, b3 = 2, b4 = 1};

PSw =
(1− x4

2 )x
2
max

2N1(x3,
x4
2 ,λ)

,

PS =
x2max

(

1− x3x4
2

)

λ(1− λ)
(

1− x4
2

)2
(1− x3)

2N2
1 (x3,

x4
2 ,λ)

.

Sector Sc(41;51,2) : {a1 = 4, a2 = 2, a3 = 2, a4 = 2}, {b1 = 4, b2 = 2, b3 = 2, b4 = 2};

PSw =
x2max

4N1(x3, 1 − x4
2 ,λ)

,

PS =
x2max(1− x3)

(

1− x4
2

) (

1− x3(1− x4
2 )
)

λ(1− λ)

4N2
1 (x3, 1 −

x4
2 ,λ)

.

Sector Sc(41;51,3) : {a1 = 4, a2 = 2, a3 = 2, a4 = 3}, {b1 = 4, b2 = 2, b3 = 2, b4 = 3};

PSw =
x2max(1− x4

2 )

2N1(x3,
x4
2 ,λ)

,

PS =
x2max(1− x3)

(

1− x3x4
2

) (

1− x4
2

)2
λ(1− λ)

2N2
1 (x3,

x4
2 ,λ)

.
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Nevertheless, expanding the above expression in plus-distributions produces integrable 
expressions provided that F(0,0,.....) can be calculated and that it is free of singularities.

1Z

0

dx1

x

1+a1✏
1

dx2

x

1+a2✏
2

. . . .F

(i)(x1, x2, . . . .)
F

(i)(x1, x2, . . . .) =
h
x

b1
1 x

b2
2 x

b3
3 x

b4
4

i
|Mgg!Hggg|2.

With these changes, the phase-space for each sector becomes

Czakon

It is apparent that the form of the phase-space is similar to what we had to deal with at 
next-to-leading order except that the number of singular integrations  is larger. 
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 FKS@NNLO
It is easy to see that also for the function F(0,0,...) the one-loop story essentially 
repeats itself. Indeed, all the subtraction terms required for the integration can be 
obtained  without a reference to the underlying process thanks to the universality of 
soft and collinear limits.  

If any of the four x-variables ( or their combinations) vanishes we obtain a  kinematic 
configuration where gluons g(4) and g(5) are either soft or collinear or both.  All 
singular limits are known since circa 2000 and can be directly borrowed from the 
relevant papers.   Although we only discussed the tree-level case, the same applies to 
one-loop real-virtual NNLO contributions. 
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Collinear  factorization at one-loop (Kosower, Uwer)

Soft factorization (Catani, Grazzini)

can be factorized with respect to the tree-level current Ja (0)
µ (q) (see Eqs. (35) and (36)),

new ‘non-factorizable’ contributions appear when the loop momentum is soft. To single
out these new contributions, we write the following identity:

|M(1)
soft(q, {p})〉 = gS µε εµ(q) J

(0)
µ (q) |M(1)

soft({p})〉

+
(

|M(1)
soft(q, {p})〉 − gSµεεµ(q)J (0)

µ (q)|M(1)
soft({p})〉

)

, (37)

where we have added and subtracted the ‘factorized’ contribution. Then we combine the
contributions from the hard, collinear and soft regions by adding Eqs. (35), (36) and (37),
and we obtain

|M(1)(q, {p})〉 = gS µε εµ(q) J
(0)
µ (q) |M(1)({p})〉

+
(

|M(1)
soft(q, {p})〉 − gSµεεµ(q)J (0)

µ (q)|M(1)
soft({p})〉

)

. (38)

The first term on the right-hand side of Eq. (37) together with the contributions from
Eqs. (35) and (36) have reconstructed the first term on the right-hand side of Eq. (38),
which is exactly the first term on the right-hand side of the factorization formula (17).
What remains to be done to prove the factorization formula is to relate the second term
on the right-hand side of Eq. (17) with the contribution in the round bracket of Eq. (38).

q

l

j

i

i

j

i

j
- + J(0)(q)( )

Figure 2: Graphs that contribute to the one-loop soft current.

For this purpose, we first note that when the real gluon q and the virtual gluon k are
both soft, they can couple only to the external hard lines. In the corresponding Feynman
diagrams, which are schematically represented by the first graph in Fig. 2, the tree-level
amplitude M(0)({p}) is factorized in the soft limit. We can write:

|M(1)
soft(q, {p})〉 # (gS µε)3 εµ(q) K

(1)
µ (q, ε) |M(0)({p})〉 , (39)

where the kernel K
(1) (represented by the box in Fig. 2) denotes all the soft-gluon insertions

of q and k on the hard-momentum lines. Then, we note that M(0)({p}) is factorized also

in the expression (34) for M(1)
soft({p}). Therefore, the contribution in the round bracket

of Eq. (38) can be recast in the form of the second term on the right-hand side of the
factorization formula (17). Moreover, using Eqs. (39) and (34), we obtain the following
explicit representation of the one-loop contribution J

(1) to the soft-gluon current (Fig. 2):

εµ(q) J
(1)
µ (q, ε) = εµ(q)

{

K
(1)
µ (q, ε) − J

(0)
µ (q)

1

2

∫

ddk

(2π)d

i

k2 + i0

[

J
(0)
ν (k)

]†
· J

ν (0)(k)

}

.

(40)

12

Soft factorization at one-loop (Catani, Grazzini)

Related work on singular limits by Campbell, Glover, Berends, Giele, Bern, Del Duca, Kilgore, Schmidt

|M({n}+ i+ j)|2 = g2sFsing(i; j; {n})⌦M({n})M⇤({n})

Monday, June 9, 14



A glimpse into technical details: D-dim angles

1

3

4
5

2
p12 = (x,0,0,x)
p3 = (x,x,0,x)
p4 = (x,x,x,x)
p5 = (x,x,x,x; x)

|M |2 ! Pµ⌫g|M |
2

µ⌫ hPµ⌫g|M |
2

µ⌫id=4 6= PAP
g|M |

2

In next-to-leading order computations,  integration over unresolved phase-space is performed
analytically; hence the discussion of d-dimensional momenta  and their numerical implementation 
never appears. 

In  our approach to NNLO, all integrations (resolved or unresolved) are done numerically;  
therefore appropriate construction for  (d-4) components of unresolved momenta is required. 

One interesting aspect of this construction is that integrations over unresolved phase-spaces
should involve gluons with momenta extended to d-dimensions.   The need for this can be 
understood in many ways  including the spin correlations in the collinear limit  as shown below. 
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1
p12 = (x,0,0,x)
p3 = (x,x,0,x)
p4 = (x,x,0,x)
p5 = (x,x,x,x; x)

Will (d-4) components of parton momenta
appear in  observables and scattering amplitudes?

The answer is that they  should not.  To have this properly implemented in the 
computation, suppose we always choose the softest gluon g5 to have (d-4) 
components.  Then, in all but one singular configurations,  gluon with (d-4) 
dimensional momentum decouples from the hard matrix element. 
The only configuration where this does not happen is when the harder gluon 
g4 is collinear to one of the hard gluons. But if this happens, one independent 
spatial direction disappears (e.g. g3||g4)  and  one can rotate all momenta 
removing  the (d-4) directional components  of g5 from the  matrix element.

2

5

34
p12 = (x,0,0,x)
p3 = (x,x,0,x)
p4 = (x,x,0,x)
p5 = (x,x,x,x; 0)

Ry5

D-dim momenta always decouple from reduced matrix elements and observables, at 
any stage of the computation.  Their presence is essential in eikonal and splitting 
functions and the unresolved phase-space.  At NLO, these terms are integrated out  
analytically,  so the presence of such terms is usually not emphasized. But for NNLO 
numerical integrations over unresolved phase-spaces their presence is important. 
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  The NNLO technology

The above discussion summarizes  main ideas behind the recent development of 
techniques for NNLO QCD computations that combine sector decomposition and 
phase-space partitioning.   Since there is no time for details,  let me add a few things:

1)    Within this  framework, the necessary  subtraction terms  are generated locally 
and automatically;  similar to the original FKS, the new framework is very robust.

2)    All of the subtraction terms  are related to universal limits of scattering 
amplitudes making the  whole procedure scalable in the right way (need no diagrams, 
need amplitudes, all limits are hard-coded once and for all);

3)  Can work with helicity states for external resolved particles;

4)  All spin-correlations in amplitudes are subtracted locally;

5) No need for (d-4) terms in amplitudes squared, except in  their collinear limits;

6)  No special treatment of massive particles is required ;

7)  Decay kinematics can be treated along the same lines;

8)  Yet another place where fast ( e.g. compact) NLO amplitudes for multi-parton 
processes  can be used and, in fact,  are essential for the efficiency of NNLO.

Monday, June 9, 14



 t-channel single-top production at NNLO 
I would like to show you a few examples of how this procedure works. I will start
with a t-channel single-top production in hadron collisions.

This process  occurs due to an exchange of a W-boson in the t-channel. As the result, 
there is no color transfer from light-quark line to heavy-quark line at LO and NLO. 
It appears for the first time at NNLO where it is color-suppressed.   We will neglect
these contributions in our NNLO computation.   

The relevant two-loop amplitudes are shown below; 
they involve one-loop corrections applied to heavy- 
and light-quark lines separately and the two-loop corrections
to either heavy- or light-quark lines.   The last diagram 
is the color-suppressed interference effect and we do not consider
it ( color suppression). 
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Ingredients for single-top NNLO computation

1) Two-loop form factors for heavy- (tWb) and light-quark ( qWq’) weak transitions are 
needed and they are  known. 

2) Amplitudes for 0-> tbW(ll’)gg and 0->tbW(ll’)qq and 0->qq’W(ll)gg etc.  Such amplitudes
are either available or can be computed in a straightforward way;

3) Collinear limits ( known);

4) Soft limits for tree-level amplitudes  (known) (eikonal factors are slightly more difficult for 
massive particles).

5) Soft limits for one-loop scattering amplitude that include top quarks are less well-known; they 
require the soft-current at one loop for the massive fermion.

6) One-loop amplitudes for bW -> t g are known in a compact form and can be borrowed from
e.g. MCFM;                                                        J. Campbell and F. Tramontano

With these ingredients at place, one needs to perform phase-space partitioning ( simple for
heavy-quark line since no final state singularities), calculate the relevant limits, remove remaining
singularities by performing renormalization ( PDFs including).   All of this has to be done for a 
multitude of partonic channels ( quark-quark, quark-gluon etc.) -- a bit of a logistic nightmare.

Bonciani, Ferroglia; Bell; Astarian, Greub and Pecjak;
Beneke, Huber and Li; Huber

R.K.Ellis and J. Campbell

Bierenbaum, Czakon and Mitov
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t-channel single-top production at NNLO
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Since all calculations are done numerically, cancellation of singular contributions to the final 
result are also not exact. In fact, the degree of cancellation provides a useful check on the 
correctness of the implementation of various contributions. 
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t-channel single top production at NNLO

8 TeV LHC,  MSTW2008,  mt = 173.2 GeV

�LO = 53.8+3.0
�4.3 pb �NLO = 55.1+1.6

�0.9 pb

�NNLO = 54.2+0.5
�0.2 pb

•  μR=μF= {mt/2, mt, 2 mt}

• next-to-leading order corrections at central scale are very small,  much smaller than their 
natural O(10%) size;  this is a consequence of significant cancellations between different 
channels.

• Delicate interplay/cancellations between different channels -> important to consistently 
compute corrections to all of them;

• The NNLO result is very close to the NLO result (-1.6%), reduced μ dependence -> good 
theoretical control

We obtain the following results for the cross-sections  at leading, next-to-leading 
and next-to-next-to-leading order in perturbative QCD at 8 TeV LHC. 
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t-channel single top production at NNLO
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LO
NLO

NNLO

4

p⊥ σLO, pb σNLO, pb δNLO σNNLO, pb δNNLO

0 GeV 53.8+3.0
−4.3 55.1+1.6

−0.9 +2.4% 54.2+0.5
−0.2 −1.6%

20 GeV 46.6+2.5
−3.7 48.9+1.2

−0.5 +4.9% 48.3+0.3
−0.02 −1.2%

40 GeV 33.4+1.7
−2.5 36.5+0.6

−0.03 +9.3% 36.5+0.1
+0.1 −0.1%

60 GeV 22.0+1.0
−1.5 25.0+0.2

+0.3 +13.6% 25.4−0.1
+0.2 +1.6%

TABLE I: QCD corrections to t-channel single top quark production cross sections at 8 TeV LHC with a cut on the transverse
momentum of the top quark p⊥. Cross sections are shown at leading, next-to-leading and next-to-next-to-leading order in
dependence of the factorization and renormalization scale µ = mt (central value), µ = 2mt (upper value) and µ = mt/2 (lower
value). Corrections at NLO and at NNLO (relative to the NLO) are shown in percent for µ = mt.

las for the phase-space parametrization relevant for the
ub → dt, ub → dtg and ub → dtgg sub-processes, as well
as a discussion of an appropriate choices of variables rel-
evant for the extraction of singularities can be found in
that reference. Using the language of that paper, we only
need to consider “initial-state” sectors since there are no
collinear singularities associated with final state particles
due to the fact that top quarks are massive. All calcula-
tions required for initial-state sectors are documented in
Ref. [61] except that here we need soft and collinear lim-
its for incoming quarks, rather than gluons, and the soft
current for a massive particle. This, however, is a minor
difference that does not affect the principal features of
the computational method.

The above discussion of the NNLO QCD corrections
to the heavy quark line can be applied almost verba-
tim to corrections to the light quark line. The two-loop
corrections for the 0 → qq̄′W ∗ vertex are known since
long ago [62–64]. One-loop corrections to 0 → qq̄′gW ∗

scattering are also well-known; we implemented the re-
sult presented in [65] and again checked the implemen-
tation against an independent computation based on the
Passarino-Veltman reduction. Apart from different am-
plitudes, the only minor difference with respect to cor-
rections to the heavy quark line is that in this case there
are collinear singularities associated with both, the in-
coming and the outgoing quark lines. We deal with this
problem splitting the real-emission contribution into sec-
tors, see Ref. [61]. In the language of that paper, we
have to consider “initial-initial”, “final-final” and mixed
“initial-final” sectors. Finally, we briefly comment on the
contribution shown in Fig.1c. We note that, although
formally NNLO, it is effectively the product of NLO cor-
rections to the heavy and the light quark lines, so that
it can be dealt with using techniques familiar from NLO
computations.

We will now comment on our treatment of γ5. For
perturbative calculations at higher orders the presence of
the Dirac matrix γ5 is a nuisance since it can not be con-
tinued to d-dimensions in a straightforward way. While
computationally-efficient ways to deal with γ5 in com-
putations, that employ dimensional regularization, exist
(see e.g. Ref. [66]), they are typically complex and un-
transparent. Fortunately, there is a simple way to solve
the γ5 problem in our case. Indeed, in the calculation of
virtual corrections to the tWb weak vertex, γ5 is taken

to be anti-commuting [40–43]. This enforces the left-
handed polarization of the b-quark and removes the issue
of γ5 altogether. Indeed, if we imagine that the weak
b → t transition is facilitated by the vector current but
we select the b-quark with left-handed polarization only,
we will obtain the same result as when the calculation is
performed with the anti-commuting γ5. Since the can-
cellation of infra-red and collinear divergences occurs for
each polarization of the incoming b-quark separately, this
approach completely eliminates the need to specify the
scheme for dealing with γ5 and automatically enforces
simultaneous conservation of vector and axial currents –
a must-have feature if quantum anomalies are neglected.
Of course, this requires that we deal with the γ5 appear-
ing in real emission diagrams in the same way as in the
virtual correction and this is, indeed, what we do by us-
ing helicity amplitudes, as described in [39].

We have performed several checks to ensure that our
calculation of NNLO QCD corrections to single top quark
production is correct. For example, we have compared all
the tree-level matrix elements that are used in this com-
putation, e.g. ub → dt+ng, with 0 ≤ n ≤ 2, ub → dt+qq̄,
ug → db̄t+mg, 0 ≤ m ≤ 1, against MadGraph [67] and
found complete agreement. We have extracted one-loop
amplitudes for 0 → Wtb̄g from MCFM [45] and checked
them against our own implementation of the Passarino-
Veltman reduction, for both the W ∗b → tg and the
W ∗g → tb̄ processes. We have cross-checked one-loop
amplitudes for W ∗u → dg and related channels against
MadLoop [68]. In the intermediate stages of the compu-
tation, we also require reduced tree and one-loop ampli-
tudes computed to higher orders in ε, as explained e.g. in
Ref. [61]. We checked that their contributions drop out
from the final results, in accord with the general conclu-
sion of Ref. [69].

One of the most important checks is provided by the
cancellation of infra-red and collinear divergences. In-
deed, the technique for NNLO QCD computations de-
scribed in Refs. [47–49] leads to a Laurent expansion
of different contributions to differential cross sections in
the dimensional regularization parameter ε; coefficients
of this expansion are computed by numerical integra-
tion. Independence of physical cross sections on the reg-
ularization parameter is therefore achieved numerically,
when different contributions to such cross sections (two-
loop virtual corrections, one-loop corrections to single

• Contrary to next-to-leading order, 
NNLO corrections are similarly 
small for all values of pt;

• Scale dependence typically improves;
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t-channel single top production at NNLO

Charge ratio 
!  7 TeV (ATLAS):  
◦  σt(t) = 53.2 ± 10.8 pb,  σt(t¯) = 29.5 +7.4

-7.5 pb 
◦  Rt = σt(t)/σt(t¯) = 1.81+0.23

-0.22 
◦  Main systematics on Rt: background normalization (multijet from data, other from MC), JES 

!  8 TeV (CMS):  
◦  σt(t) = 53.8 ± 1.5(stat) ± 4.4(syst) pb,  σt(t¯) = 27.6 ± 1.3(stat) ± 3.7(syst) pb 
◦  Rt = σt(t)/σt(t¯) = 1.95 ± 0.10(stat) ± 0.19(syst) 
◦  Main systematics on Rt: PDF uncert., signal modeling 

!  Rt potentially sensitive to PDF 
!  Approaching the precision necessary to discriminate between different PDF models 
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7 TeV:  ATLAS-CONF-2012-056 
8 TeV : CMS-PAS-TOP-12-038 

 
 to be sub. to JHEP 

�t,NNLO/�t̄,NNLO = 1.83

�t,NLO/�t̄,NLO = 1.83

�t,LO/�t̄,LO = 1.85

8 TeV LHC,  MSTW2008,  mt = 173.2 GeV

The results for the ratio appear very stable, at least for the choice of PDFs indicated 
above.  Note strong PDF dependence -- should eventually give  a useful constraint on 
quark/anti-quark PDF ratios.  Note that scale variation errors at LO and NLO are not 
good indicators of higher orders, as it is often the case with ratios. 
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H+jet at NNLO  

1) two-loop amplitudes for gg -> Hg and qg -> Hq  ( known) ;

2)  one-loop amplitudes for gg -> Hgg and qg -> Hqg ( known) ;

3)  tree-level amplitudes for gg -> Hggg and qg -> qHgg etc. ;

4) all collinear limits are known, for both tree- and one-loop amplitudes;

5) all soft limits are known, for both tree- and one-loop amplitudes;

6) highly symmetric situation for ``gluons only’’ contribution; less symmetric (more sectors, 
more bookeeping) for quark and gluon. 
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Figure 4. Results for the product of partonic cross-sections gg → H + jet and parton luminosity in
consecutive orders in perturbative QCD at µR = µF = mh = 125 GeV. See the text for explanation.

functions

L(z, µF ) =

∫ 1

z

dx

x
g(x, µF )g

( z

x
, µF

)

. (7.7)

It follows from Fig. 4 that NNLO QCD corrections are significant in the region
√
s <

500 GeV. In particular, close to partonic threshold
√
s ∼ Eth, radiative corrections are en-

hanced by threshold logarithms ln β that originate from the incomplete cancellation of virtual

and real corrections. There seems to be no significant enhancement of these corrections at

higher energies, where the NNLO QCD prediction for the partonic cross-section becomes al-

most indistinguishable from the NLO QCD one. Note that we extend the calculation of the

NNLO partonic cross-section to
√
s ∼ 500 GeV only. From leading and next-to-leading order

computations, we know that by omitting the region
√
s > 500 GeV, we underestimate the

total cross-section by about 3%. To account for this in the NNLO hadronic cross-section cal-

culation, we perform an extrapolation to higher energies constructed in such a way that when

the same procedure is applied to LO and NLO cross-sections, it gives results that agree well

with the calculation without extrapolation. The correction for the extrapolation is included

in the NNLO QCD cross-sections results shown below.

We now show the integrated hadronic cross-sections for the production of the Higgs

boson in association with a jet at 8 TeV LHC in the all-gluon channel. We choose to vary

the renormalization and factorization scale in the range µR = µF = mH/2, mH , 2mH . After

– 40 –

Fairly large corrections, O(30%) at NNLOBougezhal, Caola, K.M., Petriello, Schulze

T. Gehrmann, M. Jaquier, Glover and Koukoutakis

C. Schmidt

MCFM,  S. Badger etc.
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Bougezhal, Caola, K.M., Petriello, Schulze

H+jet at NNLO  

At the same time -- very small scale uncertainty ( gluons only).  Using  existing framework one 
can -- in principle -- produce kinematic distributions.   As an example,  the right pane shows a  
cumulative histogram for Higgs + jet production cross-section as a function of the minimal jet 
transverse momentum.
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Figure 5. Scale dependence of the hadronic cross section in consecutive orders in perturbative QCD.
See the text for details.

convolution with the parton luminositites, we obtain5

σLO(pp → Hj) = 2713+1216
−776 fb,

σNLO(pp → Hj) = 4377+760
−738 fb,

σNNLO(pp → Hj) = 6177−204
+242 fb.

(7.8)

We note that NNLO corrections are sizable, as expected from the large NLO K−factor, but

the perturbative expansion shows marginal convergence. We also evaluated PDFs error using

the full set of NNPDF replicas, and found it to be of order 5% at LO, and of order 1-2% at

both NLO and NNLO, similarly to the inclusive Higgs case [78]. The cross-section increases

by about sixty percent when we move from LO to NLO and by thirty percent when we move

from NLO to NNLO. It is also clear that by accounting for the NNLO QCD corrections we

reduce the dependence on the renormalization and factorization scales in a significant way.

The scale variation of the result decreases from almost 50% at LO, to 20% at NLO, to less

than 5% at NNLO. We also note that a perturbatively-stable result is obtained for the scale

choice µ ≈ mH/2. In this case the ratio of the NNLO over the LO cross-section is just 1.5,

to be compared with 2.3 for µ = mH and 3.06 for µ = 2mH , and the ratio of NNLO to NLO

is 1.2. It is interesting to point out that a similar trend was observed in the calculation of

higher-order QCD corrections to the Higgs boson production cross-section in gluon fusion. It

has been pointed out that because of the rapid fall of the gluon PDFs, the production cross

section is dominated by the threshold region, thus making µ = mH/2 an excellent choice for

the renormalization and factorization scales [14, 81]. The reduced scale dependence is also

apparent from Fig. 5, where we plot total cross-section as a function of the renormalization

and factorization scale µ in the region p⊥,j < µ < 2mh.

5We checked our LO and NLO results against MCFM (gluons only), and found agreement.
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Summary 

The story of NNLO QCD computations is interesting. Many pieces that need to be known for a 
NNLO computation have been known for a very long time but we did not know how to put the 
various pieces together in a consistent way.

The technology for NNLO QCD computations that I described solves this problem.  It is  based 
on FKS phase-space partitioning and sector decomposition and  allows one  to compute NNLO 
QCD corrections for various 2 -> 2 processes and, perhaps, beyond.

At the very least, the technology is based on proper ingredients -- scattering amplitudes, universal 
soft and collinear limits etc. and therefore probably scales in an optimal way with increased number 
of particles.  

There are other ideas about how generic NNLO computations should be organized and there are 
several  other techniques currently in the making. 

The technology for computing two-loop integrals -- essential ingredients for these computations -- 
is also rapidly developing and may surpass the 2->2 threshold.  An interesting new development 
here is an  attempt to extend  unitarity methods to two-loops but it is too early to say how 
successful  these extensions are going to be. 
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1) Progress with NNLO computations in the past two years was very impressive. There is no 
doubt that the new NNLO technology will keep being  applied to broader classes of processes.  As 
many of you know, there is currently a NNLO wishlist created as part of the Snowmass community 
planning exercise in US that happened last year.  We can expect that, within a year or two, results 
for main 2->2 processes from that wishlist will become available.

2) Inclusion of massive particles and their decays in the narrow width approximation will be 
pursued and should be  expected to be straightforward since many existing NNLO computations 
are amplitudes-based (  from this perspective, a decay amplitude for the decay of heavy particle is a 
particular choice of its polarization vector);

3) Attempts to extend NNLO to 2->3 processes ( a few of such processes are  included in the 
wishlist) will require further progress with virtual corrections. 

4) Attempts to interface NNLO computations with parton showers or resummations, at least for 
relatively simple processes.  I believe that conceptually this is a straightforward thing to do 
( especially since at NLO the FKS-based implementations exist) -- and I am sure we will hear a lot 
about this topic during the workshop.  I think the central question here is whether or not  existing 
NNLO technology can deliver NNLO computations that  are sufficiently efficient to be used with 
parton showers on the fly.   

What to expect from NNLO in the coming years ? 
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