Towards the Higgs Cross-Section at N3LO

Bernhard Mistlberger PSRI4

> in collaboration with Babis Anastasiou, Claude Duhr, Falko Dulat, Elisabetta Furlan, Franz Herzog and Thomas Gehrmann

THE ERA OF HIGGS-MEASUREMENTS

- Experimental era of Higgs physics is just beginning
- Pinning down precisely the properties of the Higgs poses an exciting challenge for years to come
- Demand for precision measurement and prediction is evident

$$\sigma = \sum \int dx_1 dx_2 f(x_1) f(x_2) \hat{\sigma}(x_1 x_2)$$

So, what is new in QCD theory

SOFT-VIRTUAL N3LO CROSS-

$$\begin{split} \hat{\eta}^{(3)}(z) &= \delta(1-z) \left\{ C_A^3 \left(-\frac{2003}{48} \zeta_6 + \frac{413}{6} \zeta_3^2 - \frac{7579}{144} \zeta_5 + \frac{979}{24} \zeta_2 \zeta_3 - \frac{15257}{864} \zeta_4 - \frac{819}{16} \zeta_3 + \frac{16151}{1296} \zeta_2 + \frac{215131}{5184} \right) \right. \\ &+ N_F \left[C_A^2 \left(\frac{869}{72} \zeta_5 - \frac{125}{12} \zeta_3 \zeta_2 + \frac{2629}{432} \zeta_4 + \frac{1231}{216} \zeta_3 - \frac{70}{81} \zeta_2 - \frac{98059}{5184} \right) \right. \\ &+ N_F^2 \left[C_A \left(-\frac{19}{36} \zeta_4 + \frac{43}{108} \zeta_3 - \frac{133}{324} \zeta_2 + \frac{2515}{1728} \right) + C_F \left(-\frac{1}{36} \zeta_4 - \frac{7}{6} \zeta_3 - \frac{23}{72} \zeta_2 + \frac{4481}{2592} \right) \right] \right\} \\ &+ \left[\frac{1}{1-z} \right]_+ \left\{ C_A^3 \left(186 \zeta_5 - \frac{725}{6} \zeta_3 \zeta_2 + \frac{253}{24} \zeta_4 + \frac{8941}{108} \zeta_3 + \frac{8563}{324} \zeta_2 - \frac{297029}{23328} \right) + N_F^2 C_A \left(\frac{5}{27} \zeta_3 + \frac{10}{27} \zeta_2 - \frac{58}{729} \right) \right. \\ &+ N_F \left[C_A^2 \left(-\frac{17}{12} \zeta_4 - \frac{475}{36} \zeta_3 - \frac{2173}{324} \zeta_2 + \frac{31313}{11664} \right) + C_A C_F \left(-\frac{1}{2} \zeta_4 - \frac{19}{18} \zeta_3 - \frac{1}{2} \zeta_2 + \frac{1711}{864} \right) \right] \right\} \\ &+ \left[\frac{\log(1-z)}{1-z} \right]_+ \left\{ C_A^3 \left(-77\zeta_4 - \frac{352}{3} \zeta_3 - \frac{152}{3} \zeta_2 + \frac{30569}{648} \right) + N_F^2 C_A \left(-\frac{4}{9} \zeta_2 + \frac{25}{81} \right) \right. \\ &+ N_F \left[C_A^2 \left(\frac{46}{3} \zeta_3 + \frac{94}{9} \zeta_2 - \frac{4211}{324} \right) + C_A C_F \left(6\zeta_3 - \frac{63}{8} \right) \right] \right\} \\ &+ \left[\frac{\log^2(1-z)}{1-z} \right]_+ \left\{ C_A^3 \left(181 \zeta_3 + \frac{187}{3} \zeta_2 - \frac{1051}{27} \right) + N_F \left[C_A^2 \left(-\frac{34}{3} \zeta_2 + \frac{457}{54} \right) + \frac{1}{2} C_A C_F \right] - \frac{10}{27} N_F^2 C_A \right\} \\ &+ \left[\frac{\log^3(1-z)}{1-z} \right]_+ \left\{ C_A^3 \left(-56 \zeta_2 + \frac{925}{27} \right) - \frac{164}{27} N_F C_A^2 + \frac{4}{27} N_F^2 C_A \right\} \\ &+ \left[\frac{\log^4(1-z)}{1-z} \right]_+ \left(\frac{20}{9} N_F C_A^2 - \frac{100}{9} C_A^3 \right) + \left[\frac{\log^5(1-z)}{1-z} \right]_+ 8 C_A^3. \end{split}$$

Soft-Virtual σ at NNNLO

Uncharted territory in QCD - perturbation theory

What is in the formula?

 Inclusive Gluon - Fusion Higgs production in large top-mass limit at N3LO

$$\hat{\sigma}(z) = \hat{\sigma}^{LO}(z) + \alpha_S \hat{\sigma}^{NLO}(z) + \alpha_S^2 \hat{\sigma}^{NNLO}(z) + \frac{\alpha_S^3 \hat{\sigma}^{N3LO}(z)}{\alpha_S^3 \hat{\sigma}^{N3LO}(z)} + \mathcal{O}(\alpha_S^4)$$

Threshold Expansion

$$z = \frac{m_H^2}{\hat{s}} \sim 1$$
 $\hat{\sigma}(z) = \sigma^{SV} + \sigma^{(0)} + (1-z)\sigma^{(1)} + \dots$

 Soft - Virtual term contains all 3-loop contributions + soft gluon radiation

Let's ask 2 questions

1. What is the method

Analytic Advancements

2. What is the benefit

Phenomenological Implications

FEYNMAN DIAGRAMS

 Combining real and virtual contributions calculated with Feynman diagrams is the only way for analytic calculation at N3LO

@ NNLO ~1000 Interference diagrams

FEYNMAN DIAGRAMS

 Combining real and virtual contributions calculated with Feynman diagrams is the only way for analytic calculation at N3LO

@ N3LO: ~100 000 Interference Diagrams

Automation is vital!

- Diagram calculation produces an enormous number of combined phase-space & loop integrals
- Treat loop and phase-space integrals with equal methods: Reverse Unitarity

 Cutkosky's rule to relate on-shell constraints to cut -propagators

$$\delta^+(p^2) \to \left[\frac{1}{p^2}\right]_c \sim \frac{1}{p^2 + i\epsilon} - \frac{1}{p^2 - i\epsilon}$$

- Techniques for loop integrals applicable for phase-space integrals $\frac{\partial}{\partial p^{\mu}} \left[\frac{1}{p^2}\right]_{a} = -2p_{\mu} \left[\frac{1}{p^2}\right]_{a}^{2}$
- Integration-By-Part identities to relate to a limited set of 'Master Integrals' proof powerful at N3LO

Diagrams

Loop/Phase-

Space Integrals

NNLO - Real Virtual:

Reduced 40 000 Integrals

- Techniques for loop integrals applicable for phase-space integrals $\frac{\partial}{\partial p^{\mu}} \left[\frac{1}{p^2}\right]_{a} = -2p_{\mu} \left[\frac{1}{p^2}\right]_{a}^{2}$
- Integration-By-Part identities to relate to a limited set of 'Master Integrals' proof powerful at N3LO

 $= C(\epsilon, z)$

NNLO - Real Virtual:

Reduced 40 000 Integrals

N3LO - (Real Virtual)^2:

Reduced 25 000 000 Integrals

Loop/Phase-Space Integrals

Diagrams

- Master integrals are complicated
- Again huge jump in complexity

NNLO - double Real:

18 Master Integrals

- Master integrals are complicated
- Again huge jump in complexity

NNLO - double Real:

N3LO - Double Real Virtual:

18 Master Integrals

~350 Master Integrals

Let's do something else first!

 $z = \frac{m_H^2}{\hat{c}} \sim 1$

 Systematic expansion of matrix elements in an automated way (Expansion by Regions)

H

 Expand around production threshold of the Higgs boson

 p_1

 p_2

$$\delta = 1 - z$$

Diagrams Loop/Phase-Space Integrals Threshold Expansion

Master Integrals

$$GG-LUMINOSITY$$
$$\sigma = \sum \int \frac{dz}{z} \mathcal{L}_{12}(\tau/z) \hat{\sigma}(z)$$

Phase-Space Integrals:

• Re-parametrise outgoing momenta

$$p_f \to \delta p_f$$

Taylor expand the integrand

Loop-Integrals

- Loop momentum is not fixed
- Follow the method of expansion by regions

Threshold Expansion

Master Integrals

Diagrams

SoftColl IColl 2Hard $k \rightarrow \delta k$ $k \rightarrow k || p_1$ $k \rightarrow k || p_2$ k

- Parametrise and expand systematically in every region
- Sum of regions yields the full result

- Systematic expansion for loop and phase-space integrals
- Key-feature: Integration-By-Part identities can be used after expansion to relate to master integrals.
- Sub-leading terms via the same method
- Reduced number of master integrals
- The same master integrals appear in every order in $\,\delta$

MASTER INTEGRALS

$$\begin{split} & \int_{2}^{1} \int_{2}^{1} \int_{2}^{1} = \frac{\Gamma(12-6\epsilon)\Gamma(3-3\epsilon)\Gamma(1-\epsilon)}{\Gamma(5-6\epsilon)\Gamma(2-\epsilon)^{4}} \Big[\mathcal{I}_{9,1}(\epsilon) + \mathcal{I}_{9,2}(\epsilon) \Big] \\ & \mathcal{I}_{9,1}(\epsilon) = -\int_{0}^{\infty} dt_{1} \, dt_{2} \int_{0}^{1} dx_{1} \, dx_{2} \, dx_{3} \, t_{1}^{2-4\epsilon} \, (1+t_{1})^{\epsilon-1} \, t_{2}^{1-2\epsilon} \\ & \times x_{1}^{-\epsilon} \, (1-x_{1})^{2-4\epsilon} \, x_{2}^{1-3\epsilon} \, (1-x_{2})^{-\epsilon} \, x_{3}^{-\epsilon} \, (1+t_{2}x_{3})^{1-3\epsilon} \, (1+t_{2}x_{2}x_{3})^{\epsilon} \\ & \times \left(t_{1}t_{2}^{2}x_{1}x_{2}x_{3} + t_{2}^{2}x_{2}x_{3} + t_{1}t_{2}x_{1}x_{2} + t_{1}t_{2}x_{3} + t_{2}x_{2}x_{3} + t_{2} + t_{1} + 1 \right)^{3\epsilon-3} , \\ & \mathcal{I}_{9,2}(\epsilon) = \int_{0}^{\infty} dt_{1} \, dt_{2} \, \int_{0}^{1} dx_{1} \, dx_{2} \, dx_{3} \, t_{1}^{2-4\epsilon} \, (1+t_{1})^{\epsilon-1} \, t_{2}^{1-2\epsilon} \\ & \times x_{1}^{1-\epsilon} \, (1-x_{1})^{2-4\epsilon} \, x_{2}^{1-3\epsilon} \, (1-x_{2})^{-\epsilon} \, x_{3}^{-\epsilon} \, (1+t_{2}x_{3})^{1-3\epsilon} \, (1+t_{2}x_{2}x_{3})^{\epsilon} \\ & \times \left(t_{1}t_{2}^{2}x_{1}x_{2}x_{3} + t_{2}^{2}x_{1}x_{2}x_{3} + t_{2}x_{1} + t_{1}t_{2}x_{1}x_{2} + t_{1}t_{2}x_{3} + t_{2}x_{1}x_{2}x_{3} + t_{1} + x_{1} \right)^{3\epsilon-3} \end{split}$$

MASTER INTEGRALS

- One of the key challenges
- We apply a large variety of the most modern methods in integralcalculation

MultipleSums Mellin Number ... Relations Poly-Logarithms Euler decomposition sector Recurrence ZetaIntegralsDimensional Hopf-Algebra Theory Feynman Barnes Parametric Values

- We even use methods from number theory
- Sometimes even this is not enough Challenge to develop new technology

Let's ask 2 questions

1. What is the method

Analytic Advancements

2. What is the benefit

Phenomenological Implications

SOFT-VIRTUAL CROSS-SECTION

--- LO --- NLO --- NNLO --- NNNLO

CAVEAT

Soft-virtual term is ambiguous

$$\sigma = \int dx_1 dx_2 f(x_1) f(x_2) \left[zg(z) \right] \left[\frac{\hat{\sigma}(z)}{zg(z)} \right]_{\text{threshold}}$$

• We can choose g(z) as long as

 $\lim_{z \to 1} g(z) = 1$

CONVERGENCE @ NNLO

Sub-leading terms will cure the problem

Stay tuned

CONCLUSION/OUTLOOK

- We broke the N3LO barrier
- We presented the Soft-Virtual Term at N3LO A classical result in perturbative QCD
- Further terms in the threshold expansion are essential for phenomenology
- Full kinematic cross-section at N3LO for the Higgs boson and more

SOFT-VIRTUAL CROSS-SECTION

--- 7 TeV — 8 TeV --- 13 TeV — 14 TeV ---- 100 TeV

THRESHOLD LOGARITHMS

$$\begin{split} \hat{\eta}^{(3)}(z) &\simeq \delta(1-z) \, 1124.308887 \dots \qquad (\to 5.1\%) \\ &+ \left[\frac{1}{1-z} \right]_{+} 1466.478272 \dots \qquad (\to -5.85\%) \\ &- \left[\frac{\log(1-z)}{1-z} \right]_{+} 6062.086738 \dots \qquad (\to -22.88\%) \\ &+ \left[\frac{\log^{2}(1-z)}{1-z} \right]_{+} 7116.015302 \dots \qquad (\to -52.45\%) \\ &- \left[\frac{\log^{3}(1-z)}{1-z} \right]_{+} 1824.362531 \dots \qquad (\to -39.90\%) \\ &- \left[\frac{\log^{4}(1-z)}{1-z} \right]_{+} 230 \qquad (\to 20.01\%) \\ &+ \left[\frac{\log^{5}(1-z)}{1-z} \right]_{+} 216 \dots \qquad (\to 93.72\%) \end{split}$$

GG - FUSION

- QCD dominates
- K-Factor is large
- Large corrections at NNLO
- gg-initial-state largest

SOFT-VIRTUAL -CHECKS

How can we be sure we got it right?

- We canceled 6 non-trivial IR / UV poles!
- Plus distributions agree with prediction by Moch/Vogt/Vermaseren
- Multiple independent calculations of every step (internally and for some contributions also by other groups)