

DEDUCTOR: a parton shower generator

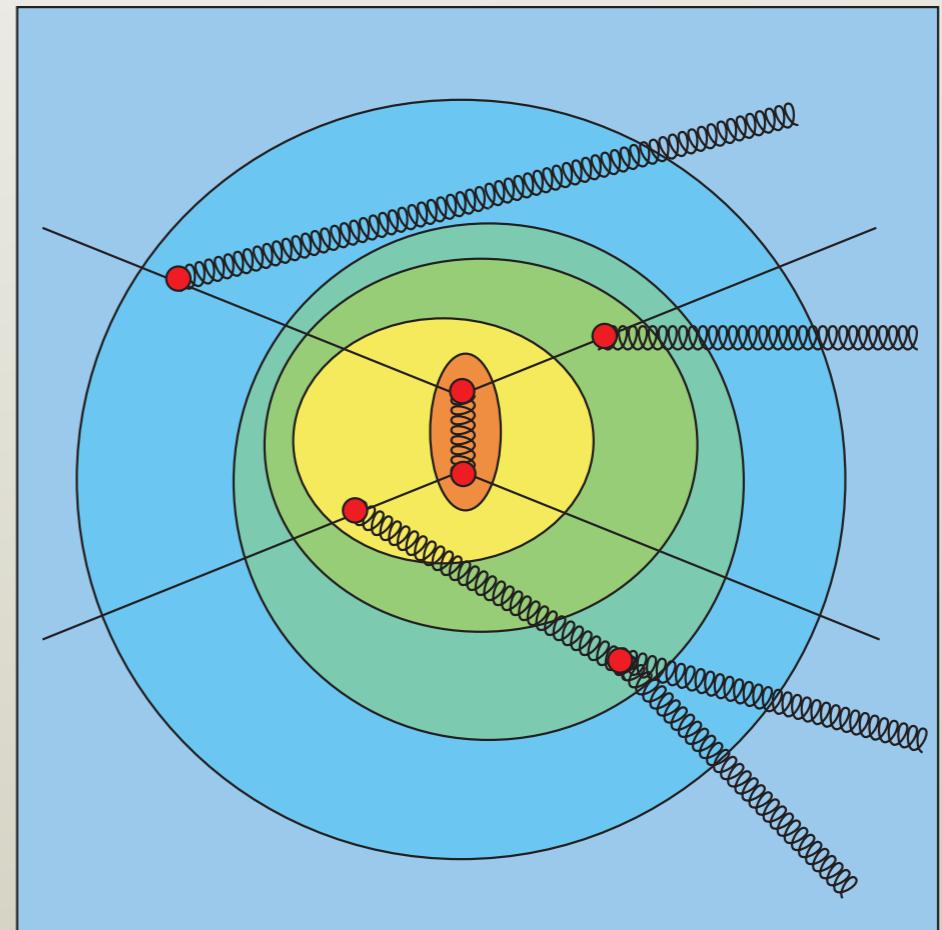
Zoltan Nagy
DESY

Work with Dave Soper

PSRI4, Muenster, 11 June 2014

DEDUCTOR is hardness ordered

- Parton shower evolves with “shower time” t .
- Small $t \Rightarrow$ hard.
- Large $t \Rightarrow$ soft.
- For initial state interactions, evolution is backwards in physical time.
- This is similar to PYTHIA and SHERPA.



Design goal

- The main goal is to have a structure that is adapted to a better treatment of color and spin.
- This treatment is only partly implemented for now.

The shower state

- The fundamental object is the quantum density matrix in color and spin space, with basis vectors

$$|\{c, s\}_m\rangle \langle \{c', s'\}_m|$$

- For two initial state partons plus m final state partons, let

$$\rho(\{p, f, c', c, s', s\}_m, t)$$

be probability to have momenta $\{p\}_m$ and flavors $\{f\}_m$ and be in this color-spin state.

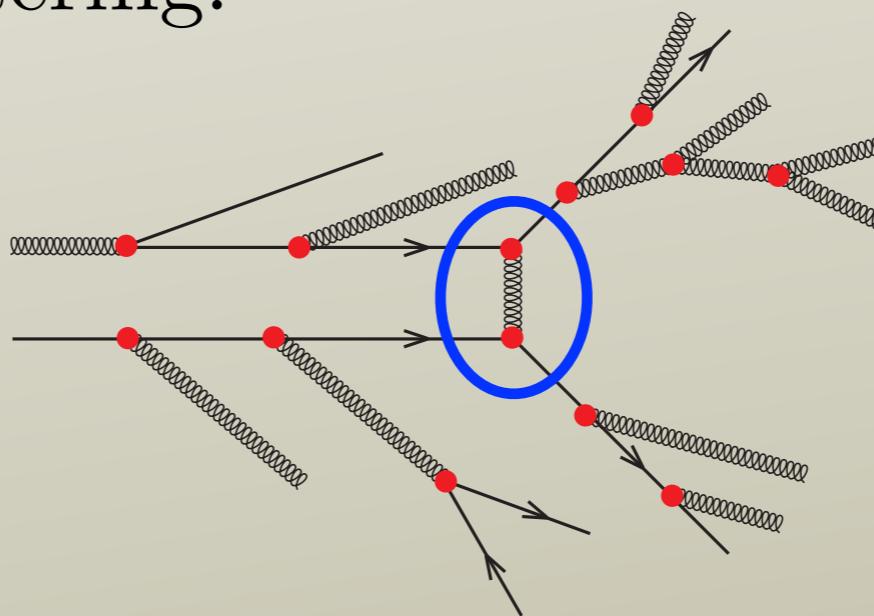
- Consider the function $\rho(\{p, f, c', c, s', s\}_m, t)$ at fixed t as a vector $|\rho(t)\rangle$.

Standard generators

- No spin, just average over spins.
- Diagonal color states only, $|\{c\}_m\rangle\langle\{c\}_m|$
- Use the “leading color” approximation.

Current DEDUCTOR

- No spin, just average over spins.
- Off diagonal color states, $|\{c\}_m\rangle\langle\{c'\}_m|$.
- Use an approximate version of color “LC+.”
- With color states $|\{c\}_m\rangle\langle\{c'\}_m|$, we can start the shower with color-ordered amplitudes for the hard scattering.



Other differences

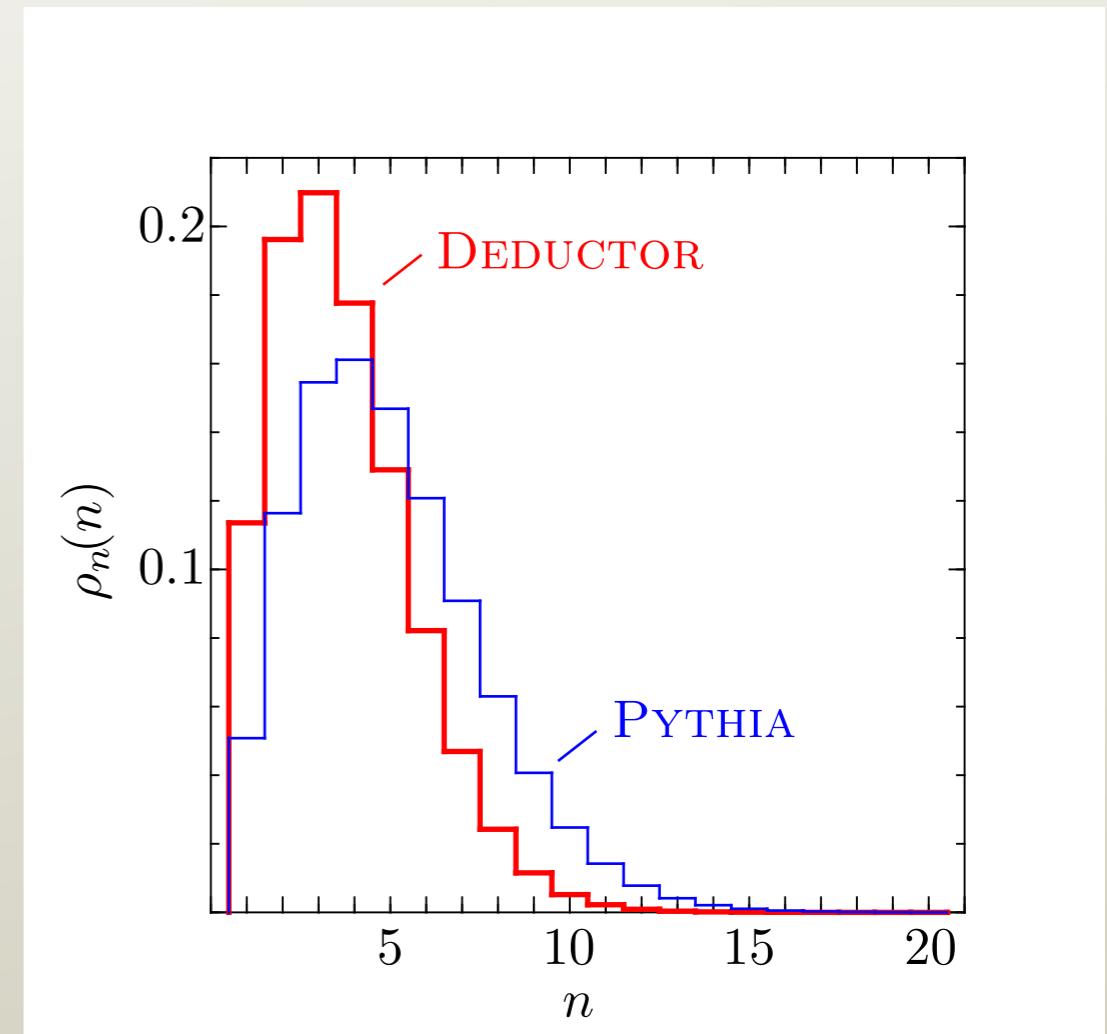
- Even with spin averaging and leading color, DEDUCTOR is not the same as PYTHIA or SHERPA.
- The splitting functions are more complicated.
- Initial state b and c quarks have masses.
- The shower ordering variable is not k_T .
- I will return to these last two points later.

Comparisons to PYTHIA

- A parton shower generator is quite complicated.
- Thus we need some sanity checks.
- For this, we compare to PYTHIA at the parton level for an 8 TeV LHC.
- In DEDUCTOR, we use just leading color.
- We do not expect exact agreement. Our parton distributions are different and default PYTHIA has a larger strong coupling.

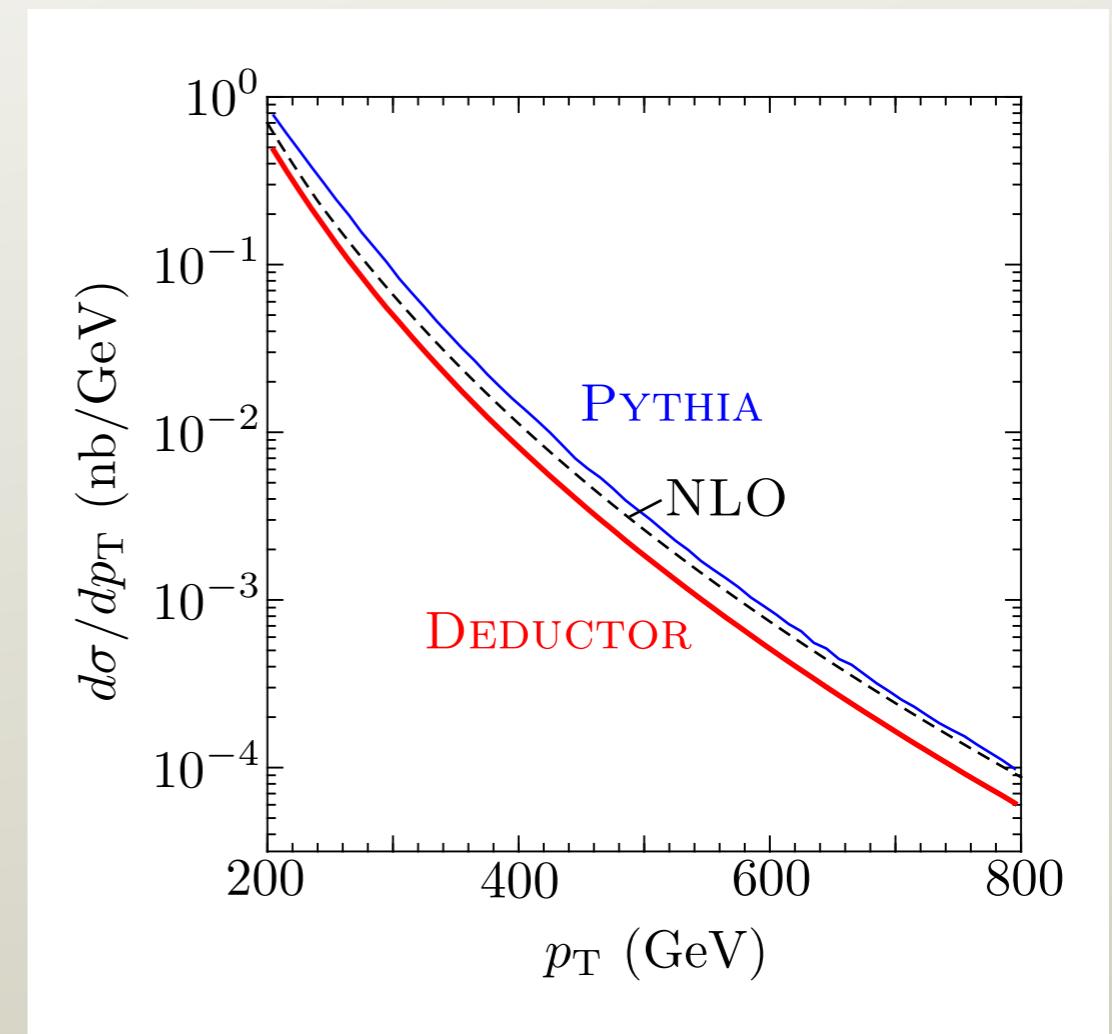
Number of partons in a jet

- Construct jets with the k_{T} algorithm with $R = 0.4$.
- Look at jets with $P_{\text{T}} > 200$ GeV, $|y| < 2$.
- PYTHIA jets are somewhat more evolved.
- But the distributions are pretty similar.



Jet cross section

- Look at one jet inclusive cross section $d\sigma/dp_T$ with k_T jet algorithm with $R = 0.4$.
- Plot PYTHIA, DEDUCTOR, and NLO.



- The jet cross section is highly sensitive to showering effects.
- Both PYTHIA and DEDUCTOR are within about 30% of NLO so we judged the agreement to be satisfactory.

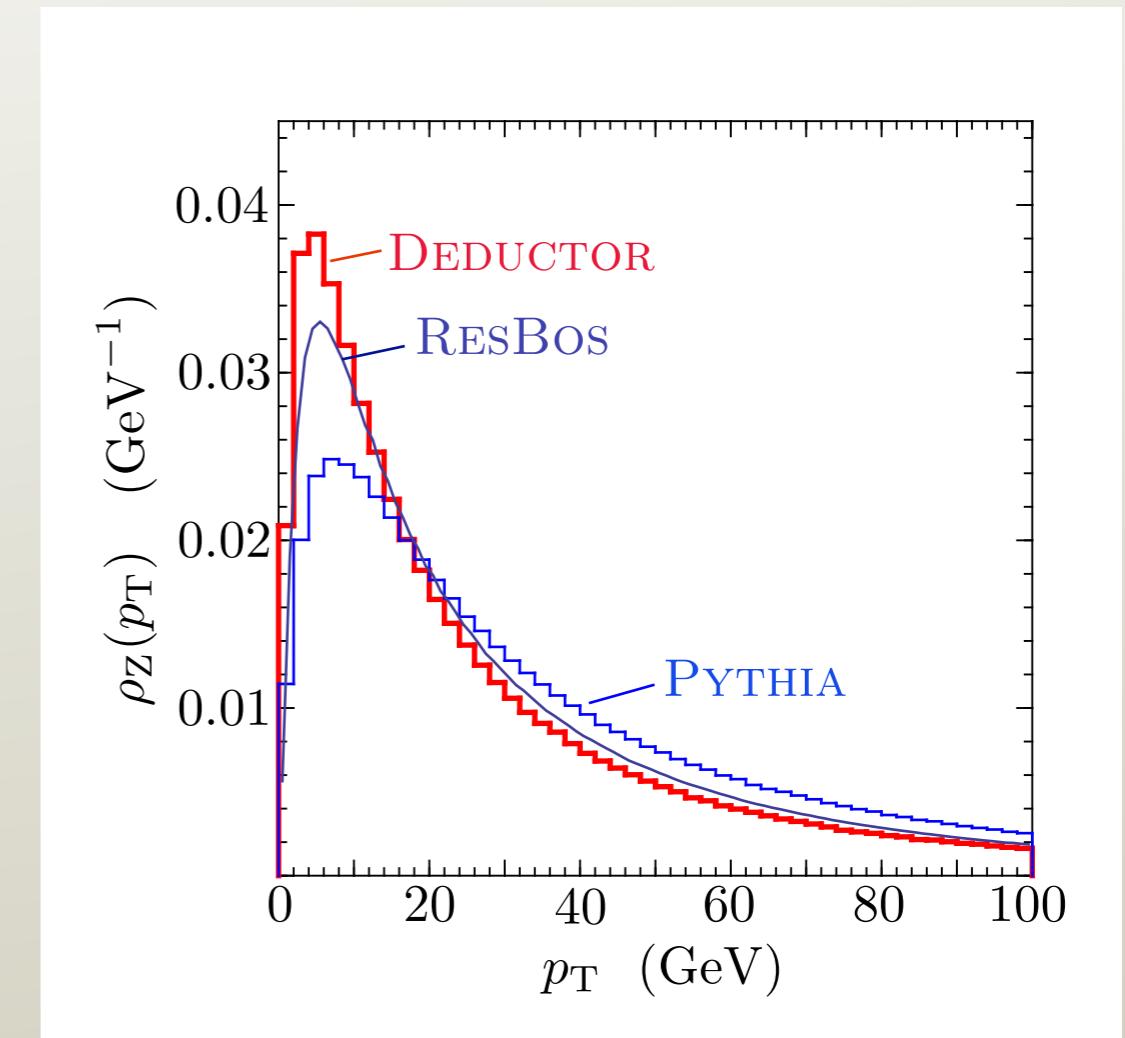
Drell-Yan P_T distribution

- Look at distribution of P_T of e^+e^- pairs with $M > 400$ GeV.

- $\int_0^{100 \text{ GeV}} dp_T \rho(p_T) = 1.$

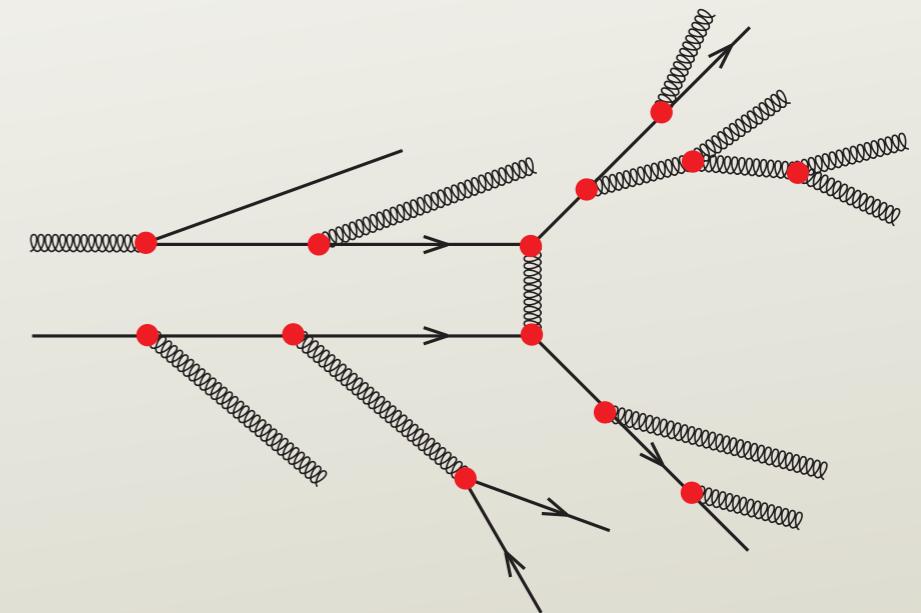
- A parton shower should get this right except for soft effects at $P_T < 10$ GeV.

- We compare DEDUCTOR, PYTHIA, and the analytic log summation in RESBOS.
- DEDUCTOR appears to do well.



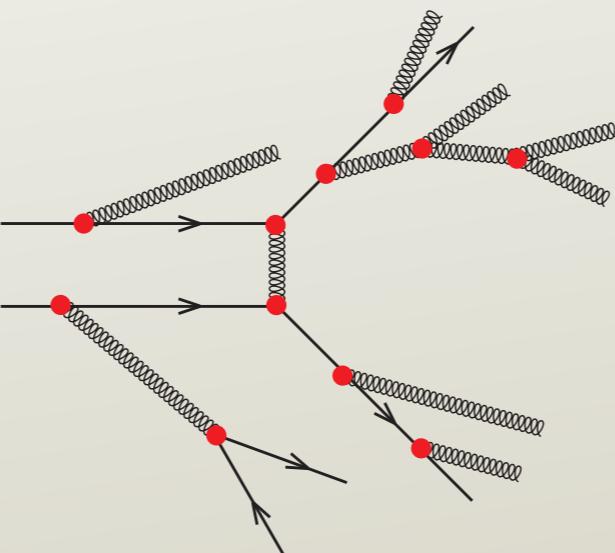
Masses of initial state partons

- The masses of b and c quarks are not zero.
- When the virtuality scale of the shower reaches a few GeV, the b and c masses matter.
- Therefore, DEDUCTOR keeps $m(b) \neq 0$ and $m(c) \neq 0$ even for initial state quarks.
- This required a little work ...



Evolution of parton distribution functions

- A parton shower needs parton distribution functions.



- At hard scattering, need $f_{a/A}(\eta_a, \mu^2) f_{b/B}(\eta_b, \mu^2)$.
- At a splitting on line “a,” need a factor

$$\frac{f_{\hat{a}/A}(\hat{\eta}_a, \mu^2)}{f_{a/A}(\eta_a, \mu^2)}$$

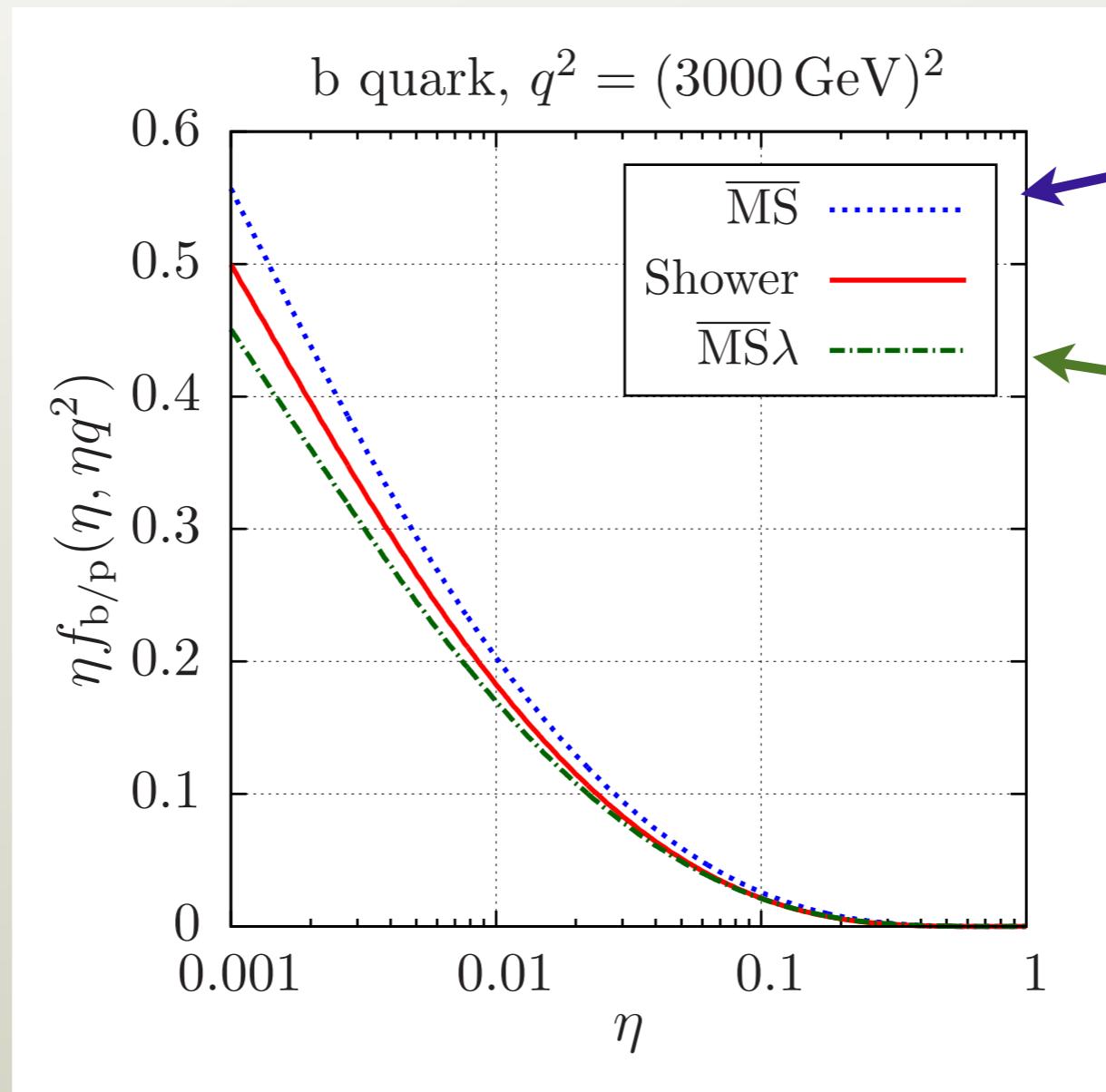
where $\hat{\eta}_a = \eta_a/z$ is the new momentum fraction.

- $\overline{\text{MS}}$ distributions $f_{a/A}(\eta, \mu^2)$ obey an evolution equation,

$$\mu^2 \frac{d}{d\mu^2} f_{a/A}(\eta, \mu^2) = \sum_{\hat{a}} \int_0^1 \frac{dz}{z} \frac{\alpha_s(\mu^2)}{2\pi} P_{a\hat{a}} \left(z, z \frac{m^2}{\mu^2} \right) f_{\hat{a}/A}(\eta/z, \mu^2)$$

- The initial state shower contains splitting functions.
- $P_{a\hat{a}}(z)$ needs to match the shower splitting functions.
- The standard $P_{a\hat{a}}(z)$ does not, because the shower splitting functions depend on quark masses.
- Therefore we need revised parton distribution functions with revised evolution.

Effect of modified evolution

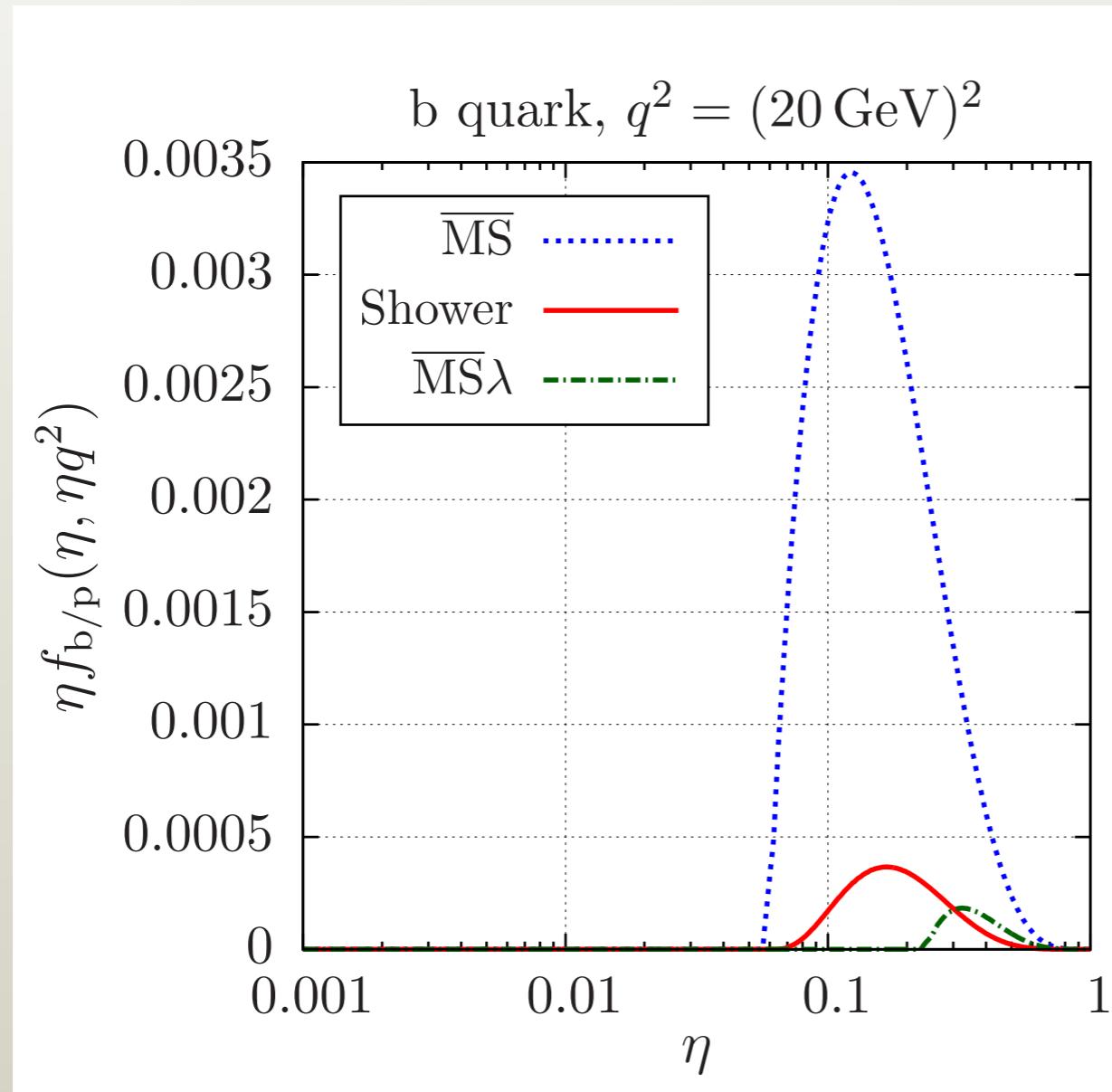


Normal $\overline{\text{MS}}$.

$\overline{\text{MS}}$ but starting
at $\mu^2 = 4m(b)^2$

The b-quark distribution as a function of η
at fixed shower time: $q^2 = \mu^2/\eta$ is fixed.

- Near the threshold.

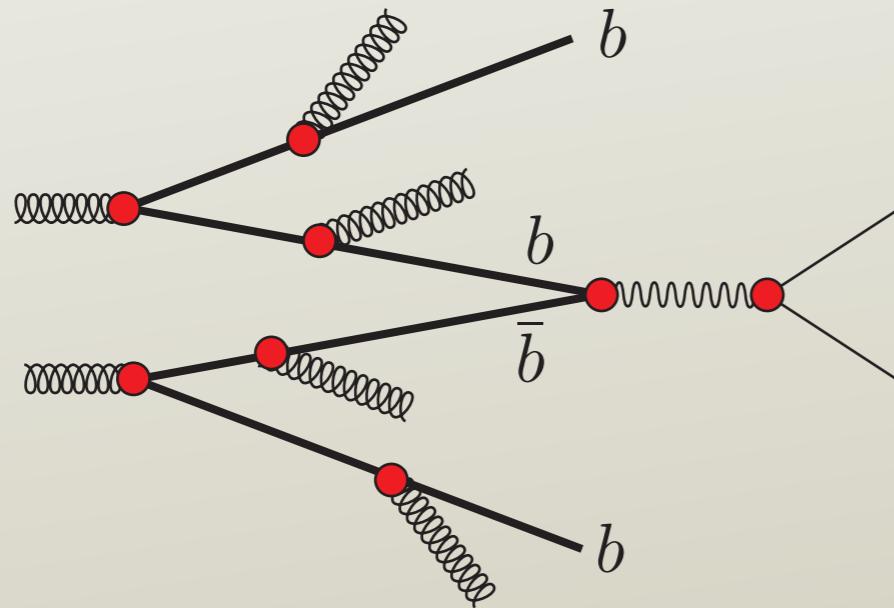
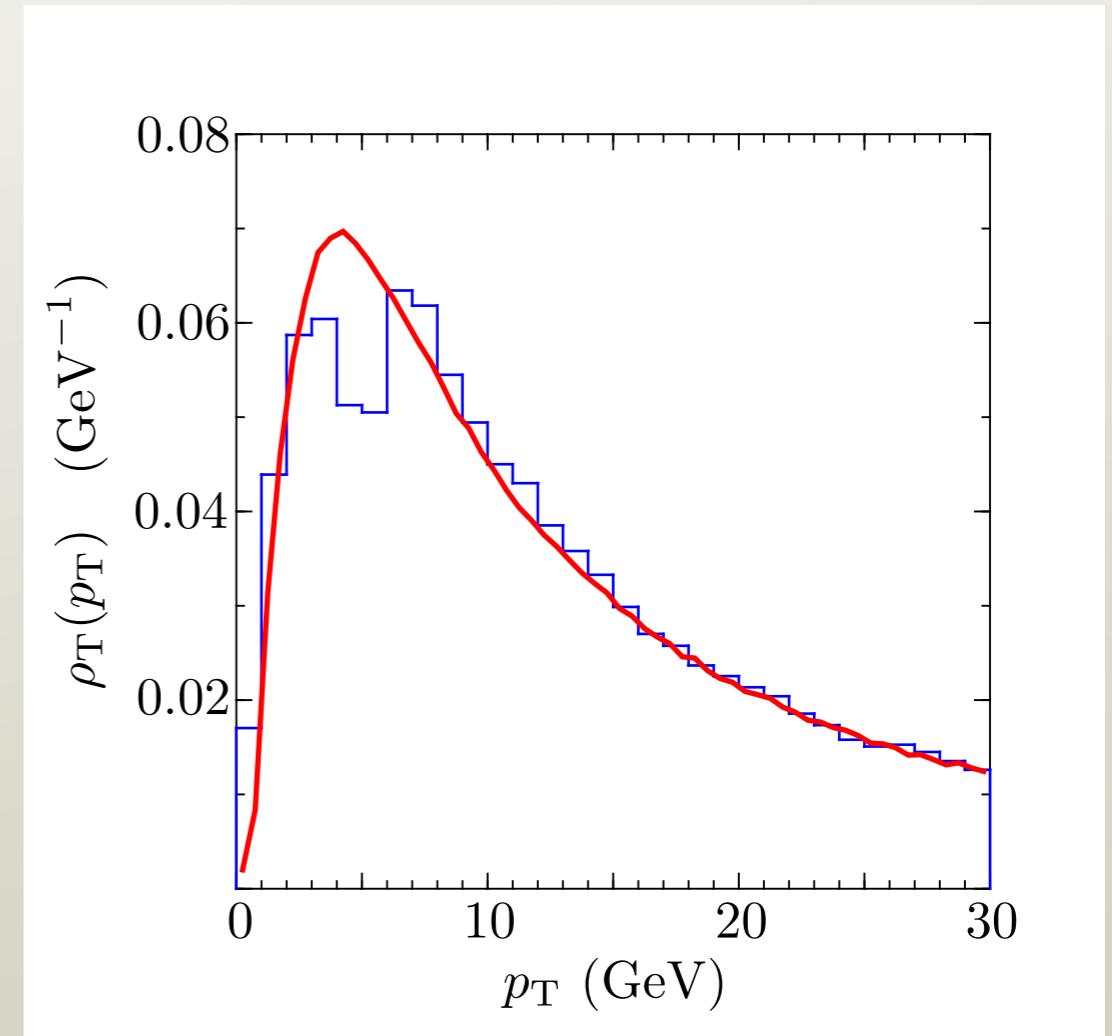


With $\overline{\text{MS}}$, too
many b-quarks.

With mass effects, hardly
any b-quarks.

b-quark P_T

- Look at Drell-Yan production of e^+e^- pairs as earlier.
- This time, look at events in which the annihilating quarks were $b\bar{b}$.



- Look at the p_T distribution of the associated \bar{b} .
- DEDUCTOR (red curve) has a sensible result, while the PYTHIA distribution (blue histogram) has a strange dip.

Shower ordering variable

- Originally, PYTHIA used virtuality to order splittings.
- Now, PYTHIA and SHERPA use “ k_T .”
- DEDUCTOR uses Λ ,

$$\Lambda_i^2 = \frac{p_i^2 - m_i^2}{2 p_i \cdot Q_0} Q_0^2 \quad (\text{final state})$$

$$\Lambda_i^2 = \frac{|p_i^2 - m_i^2|}{2 \eta_i p_A \cdot Q_0} Q_0^2 \quad (\text{initial state})$$

where

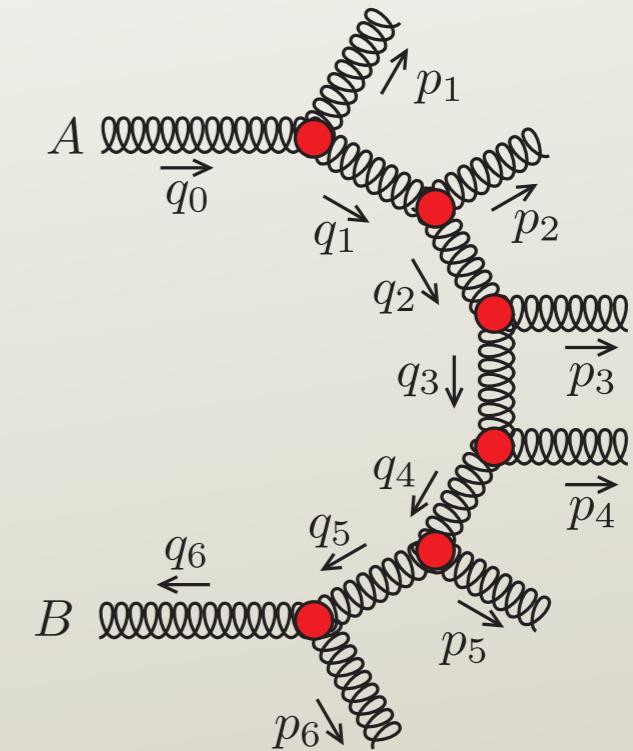
Q_0 is a fixed timelike vector;

p_A is the incoming hadron momentum;

η_i is the parton momentum fraction.

A consequence

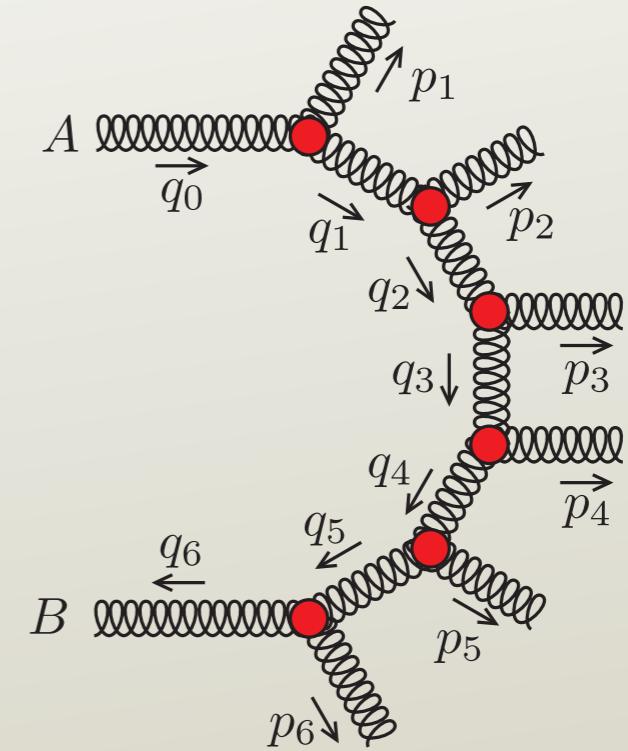
- Consider an initial state shower.
- Take $p_i^2 = 0$.
- The hard scattering is $i = h$ somewhere in the middle.
- Consider the case that $z_i = \eta_i/\eta_{i+1} \ll 1$ for all i as we move toward hadron A.
- Similarly $z_i \ll 1$ as we move toward hadron B.



- Denote the transverse part of q_i by \mathbf{q}_i .
- As we move toward hadron A, shower ordering requires

$$q_{i-1}^2 < q_i^2 \quad \text{for } k_T \text{ ordering}$$

$$z_i q_{i-1}^2 < q_i^2 \quad \text{for } \Lambda \text{ ordering}$$

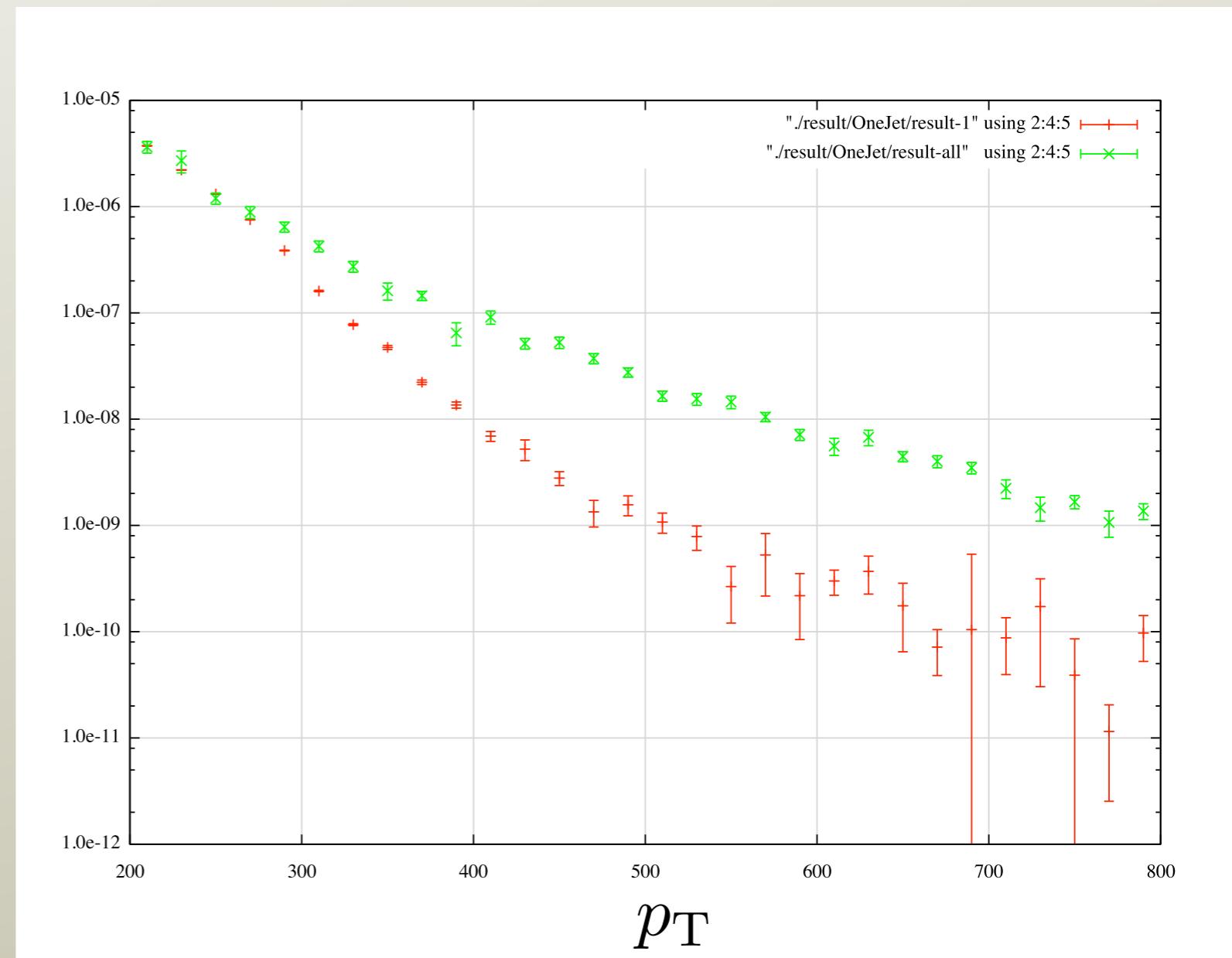


- We impose $q_i^2 < q_h^2$ in order to distinguish the hardest momentum transfer.
- Evidently, Λ ordering allows a wider phase space for gluon emissions.
- Get the phase space of “cut pomeron” exchange.

Example of unordered k_T s

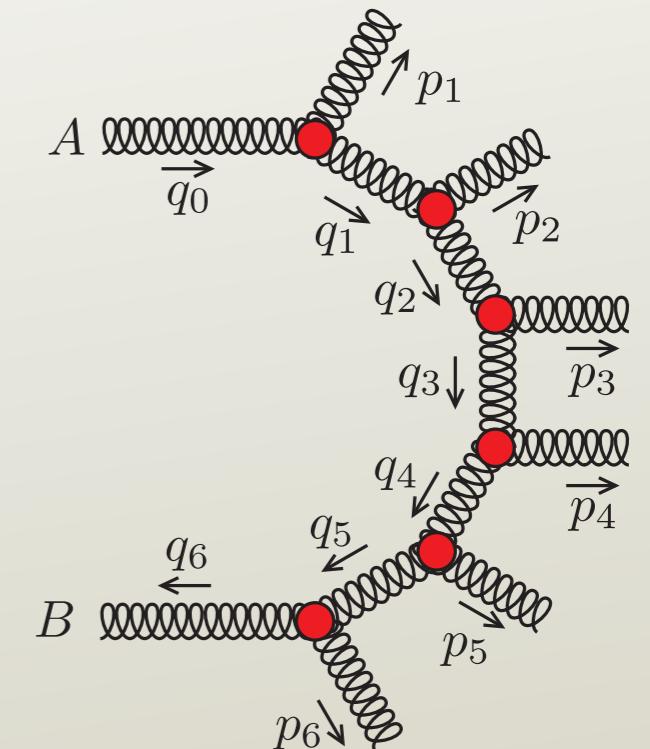
- $z_i q_{i-1}^2 < q_i^2$ for Λ ordering
- For this study, *drop* the requirement that $q_i^2 < q_h^2$.

- Plot p_T for jet events in which $p_T < 300$ GeV at the Born level.
- Compare to normal jet p_T distribution.

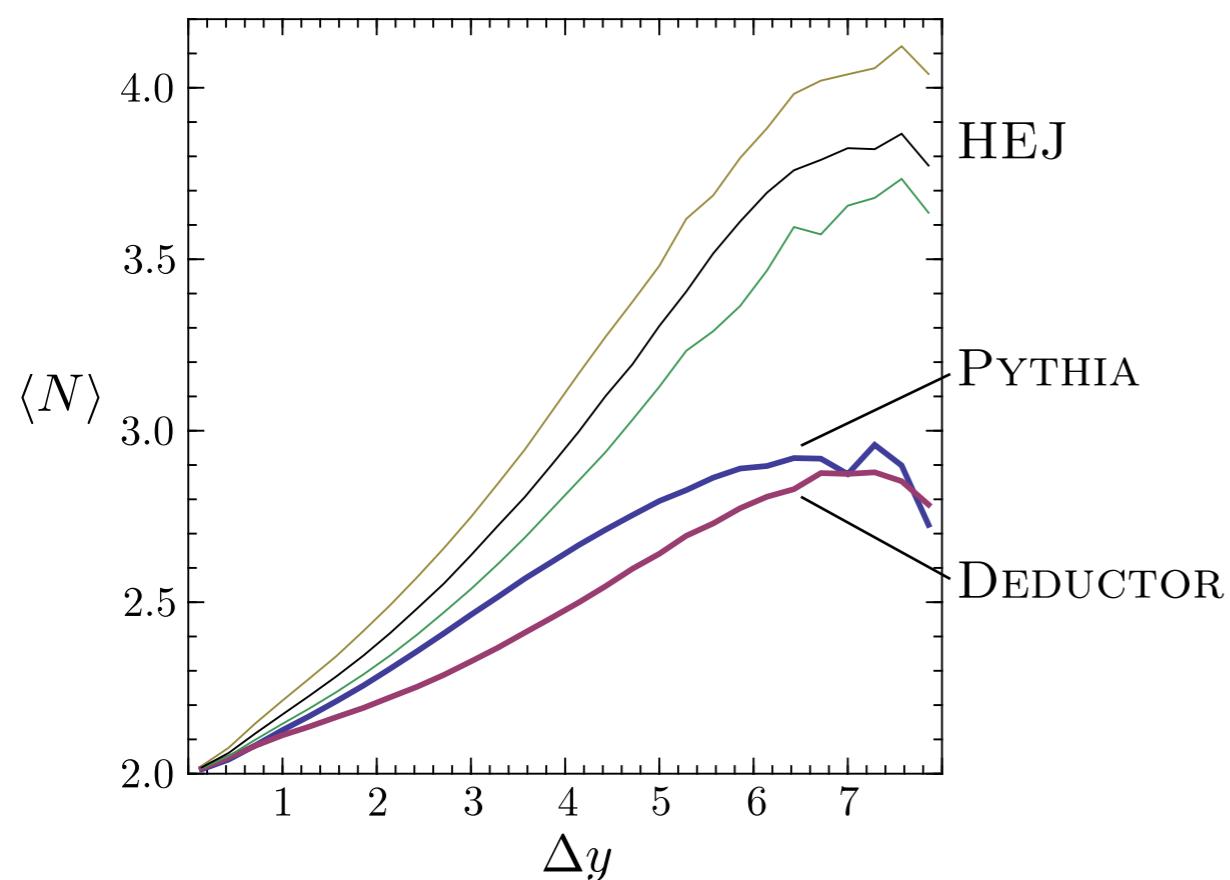


A cut pomeron example

- Examine jets i with $|p_{i\perp}| > 30$ GeV.
- Select the two jets j with the largest y and the largest $-y$.
- Demand that these have $\sum_{j=1}^2 |p_{j\perp}| > 120$ GeV.
- Let Δy be the rapidity difference between the extremal jets.
- Count the total number N of (> 30 GeV) jets.
- Plot $\langle N \rangle$ versus Δy .
- Expect $\langle N \rangle > 2$ for large Δy .



Result for $\langle N \rangle$ versus Δy

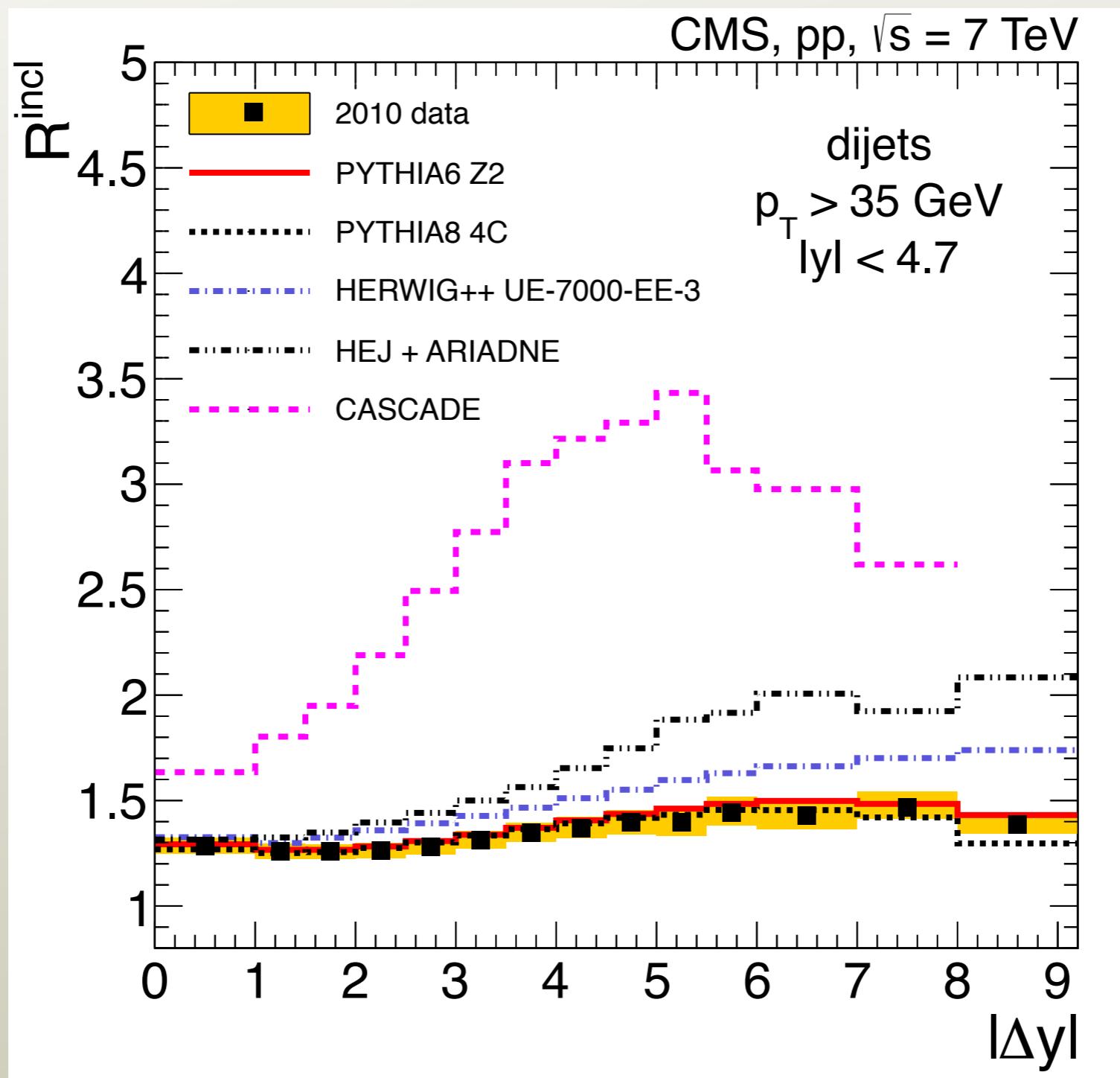


- Andersen and Smillie program for cut pomeron physics
HIGH ENERGY JETS,
- DEDUCTOR generates what I think is a sensible amount of extra jet activity
- I do not understand why PYTHIA generates more.

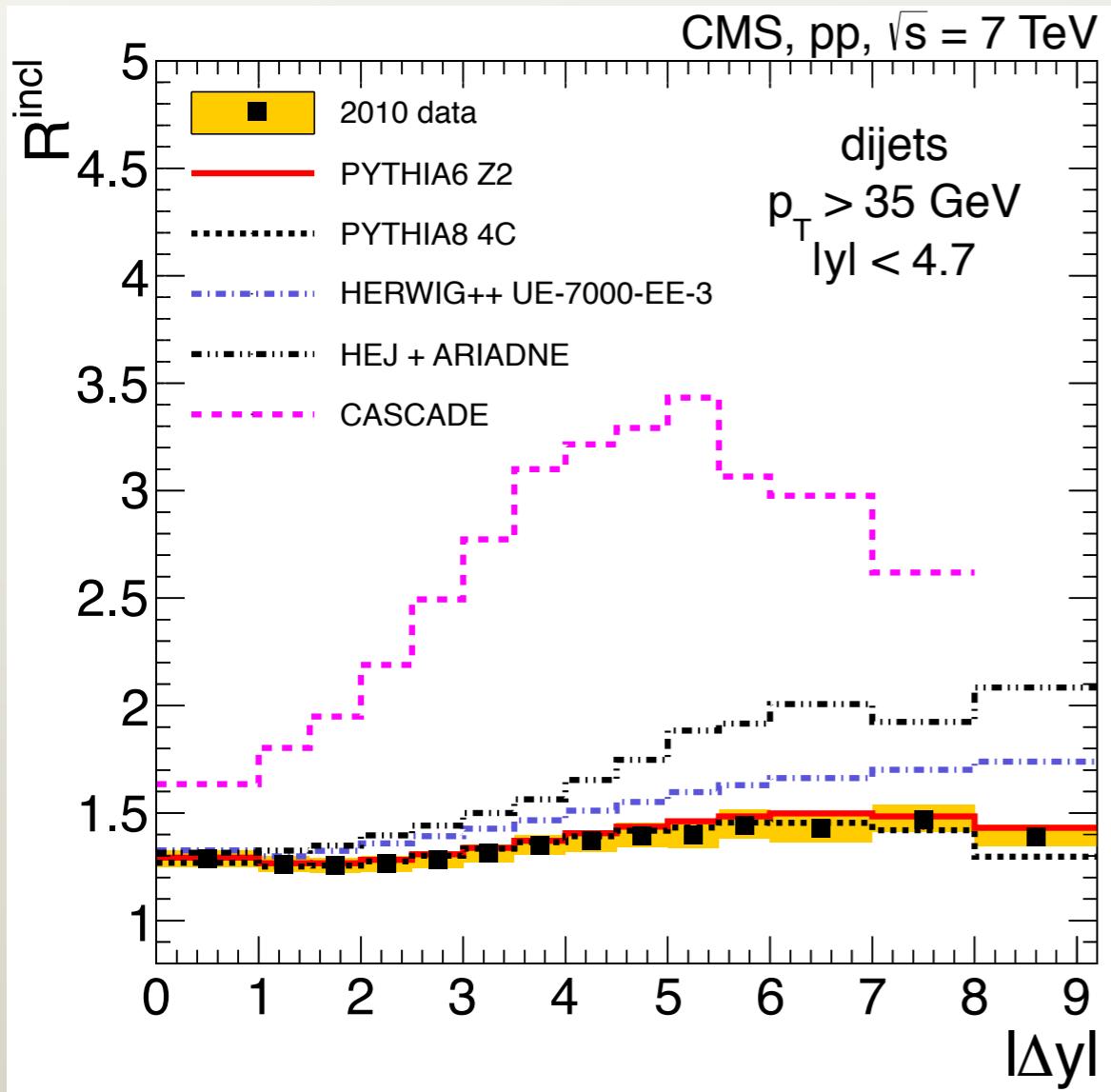
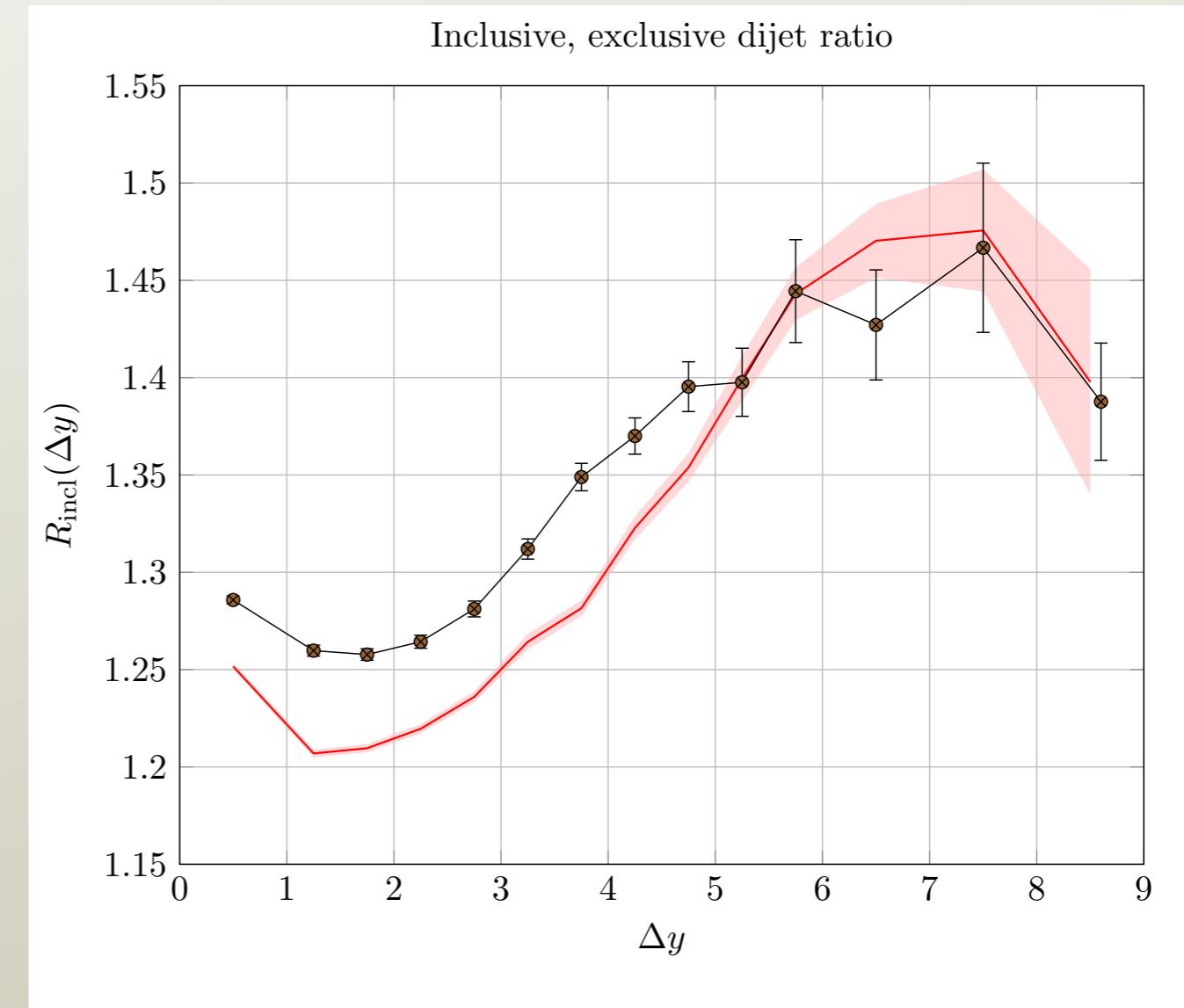
Comparison to data

- CMS looked at jet events with $\sqrt{s} = 7$ TeV.
- Jets with $p_T > 35$ GeV and $|y| < 4.7$ were selected.
- $\sigma^{\text{incl}} =$ inclusive cross section to have two jets with rapidity difference Δy .
- $\sigma^{\text{excl}} =$ cross section to have two jets and no more, with rapidity difference Δy .
- $R^{\text{incl}} = \sigma^{\text{incl}}/\sigma^{\text{excl}}$.

CMS result



Comparison to DEDUCTOR

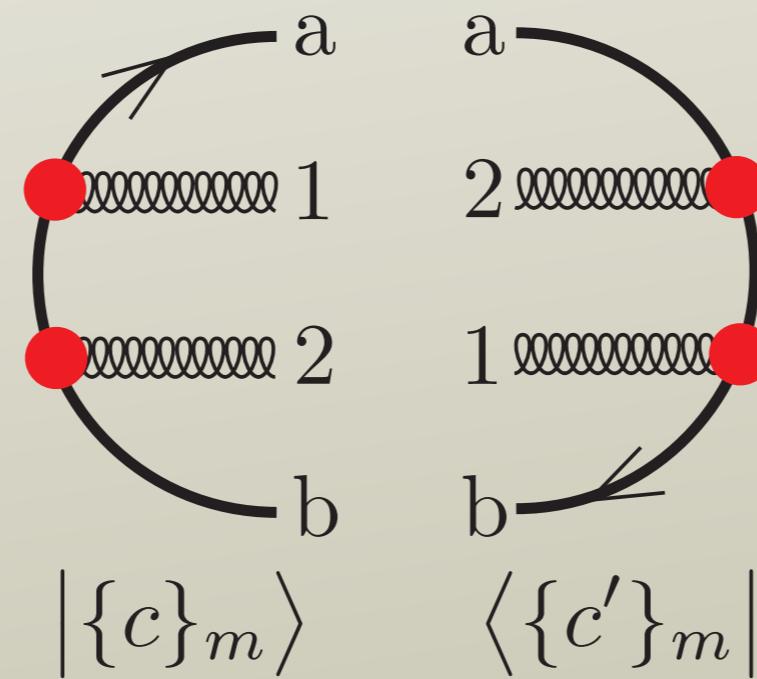


Color

- Forget spin.
- The fundamental object is the quantum density matrix in color, with basis vectors

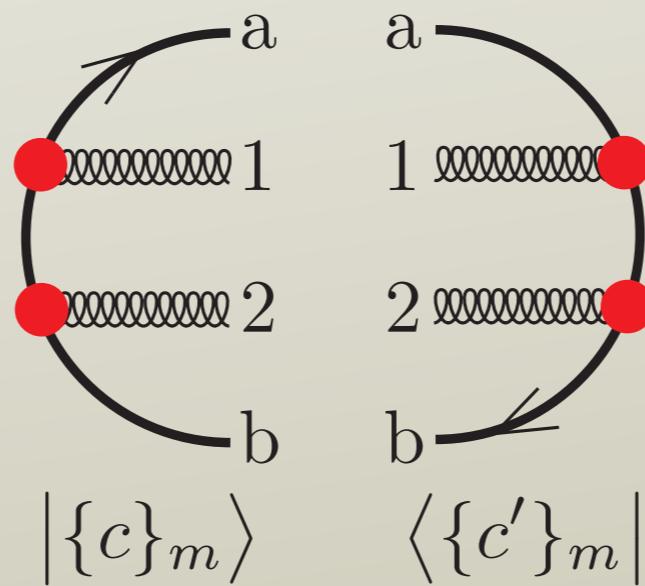
$$|\{c\}_m\rangle \langle \{c'\}_m|$$

- Picture for this:



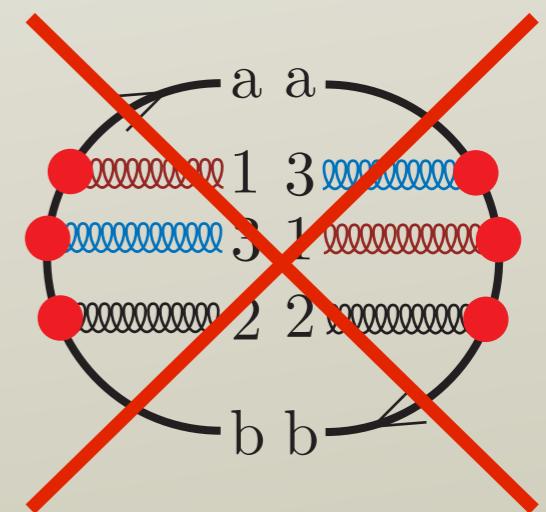
The leading color (LC) approximation

- Only states with $\{c'\}_m = \{c\}_m$ are allowed.



The color suppression index

- At each shower step, calculate a “color suppression index” I .
- $I = 0$ with the leading color approximation.
- At the end of the shower, a cross section is proportional to $1/N_c^N$ with $N \geq I$.
- At each step of the shower, $I_{\text{new}} \geq I_{\text{old}}$.
- The neglected states have $I = 2$.
- Thus the neglected states give $1/N_c^2$ contributions to cross sections.
- Are these contributions are unimportant?

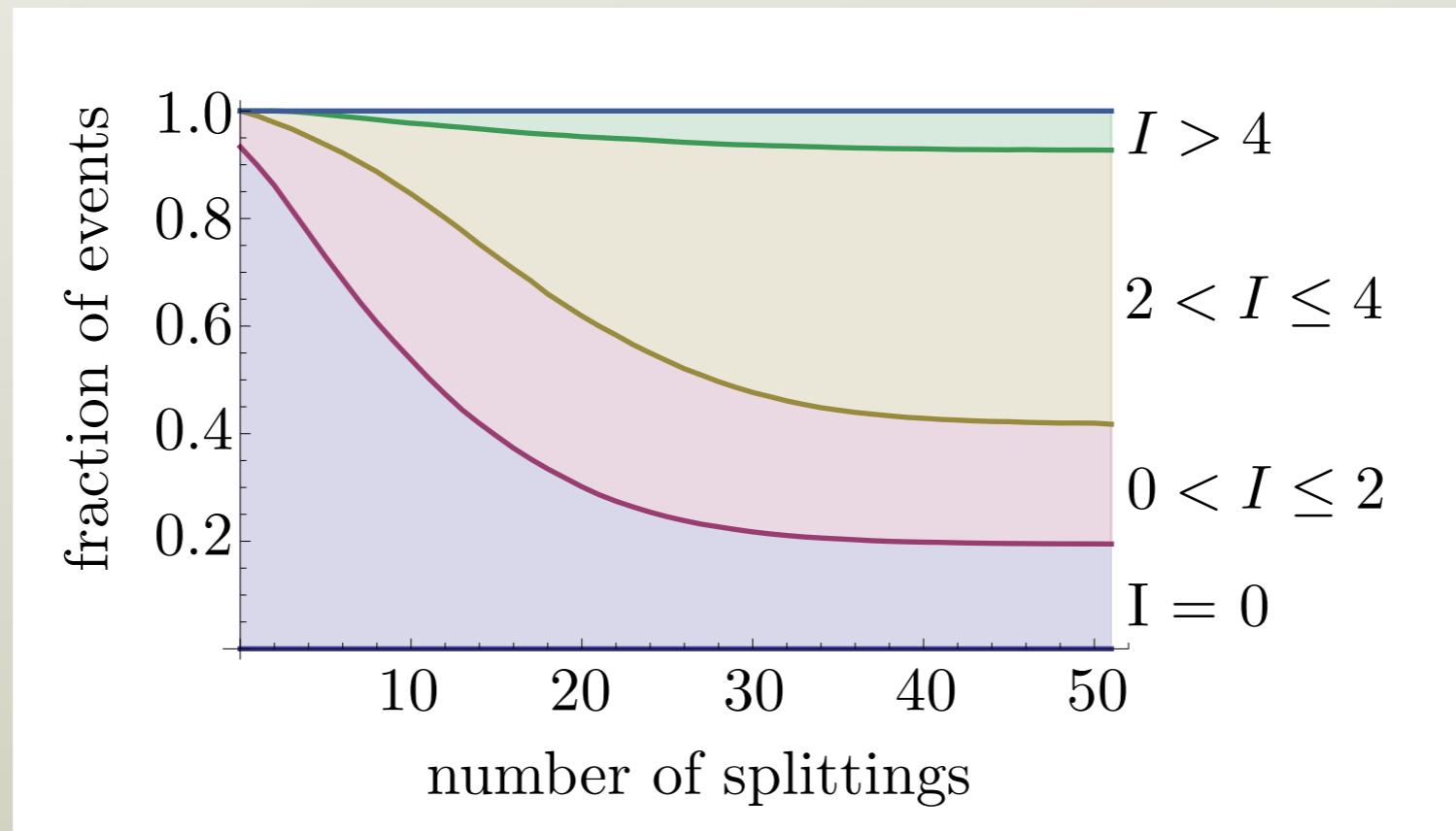


Practical application

- At each splitting, I can grow.
- We can set a maximum value, I_{\max} .
- When $I = I_{\max}$, we stop I from growing.
- This amounts to using $U(3)$ instead of $SU(3)$ as the color group.

Is $I > 0$ rare?

- Look at jet events.
- Trace fraction of events with different values of I as a function of number of splittings.



- $I > 0$ is not rare.

Does $I > 0$ matter?

- We are finding that typical observables are not highly sensitive to the color state after just a few splittings.
- Thus the LC approximation gives approximately the same result as the LC+ approximation.
- This conclusion may be observable dependent.

Gap fraction

- Consider events with two jets with $p_T > 200$ GeV.
- One jet has $y > 2$ and one has $y < -2$.

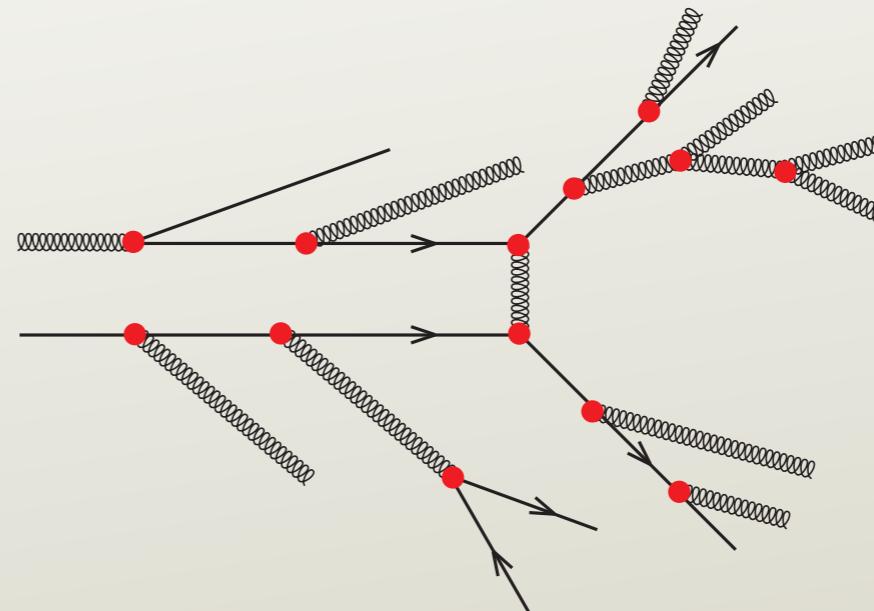
- Look for events with a gap:

No jets with $-2 < y < 2$ with $p_T > p_T^{\max}$.

- If we make p_T^{\max} small, the fraction of events with such a gap is small.

The gap fraction and color

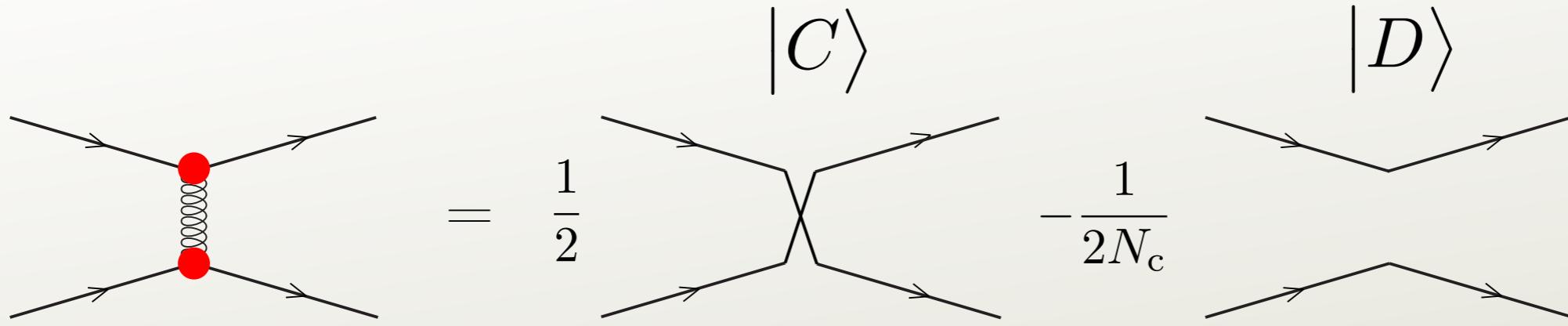
- Consider small angle quark-quark scattering followed by shower.



$$\text{Feynman diagram} = \frac{1}{2} \text{Feynman diagram} - \frac{1}{2N_c} \text{Feynman diagram}$$

Forward partons color
connected to
backwards partons

Forward partons color
disconnected from
backwards partons



$$\rho = \frac{1}{4} |C\rangle\langle C| - \frac{1}{4N_c} |C\rangle\langle D| - \frac{1}{4N_c} |D\rangle\langle C| + \frac{1}{4N_c^2} |D\rangle\langle D|$$

LC

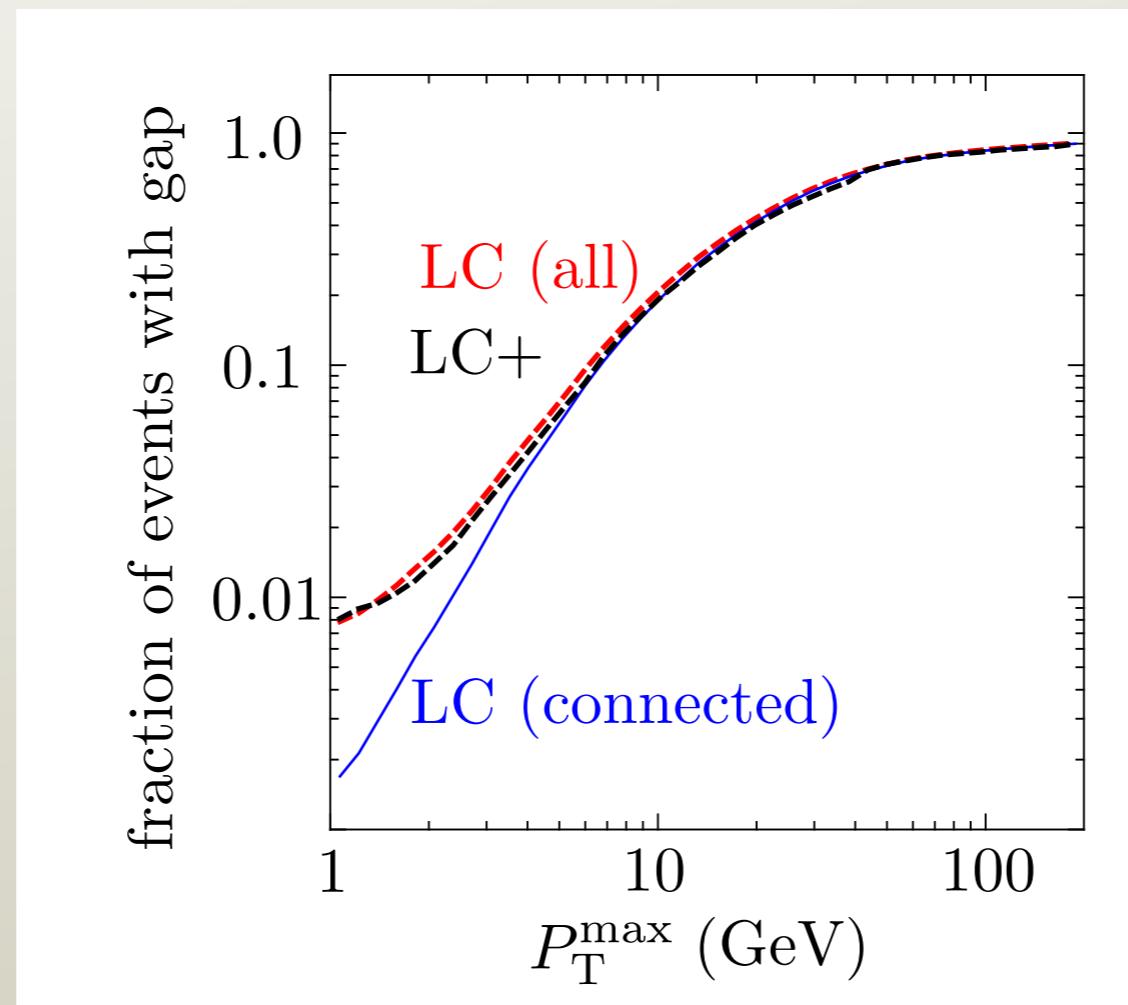
Needs LC+

can be LC

gap survival probability low

gap survival
probability high

Gap fractions



- Color structure is important for gap survival probability.

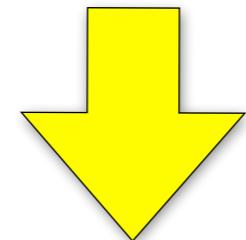
Conclusion

- DEDUCTOR is designed to do a better job with color and spin compared to other shower generators.
- Even with leading color and no spin, it has some novel features.
- It appears to produce sensible results.
- We are working on exploiting it.
- It is available at
 - <http://www.desy.de/~znagy/deductor>
 - <http://pages.uoregon.edu/soper/deductor/>

Conclusion, Outlook

This is *just a design of the parton shower* and it make sense at LO level. As far as I know there is no formal definition even at leading order level.

$$\sigma[F_J] = \sum_{m=2}^{\infty} (\rho_m | \mathcal{F}_J | 1) = \sum_m [d\{p, f\}_m] \text{Tr}\{\rho(\{p, f\}_m) F_J(\{p, f\}_m)\}$$



We need a formal proof that the perturbative sum of the cross section can be rearranged as a product.

$$\sigma[F_J] = (1 | \mathcal{F}_J \left[\mathcal{W}^{LO}(t_f) + \mathcal{W}^{NLO}(t_f) + \dots \right] \quad \text{Finite corrections}$$
$$\mathbb{T} \exp \left\{ \int_0^{t_f} d\tau \left[\mathcal{H}^{LO}(\tau) + \mathcal{H}^{NLO}(\tau) + \dots \right] \right\} \quad \text{Parton shower}$$
$$[|\rho^{LO}) + |\rho^{NLO}) + \dots] \quad \text{Hard state}$$

Bonus slides

Operator formalism

The shower state

- The fundamental object is the quantum density matrix in color and spin space, with basis vectors

$$|\{c, s\}_m\rangle \langle \{c', s'\}_m|$$

- For two initial state partons plus m final state partons, let

$$\rho(\{p, f, c', c, s', s\}_m, t)$$

be probability to have momenta $\{p\}_m$ and flavors $\{f\}_m$ and be in this color-spin state.

- Consider the function $\rho(\{p, f, c', c, s', s\}_m, t)$ at fixed t as a vector $|\rho(t)\rangle$.

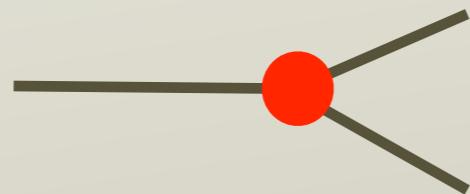
Evolution

- Evolution with shower time t : $|\rho(t)\rangle = \mathcal{U}(t, 0)|\rho(0)\rangle$

$$\frac{d}{dt'} \mathcal{U}(t, t') = [\mathcal{H}_I(t) - \mathcal{V}(t)] \mathcal{U}(t, t')$$

splitting

no splitting

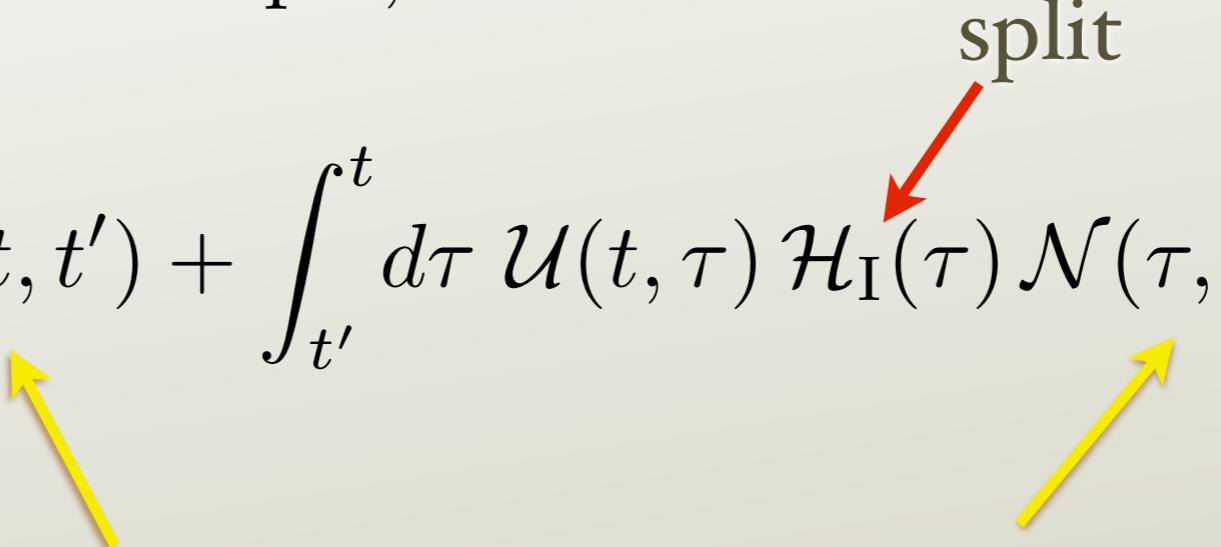


$$\frac{d}{dt} \mathcal{U}(t, t') = [\mathcal{H}_I(t) - \mathcal{V}(t)] \mathcal{U}(t, t')$$

- Since $\mathcal{V}(t)$ is simple, rewrite as

$$\mathcal{U}(t, t') = \mathcal{N}(t, t') + \int_{t'}^t d\tau \mathcal{U}(t, \tau) \mathcal{H}_I(\tau) \mathcal{N}(\tau, t')$$

split



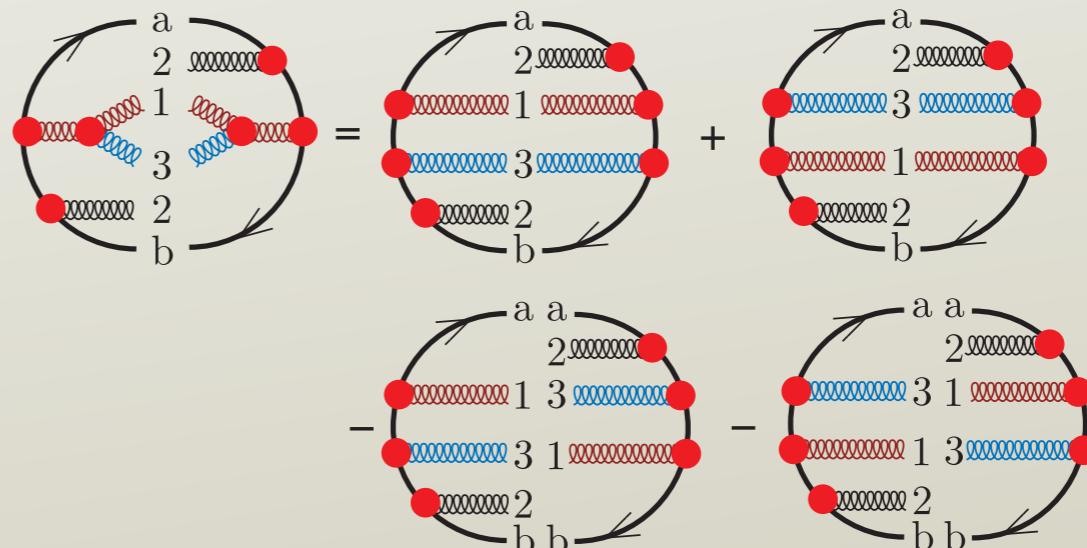
exponentiate the probability of not splitting

$$\mathcal{N}(t, t') = \mathbb{T} \exp \left\{ - \int_{t'}^t d\tau \mathcal{V}(\tau) \right\}$$

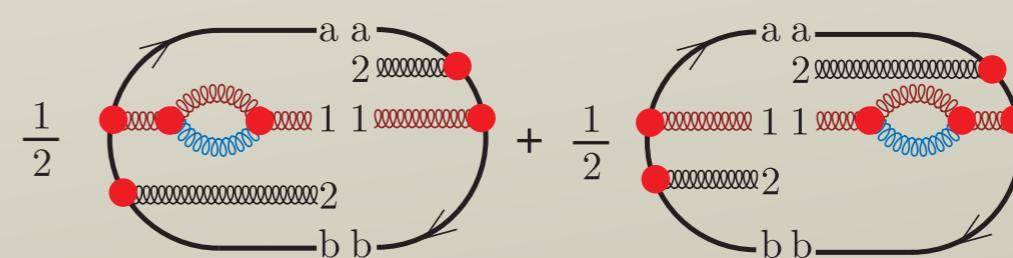
this is the
Sudakov factor

How is this possible?

- For terms kept, the Sudakov exponent needs to be a number not a matrix in the color space.



- For this splitting, keep all terms.



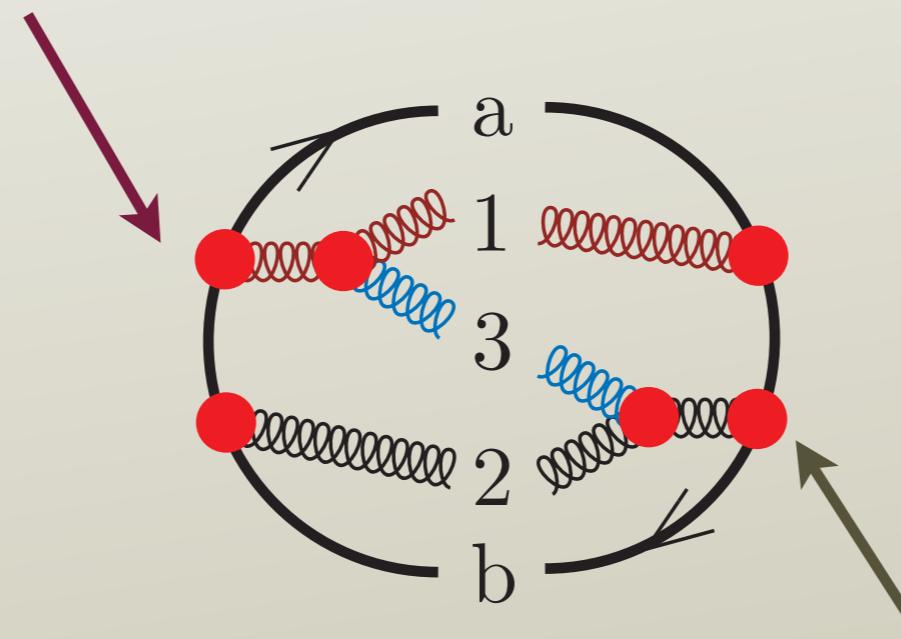
- The corresponding contribution to $\mathcal{V}(t)$ has the color structure

- The color loops simply give a factor C_A .

Interference graphs

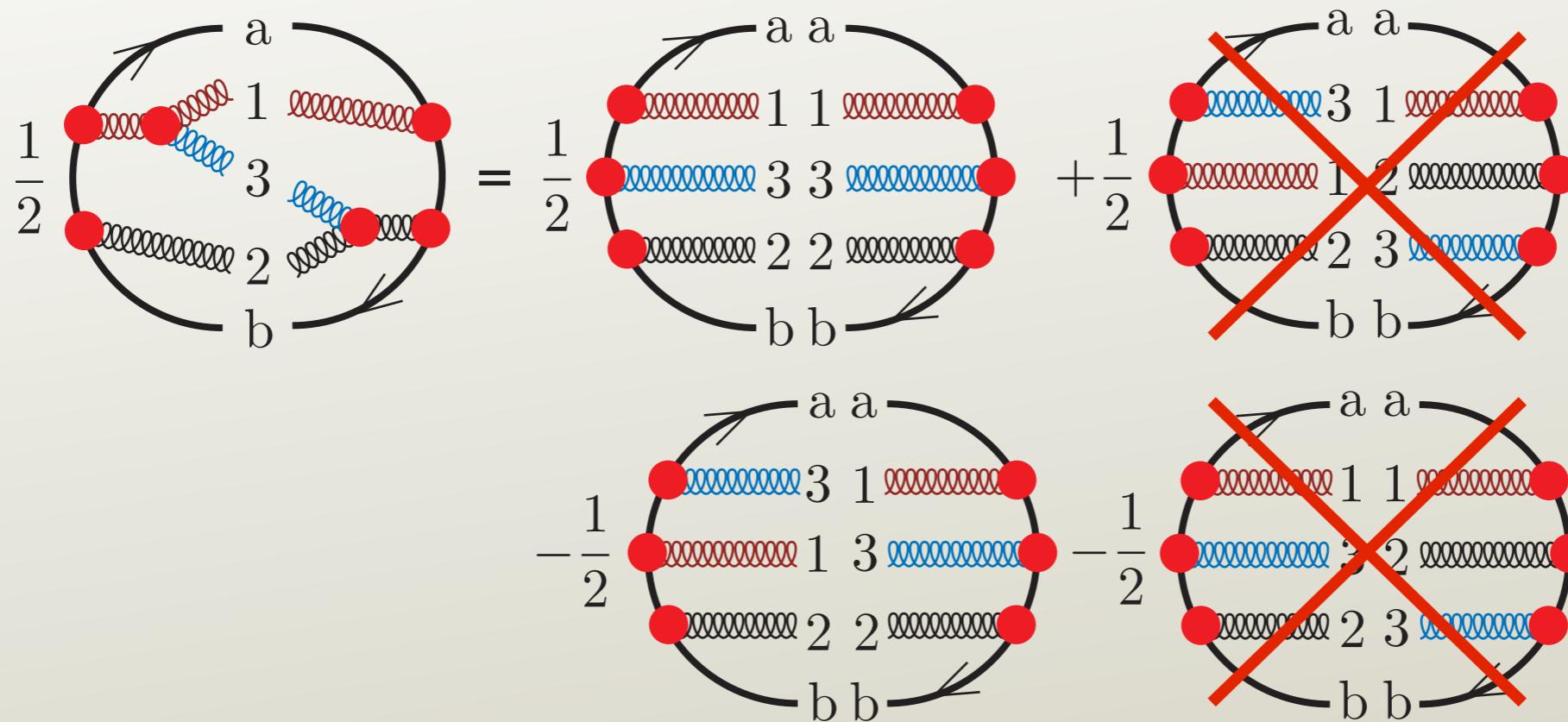
- Interference graphs are important for soft gluon emission.

One parton is the “emitter.”

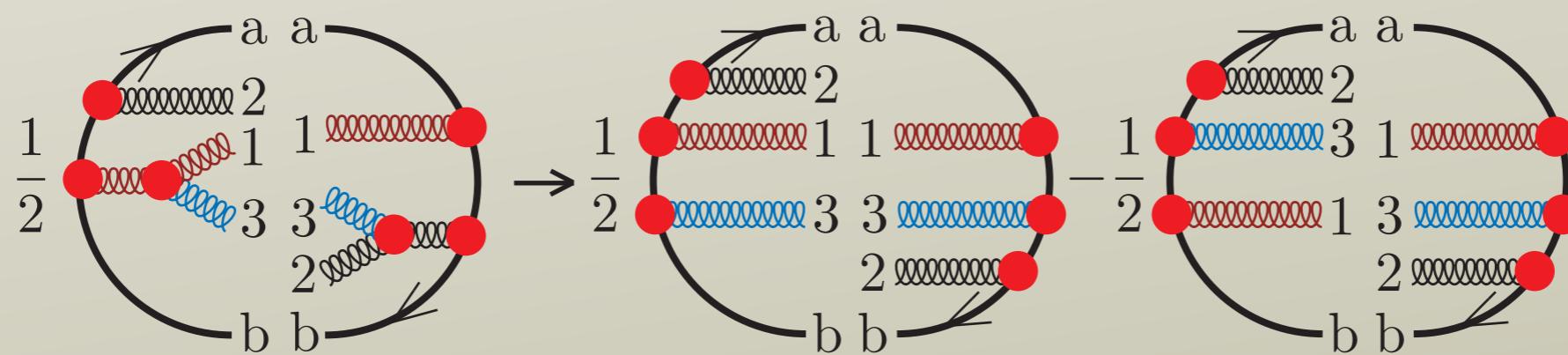


The other is the “helper.”

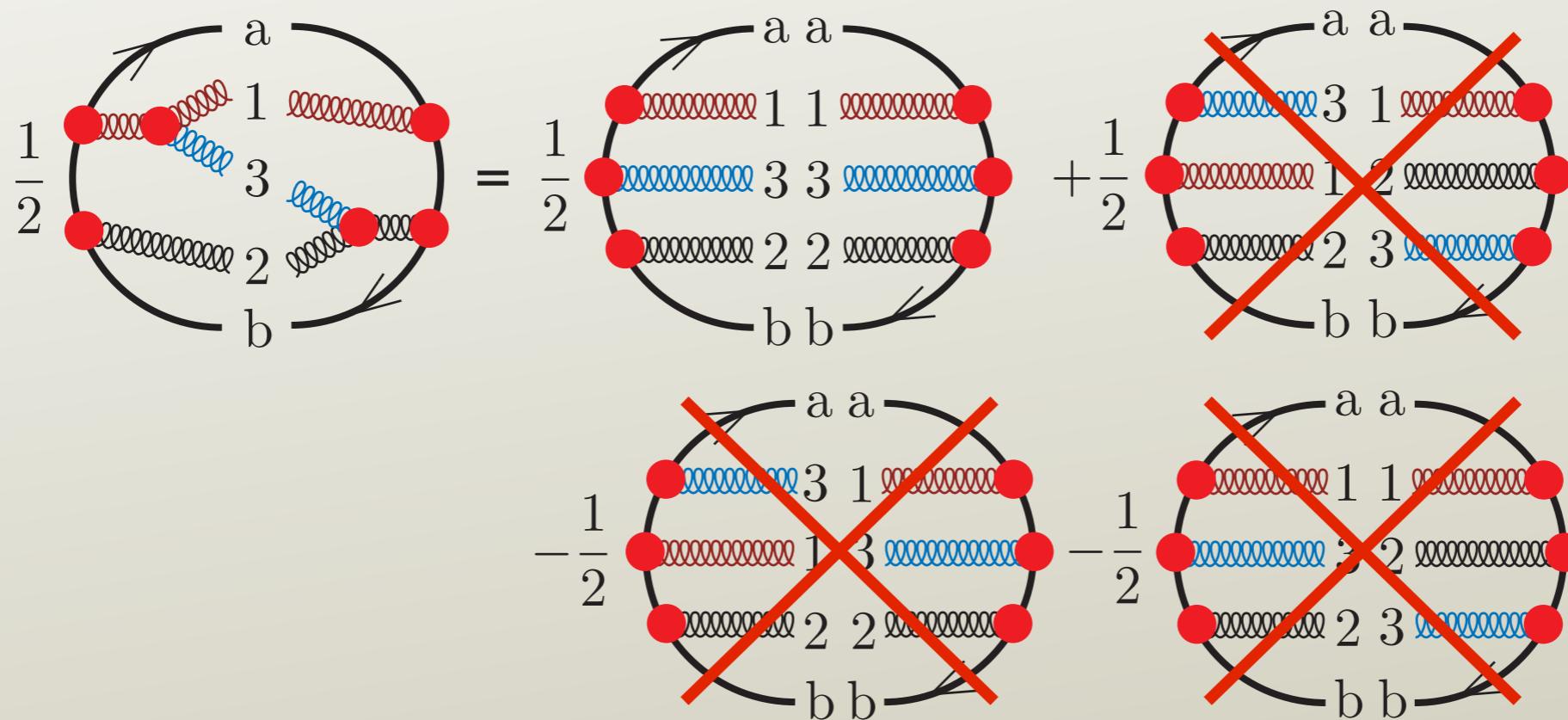
- The LC+ approximation keeps two contributions.



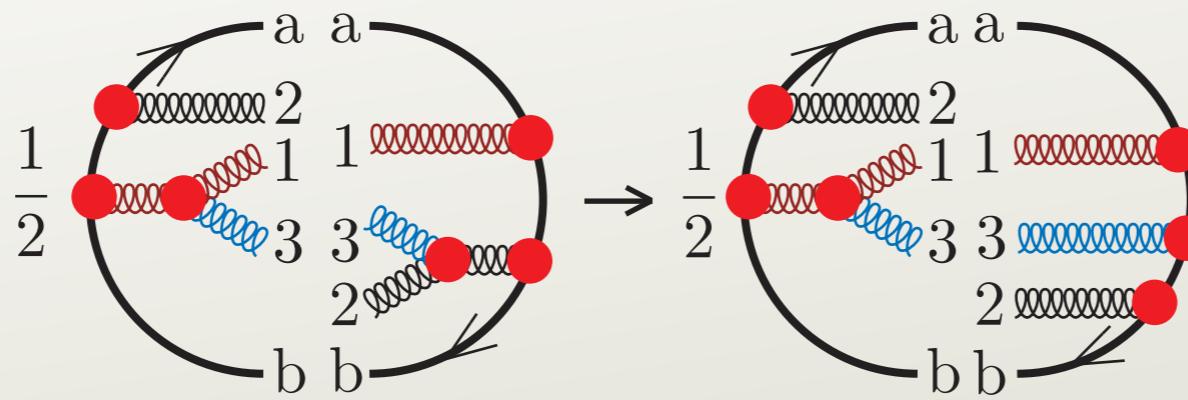
- Another example, starting from a non-diagonal state:



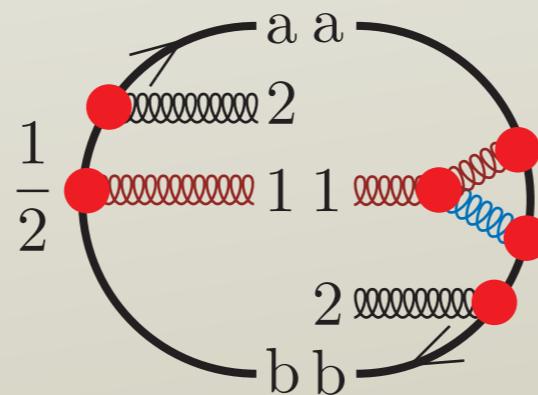
- The LC approximation keeps just one contribution.



- This amounts to



- The corresponding contribution to $\mathcal{V}(t)$:



- There is no color matrix. Just a factor $C_A/4$.