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Disclaimer
This talk aims at highlighting current developments in parton showers
and the driving forces behind them. It can neither be a complete account
of all current research topics nor can it go into any detail. I simply hope
it will be a starting point for discussion.

The selection is surely biased, and I apologise for leaving some important
ones out.
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General considerations
General form

PSn(tc , tmax) = ∆n(tc , tmax) +

∫ tmax

tc

dt ′ Kn(t ′) ∆n(t ′, tmax)

• splitting kernel Kn =
∑n

i=1Ki , with collinear limit Ki → αs

2πt P(z)
n number of emitter (partons, dipoles, etc.)

• evolution variable t, splitting variable z

• usually independent of azimuthal angle φ
→ spin-avaraged

• choose αs = αs(k2
⊥) to resum certain class of higher logs from

1-loop running

• recoil scheme only needs to be infrared safe
→ implements momentum conservation
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General considerations

PS Splitting function Recoil scheme Construction
PYTHIA8 1→ 2 Local DGLAP
HERWIG++ (angular) 1→ 2 Global DGLAP
HERWIG++ (dipole) 1→ 2 Local CS Dipoles
SHERPA/CSSHOWER++ 1→ 2 Local CS Dipoles
ARIADNE 2→ 3 Local Antenna
VINCIA 2→ 3 Local Antenna
SHERPA/ANTS 2→ 3 Local Antenna
KRKMC 1→ 2 Global DGLAP
DEDUCTOR n→ n + 1 Local NS subtraction
...
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Impact of choices

Choices:

• precise definition of evolution variable,

only needs to behave as dt
t =

dp2
⊥

p2
⊥

in the collinear limit

→ p2
⊥, θ, p̃2

⊥, ...

• recoil scheme, only needs to be IR-safe
→ at most power corrections, but can be numerically sizeable

• power corrections and finite terms in splitting functions
→ (generalised) matrix element corrections

• αs -running beyond 1-loop
→ fix 1-loop running to αs(k⊥) by counterterm

• g → qq̄ splittings have no LL, free to choose αs -scale
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Choice of ordering variable and recoil scheme

Fischer, Gieseke, Plätzer, Skands EPJC74(2014)2831
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investigate 4-jet observables sensi-
tive to subleading structure of PS

• ratio of hemisphere masses in events with compressed scale hierachy
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• ratio of hemisphere masses in events with compressed scale hierachy

Marek Schönherr 7/29



General considerations Parton showers and multileg matrix elements Parton showers and NLO matching Various improvements Conclusions

Choice of ordering variable and recoil scheme

Höche, Krauss, MS arXiv:1401.7971
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two evolution variables

Final State
0 2 pipj z̃i,jk (1− z̃i,jk )

1 2 pipj


z̃i,jk (1− z̃i,jk ) if i , j = g

1− z̃i,jk if j = g
z̃i,jk if i = g

1 else

Initial State
0 2 papj (1− xaj,k )

1 2 papj

{
1− xaj,k if j = g

1 else

two recoil schemes

0 initial state as if final state + ⊥-boost
Höche, Schumann, Siegert Phys.Rev.D81(2010)034026

1 original CS
Catani, Seymour Nucl.Phys.B485(1997)291-419

Schumann, Krauss JHEP03(2008)038

→ similar ideas in Gieseke, Plätzer JHEP01(2011)024
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Colour coherence

Correlation of 2nd & 3rd jet, e.g.

tanβ =
|∆φ23|
∆η23

• probes description of soft emissions

• traditionally desribed through angular ordering or angular veto

=⇒

• can also be described by explicit inclusion of soft limit in splitting
function
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Colour coherence
CMS arXiv:1311.5815
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CMS arXiv:1311.5815

β
0.5 1 1.5 2 2.5 3

)β( 2ηF

0.03

0.04

0.05

0.06

0.07

0.08

Data
PYTHIA6 Z2
PYTHIA8 4C
HERWIG++ 2.3
MADGRAPH + PYTHIA6 D6T
Systematic uncertainty

 0.8≤| 
2

η|

 = 7 TeVs-1CMS,    L =  36 pb

β
0.5 1 1.5 2 2.5 3

0.03

0.04

0.05

0.06

0.07

0.08

Data
PYTHIA6 Z2
PYTHIA8 4C
HERWIG++ 2.3
MADGRAPH + PYTHIA6 D6T
Systematic uncertainty

 2.5≤| 
2

η0.8 < |

 = 7 TeVs-1CMS,    L =  36 pb

Marek Schönherr 10/29



General considerations Parton showers and multileg matrix elements Parton showers and NLO matching Various improvements Conclusions

Colour coherence
CMS arXiv:1311.5815

β
0.5 1 1.5 2 2.5 3

M
C

/D
at

a

0.7

0.8

0.9

1

1.1

1.2

PYTHIA6 Z2
PYTHIA8 4C
HERWIG++ 2.3
MADGRAPH + PYTHIA6 D6T
Statistical uncertainty
Systematic uncertainty
Stat.+ Sys. uncertainty

 0.8≤| 
2

η|

 = 7 TeVs-1CMS,    L =  36 pb

β
0.5 1 1.5 2 2.5 3

0.7

0.8

0.9

1

1.1

1.2

PYTHIA6 Z2
PYTHIA8 4C
HERWIG++ 2.3
MADGRAPH + PYTHIA6 D6T
Statistical uncertainty
Systematic uncertainty
Stat.+ Sys. uncertainty

 = 7 TeVs-1CMS,    L =  36 pb

 2.5≤| 
2

η0.8 < |

Marek Schönherr 10/29



General considerations Parton showers and multileg matrix elements Parton showers and NLO matching Various improvements Conclusions

Colour coherence

CMS arXiv:1311.5815
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General considerations

• parton showers are well controlled fully differential resummation tools

• approximations made are solely related to the quality of the
description of the soft-collinear limit
(leading colour, spin-avaraging, perturbative order of splitting
functions)

⇒ can be systematically improved

• no approximations in momentum conservation

• no additional restrictions on secondary radiation entering observable

⇒ formulation independent of observable definition
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Radiation off multileg matrix elements
Consider showering a multileg matrix element, say pp → V + 4 jets with
all Qi > Qmin (Q some particle distance measure, e.g. jet algorithm)

• start showering from smallest
Qi , or

• reconstruct smallest t = tI

and start showering from tI

• no resummation for t > tI

⇒ if Q = t resummation active
only for intrajet evolution
below tmin

⇒ continous resummation only for t < Qmin

⇒ for Q 6= t no well-defined structure of resummation as Qmin does not
translate into a tmin

Marek Schönherr 12/29



General considerations Parton showers and multileg matrix elements Parton showers and NLO matching Various improvements Conclusions

Radiation off multileg matrix elements
Consider showering a multileg matrix element, say pp → V + 4 jets with
all Qi > Qmin (Q some particle distance measure, e.g. jet algorithm)

• start showering from smallest
Qi , or

• reconstruct smallest t = tI

and start showering from tI

• no resummation for t > tI

⇒ if Q = t resummation active
only for intrajet evolution
below tmin

⇒ continous resummation only for t < Qmin

⇒ for Q 6= t no well-defined structure of resummation as Qmin does not
translate into a tmin

Marek Schönherr 12/29



General considerations Parton showers and multileg matrix elements Parton showers and NLO matching Various improvements Conclusions

Radiation off multileg matrix elements
Consider showering a multileg matrix element, say pp → V + 4 jets with
all Qi > Qmin (Q some particle distance measure, e.g. jet algorithm)

tI

• start showering from smallest
Qi , or

• reconstruct smallest t = tI

and start showering from tI

• no resummation for t > tI

⇒ if Q = t resummation active
only for intrajet evolution
below tmin

⇒ continous resummation only for t < Qmin

⇒ for Q 6= t no well-defined structure of resummation as Qmin does not
translate into a tmin

Marek Schönherr 12/29



General considerations Parton showers and multileg matrix elements Parton showers and NLO matching Various improvements Conclusions

Radiation off multileg matrix elements
Consider showering a multileg matrix element, say pp → V + 4 jets with
all Qi > Qmin (Q some particle distance measure, e.g. jet algorithm)

tI

• start showering from smallest
Qi , or

• reconstruct smallest t = tI

and start showering from tI

• no resummation for t > tI

⇒ if Q = t resummation active
only for intrajet evolution
below tmin

⇒ continous resummation only for t < Qmin

⇒ for Q 6= t no well-defined structure of resummation as Qmin does not
translate into a tmin

Marek Schönherr 12/29



General considerations Parton showers and multileg matrix elements Parton showers and NLO matching Various improvements Conclusions

Radiation off multileg matrix elements

Consider showering a multileg matrix element, say pp → V + 4 jets with
all Qi > Qmin (Q some particle distance measure, e.g. jet algorithm)

• reconstruct all emission scales
ti

• set starting scale tI and start
showering from there

⇒ embed existing emissions into
evolution, veto any emission
harder than existing Qi

⇒ pp → V + 4 jets configuration with consistent resummation of
emission scale hierarchies, including the 4 existing ones

⇒ truncated (vetoed) showers
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Truncated showering

Nason JHEP11(2004)040

Truncated showering is always needed when the hardness measure Q,
defining which emissions are to be described by LO/NLO matrix
elements, and the parton shower evolution variable t do not coincide.

tI > t1 > . . . > ti−1 > ti > ti+1 > . . . > tc but Qi > Qj ∀ j 6= i

⇒ otherwise the resummation of the parton shower will be incomplete

⇒ in principle can change shower scheme after every emission if
truncated shower fills in the gaps
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Truncated showering

Qmin
Q1

Q2

tI

t1

t2

tc

• starting shower at Qmin not well
defined, as translation Q → t phase
space dependent

• starting shower at reconstructed
t2 = t(Q2) leaves large parts of
phase space empty and double
counts region with t < t2 and
Q > Qmin

⇒ shower need to start from tI , veto
emissions with Q > Qmin, emissions
at (t1, z1) and (t2, z2) must be
preserved

⇒ Multileg matrix elements necessitate truncated (vetoed) showering if
t 6= Q
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Importance of truncated showering

Hamilton, Richardson, Tully JHEP11(2009)038

w/ truncated PS w/o truncated PS

• if Q and t differ then Sudakovs factors/emission probability
underestimated for t > Q
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Parton showers and NLO matching

dσNLOPS = dΦB

[
B + V +

∑
i

∫
dΦi

1 Di

]
⊗ P̃SD + dΦR

[
R−

∑
i

Di

]

• emission kernels Di used for IR subtraction

• problem 1: standard parton shower kernels in Nc →∞ limit
→ missing 1/Nc contributions, spoil soft limit

• incorporate Nc = 3 in the emission kernel Di

• problem 2: standard parton shower kernels are spin avaraged
→ spin dependence of collinear limit of gluon splittings spoiled

• incorporate spin dependence into the emission kernel Di

⇒ solved in different ways in different schemes
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Subleading colours and spin correlations in trad. MC@NLO

Frixione, Webber JHEP06(2002)029; Frixione, Nason, Webber JHEP08(2003)007

• use Di = f · Ki

• use f to restore spin and
colour correlations in
standard shower

• for f ≡ 1 (t > tc ) all
resummation is embedded in
standard shower

⇒ trivially consistent
resummation
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Subleading colours and spin correlations in POWHEG

Nason JHEP11(2004)040; Frixione, Nason, Oleari JHEP11(2007)070

• use Di = ρi · R
• trivially correct spin and

colour

• separate shower for hardest
emission (the one that is
matched to NLO calculation)

• transition to standard shower
for remainder of evolution

⇒ care to be taken to ensure
consistent resummation

• if POWHEG based on same PS
⇒ trivially consistent
resummation
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Subleading colours and spin correlations in S-MC@NLO

Höche, Krauss, MS, Siegert JHEP09(2012)049

• use Di = Si

(NLO subtraction terms)

• trivially correct spin and
colour

• separate shower for hardest
emission (the one that is
matched to NLO calculation)

• transition to standard shower
for remainder of evolution

⇒ care to be taken to ensure
consistent resummation

• if S-MC@NLO based on PS
⇒ trivially consistent
resummation

Cascioli et.al. arXiv:1309.5912
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Subleading colours in first emission
Höche, Huang, Luisoni, MS, Winter Phys.Rev.D88(2013)014040

Sherpa+GoSam
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vs.
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(SHERPA’s CSSHOWER++)

• small effect on standard
(rapidity blind) observables,
e.g. p⊥,tt̄

→ some destructive
interference at large p⊥,tt̄

• large effect on AFB (p⊥,tt̄)
→ subleading colour dipoles
decrease asymmetry
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Höche, Huang, Luisoni, MS, Winter Phys.Rev.D88(2013)014040

Sherpa+GoSam

S-MC@NLO, H(A) = 0
µ =

√
1/2 . . .

√
2 kT

PS, B → B̄
µ =

√
1/2 . . .

√
2 kT

0 10 20 30 40 50 60 70
-0.3

-0.2

-0.1

0

0.1

0.2

0.3
Transverse momentum dependent forward-backward asymmetry

pT, tt̄ [GeV]

A
FB
(p

T
,t

t̄)

Importance of
Nc = 3 colour coherence

(SHERPA’s S-MC@NLO)
vs.
Nc →∞ colour coherence

(SHERPA’s CSSHOWER++)

• small effect on standard
(rapidity blind) observables,
e.g. p⊥,tt̄

→ some destructive
interference at large p⊥,tt̄

• large effect on AFB (p⊥,tt̄)
→ subleading colour dipoles
decrease asymmetry

Marek Schönherr 21/29



General considerations Parton showers and multileg matrix elements Parton showers and NLO matching Various improvements Conclusions

Subleading colours in evolution

Plätzer, Sjödahl JHEP07(2012)042

• soft-collinear approximation
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• iterate

• subleading dipoles can have
negative sign

⇒ known how to deal with in
veto algorithm

• costly for high multiplicities

⇒ use for first few emissions
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Subleading colours in evolution

Nagy, Soper arXiv:1401.6364

• uses splitting functions
including interference

Nagy, Soper JHEP03(2008)030

→ effects beyond DGLAP 1→ 2
splittings

→ contributes to soft limit

⇒ see Zoltan’s talk for details
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Parton shower uncertainties

• assess impact of choices detailed earlier:

- evolution scale
- recoil scheme
- finite terms
- scales in g → qq̄

• due to unweighting and involved interplay of acception and rejection
weights simple reweighting a la NLO not trivial
→ weight vector with predefined variations VINCIA

→ similar techniques as in weighted showers

• parton showers generate many terms implicitely
→ devise counterterms to keep them fixed when varying parameters
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Electroweak effects – QED radiation

QED radiation off leptons

• factorises from radiation of quarks

⇒ can be treated by different methods, e.g. YFS as in HERWIG++ and
SHERPA, or conceptually different shower, e.g. PHOTOS

QED radiation off quarks

• has to be interleaved with QCD evolution

• implies same ordering

• problem in dipole showers as no large-Nc limit, no subleading dipoles
→ negative dipoles are not subleading

⇒ hard to get soft photon emissions correct
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Electroweak effects in PYTHIA8

• splitting functions highly spin
dependent
→ embedded in
spin-avaraged shower by
assuming helicity admixture

• correct first EW emission by
ME reweighting

• decay W /Z at end of
evolution, showering the new
singlet by itself

Christiansen, Sjöstrand arXiv:1401.5238
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necessary to have KPS > KME
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Electroweak effects in SHERPA

• EW splitting functions used
since SHERPA-1.2.0 for
clustering final state

• problem: spin-dependent
→ fix with proc. dep. seff

⇒ correct only for first EW
emission

• immediately decay W ,Z

⇒ properly embed decay
product evolution

Krauss, Petrov, MS, Spannowsky arXiv:1403.4788
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Conclusions

• parton showers are well defined resummation tools

• complement analytical resummations as they work under different
approximations

• a lot of progress in recent years, driven by mostly theoretical
considerations

• many improvements have little visible impact, but necessary for
matching/merging methods to work
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Thank you for your attention!
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