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Dealing with color space

• We never observe individual colors

→ we are only interested in color summed/averaged quantities

• For given external partons, the color space is a finite dimensional

vector space equipped with a scalar product

〈A,B〉 =
∑

a,b,c,...

(Aa,b,c,...)
∗Ba,b,c,...

Example: If

A =
∑

g

(tg)a b(t
g)c d =

a

b

c

dg
,

then 〈A|A〉 =
∑

a,b,c,d,g,h(t
h)b a(t

h)d c(t
g)a b(t

g)c d
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• One way of dealing with color space is to just square the

amplitudes one by one as they are encountered

• Alternatively, we may use any basis (spanning set)
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The standard treatment: Trace bases
• Every 4g vertex can be replaced by 3g vertices:

= + +

×ig2

s(g
αδgβγ

− gαγgβδ)

a, α b, β

c, γ d, δ
×ig2

s(g
αβgγδ

− gαδgβγ) ×ig2

s(g
αβgγδ

− gαγgβδ)

(read counter-clockwise)

• Every 3g vertex can be replaced using:

= 1
TR

(

i fa b c

a

b c

− )

• After this every internal gluon can be removed using:

= TR − TR
Nc
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• This can be applied to any QCD amplitude, tree-level or beyond

• In general an amplitude can be written as linear combination of

different color structures, like

A + +B ...

• For example for 2 (incoming + outgoing) gluons and one qq pair

= A1 + A2 + A3

(an incoming quark is the same as an outgoing anti-quark)
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The above type of color structures can be used as a spanning set, a

trace basis. (Technically it’s in general overcomplete, so it is rather a

spanning set.)

These bases have some nice properties

• The effect of gluon emission is easily described:

Convention: + when inserting after, minus when inserting before.

= −→

• So is the effect of gluon exchange:

= TR( − +

g1 g2 g3 g4 g1 g2 g3 g4 g2 g3 g1 g4

Convention: + when inserting after, - when inserting before

)

g1 g2 g3 g4
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However...

• The trace “bases” are non-orthogonal and overcomplete

(for more than Nc gluons plus qq-pairs)

• ... and the number of spanning vectors grows as a factorial in

Ng +Nqq

→ when squaring amplitudes we run into a factorial square

scaling

• Hard to go beyond ∼ 8 gluons plus qq-pairs
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Color flow bases

• One way out is to rewrite all vertices in terms of color flows

(Maltoni, Stelzer, Willenbrock)

• Explicit colors (r, g, or b) are then assigned to the lines, and one

may run a Monte Carlo sum over colors to sample color space

• This is not exact but much quicker
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Orthogonal multiplet bases
In collaboration with Stefan Keppeler (Tübingen)

• QCD is based on SU(3) → the color space may be decomposed

into irreducible representations

• Basis vectors corresponding to irreducible representations may

be constructed

• The construction of the corresponding basis vectors is

non-trivial, and a general strategy was only presented recently

JHEP09(2012)124, arXiv:1207.0609

• With general, I mean general: general number of quarks and

gluons, general order in αs and general Nc

• In this presentation I will – for comparison – talk about

processes with gluons only, however, processes with quarks can

be treated similarly
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• The gluon basis vectors are of form

α1 α2

and can thus be characterized by a chain of representations

α1, α2, ... (In principle we have to differentiate between different

vertices as well)
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For many partons the size of the vector space is much smaller for

Nc = 3 (exponential), compared to for Nc → ∞ (factorial)

Ng Vectors Nc = 3 Vectors Nc → ∞ LO Vectors Nc → ∞

4 8 9 3!=6

5 32 44 4!=24

6 145 265 120

7 702 1 854 720

8 3 598 14 833 5 040

9 19 280 133 496 40 320

10 107 160 1 334 961 362 880

Number of basis vectors for Ng gluons without imposing vectors to

appear in charge conjugation invariant combinations
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... but the real advantage comes when squaring as the multiplet

bases are orthogonal and the trace bases are not

Ng Vectors Nc = 3 Vectors Nc → ∞ LO Vectors Nc → ∞

4 8 (9)2 (6)2

5 32 (44)2 (24)2

6 145 (265)2 (120)2

7 702 (1 854)2 (720)2

8 3 598 (14 833)2 (5 040)2

9 19 280 (133 496)2 ∼ 1010 (40 320)2 ∼ 109

10 107 160 (1 334 961)2 ∼ 1012 (362 880)2 ∼ 1011

Number of terms from color when squaring for Ng gluons without

imposing charge conjugation invariant combinations
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• Multiplet bases can potentially speed up exact calculations in

color space very significantly, as squaring amplitudes becomes

much quicker

• Before squaring, amplitudes must be decomposed in color bases

• How quickly can amplitudes be decomposed in multiplet bases?

• ... using Feynman diagrams?

• ... using parton showers?

• ... using tree-level gluon recursion relations?

• ... at higher order? (gluon exchange)
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Decomposing Feynman diagrams

In collaboration with Johan Thorén, work in progress

• One way of decomposing color structure into multiplet bases

would be to simply evaluate the scalar product between each

possible Feynman diagram and each possible vector

• The problem is that this scales very badly, a factorial from the

number of diagrams, an exponential from the number of color

structures and another (growing) factor from each single scalar

product evaluation
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Decomposing Feynman diagrams

In collaboration with Johan Thorén, work in progress

• One way of decomposing color structure into multiplet bases

would be to simply evaluate the scalar product between each

possible Feynman diagram and each possible vector

• The problem is that this scales very badly, a factorial from the

number of diagrams, an exponential from the number of color

structures and another (growing) factor from each single scalar

product evaluation

• → no way

• We need a better strategy
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• Luckily there is one:
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• Luckily there is one: Any group theoretical invariant quantity

can be evaluated using Wigner 3j and 6j coefficients

Malin Sjödahl 15



• Luckily there is one: Any group theoretical invariant quantity

can be evaluated using Wigner 3j and 6j coefficients

α

β

γ
α

β

γ

δ

ζ

η

• For example

=TR(N
2
c − 1) =2T 2

RN
2
c (N

2
c − 1)

Using standard normalization of vertices

• Using the multiplet basis we can evaluate the needed 3j and 6j

coefficients for higher representations
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• Furthermore, only a small number of such symbols are needed

Ng 4 6 8 10 12

Nc ≥ Ng 52 396 2126 9059 32702

Nc = 3 38 130 277 479 736

and they can be evaluated once and for all

(Numbers could be slightly reduced by additional symmetries,

and smart choice of 3 rep. vertices)

• As a test case, all 6j symbols needed for evaluation of processes

with up to 6 gluons have been explicitly calculated

(Master thesis of Johan Thorén, with aid of ColorMath,

Eur. Phys. J. C 73:2310 (2013), arXiv:1211.2099)
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Decomposing color with
6j and 3j coefficients

As an example consider the color structure of the Feynman diagram:

=
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The scalar product between the color structure and a basis vector is

given by:

α2 α3 α1
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In a more compact form:

A(α1, α3, α2) =
α1 α2

α3
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Here we note that we have a vertex correction:

A(α1, α3, α2) =
α1 α2

α3
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A vertex correction only gives a factor (expressed in 6j and 3j

coefficients):

α1

α3
=

α1

α3

α3 α3

Two vertex loops are also easy to deal with:

δα
γ

β

=

α
γ

β

dα α
δαδ
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Using the vertex correction results in:

A(α1, α3, α2) =
α1 α2

α3

=

α1

α3

α3

α2

α3
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Now there is no trivial color structure, but we can pick any loop...

A(α1, α3, α2) =

α1

α3

α3

α2

α3

and use the completeness relation

µ

ν
=

∑

α

dα

ν

α

µ

µ

ν

µ

ν

α

to remove it
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Applying the completeness relation and removing vertex corrections:

α3

α2

−

− −

−

=
∑

ψ1

dψ1

ψ1
α3

α2

−

−
−

−
ψ1

=

=
∑

ψ1,ψ2

dψ1
dψ2

ψ1 ψ2

α3

α3

α2

−

− −

−

α3

ψ1 ψ2

=

=
∑

ψ1
dψ1

α3

ψ1

−

− α2

ψ1

−

−

α3

(

ψ1

)2 ψ1

α3

ψ1
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Removing the 4-vertex loop we get:

A(α1, α3, α2) =

α1

α3

α3

α2

α3

=

α1

α3

α3

∑

ψ1

dψ1

α3

ψ1

−

− α2

ψ1

−

−

α3

(

ψ1

)2 ψ1

α3
ψ1

Malin Sjödahl 25



The final expression is:

A(α1, α3, α2) =

α1

α3

α3

∑

ψ1

dψ1

α3

ψ1

−

− α2

ψ1

−

−

α3

ψ1
−

(

ψ1

)2 ψ1

α3

• Knowing the 3j and 6j Wigner coefficients we can immediately

write down the scalar product with any basis vector!

• This only has to be done once for each Feynman diagram, not

once for each Feynman diagram and each basis vector

• We only need to care about non-zero projections, we could list

the non-zero 6j-coefficients

• Each sum contains at most 8 terms for SU(3),

at most N2
c − 1 for SU(Nc)
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A parton shower perspective

• In a parton shower we start with some amplitude which we can

assume that we have decomposed in the multiplet basis

Amp =
∑

α1,α2,α3

cα1,α2,α3

α1 α3α21

3

5

2

4

6
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• Knowing the decomposition for Ng − 1 gluons, how can we

decompose the Ng gluon amplitude?

α1 α3α21

3

5

7

2

4

6

=
∑

β1,β2,...

c̃β1,β2,...

β1 β3 β41

3

5

7

2

4

6

β2

• Scalar products? Too slow!
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Let one of the gluons emit a new gluon:
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To decompose the affected side, we may insert the completeness

relation, repeatedly:

The representations on the other side (here right) don’t change
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Consider the affected side:

Malin Sjödahl 31



Inserting completeness relations we get a sum of terms of form:

dβ2 dβ3 ...

β3 β4β2α1

What we have here are just vertex corrections which can be rewritten

in terms of 3j and 6j coefficients
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Giving us a sum of terms of form:

...

β3 β4β2α1

i.e., knowing the 3j and 6j symbols we can write down the resulting

vectors
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• By inserting the new gluon ”in the middle” in the basis we

guarantee that the emitted gluon need never ”be transported”

across more than ∼ half of the reps

• Typically we get only a small fraction of all basis vectors in the

larger basis: (preliminary)

Ng 5→6 6→7 7→8 8→9 9→10

Nc = 3 0.094 0.027 0.012 0.0032 0.0014

Nc ≥ Ng 0.071 0.014 0.0054 0.00092 0.00032
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Total number of terms, all emissions
Consider the sum of all terms from all emissions (all emitters and all

vectors) and compare to the number encountered when squaring a

tree-level amplitude (preliminary)

Ng Fraction (Nc = 3) All terms (Nc = 3) (# tree vectors)2 (any Nc)

5→6 0.094 2 184 (120)2

6→7 0.027 16 372 (720)2

7→8 0.012 212 914 (5 040)2

8→9 0.0032 1 758 620 (40 320)2 ∼ 109

9→10 0.0014 25 407 328 (362 880)2 ∼ 1011

Numbers will be somewhat reduced by clever vertex choices, and non-

general linear combinations
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Amplitudes using recursion

In collaboration with Yi-Jian Du and Johan Thorén, work in progress

• Contemporary techniques for evaluating amplitudes with many

external partons are based on recursion relations, rather than

Feynman diagrams

• In trace bases and color flow bases, where all gluons enter on

equal footing recursion in the number of external legs works

nicely (the problem comes when squaring...)

• In multiplet bases the gluons do not enter on equal footing →

amplitudes are not simply related by relabeling of indices (in

most cases)
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• How can we do recursion?

• BCFW recursion works ”just as normally”, but the contributions

to different color structures have to be calculated separately

• The color structure turns out to work just as for the parton

showers!

• Can get amplitudes for all helicity configurations

• As a proof of concept we have considered tree-level gluon

amplitudes and recalculated the amplitudes for up to six gluons
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Gluon exchange

• For higher order calculations or for resummation we need to

describe the effect of gluon exchange on the color structure

• Gluon exchange may be treated similar to emission

• Here we get a linear combination of basis vectors where only the

intermediate representations can have changed
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• For each starting color vector we may immediately write down

the linear combination of basis vectors after the gluon exchange

in terms of 3j and 6j coefficients

• As only the in-between multiplets can be affected, the result is

typically a linear combination of a small fraction of all basis

vectors

• → The soft anomalous dimension matrices may be written down

directly, and they are relatively sparse...

• but probably the main gain for all order resummation is that the

basis is minimal
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Conclusions

• One way of dealing with color space is to use multiplet bases

(JHEP09(2012)124, arXiv:1207.0609)

• Color structure can be decomposed elegantly into multiplet

bases using the Wigner 3j and 6j coefficients

- Feynman diagrams

- parton showers and recursion

- resummation

• Only a relatively small number of these coefficients are needed

• They can be calculated knowing the multiplet bases

• As a proof of concept all necessary 6j (3j) symbols have been

calculated for up to 6 gluons
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Outlook

• The secrets of the group theory description of QCD color space

is just starting to unravel

• I think we have a lot to learn

• We have just considered one type of multiplet bases

• Probably there are even smarter ones

• So far I have spoken about exact color structure treatment, but

what about Monte Carlo sums?
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Backup: Number of projection
operators and basis vectors

In general, for many partons the size of the vector space is much

smaller for Nc = 3, compared to for Nc → ∞

Case Projectors Nc = 3 Projectors Nc = ∞ Vectors Nc = 3 Vectors Nc = ∞

2g → 2g 6 7 8 9

3g → 3g 29 51 145 265

4g → 4g 166 513 3 598 14 833

5g → 5g 1 002 6 345 107 160 1 334 961

Number of projection operators and basis vectors for Ng → Ng

gluons without imposing projection operators and vectors to appear

in charge conjugation invariant combinations
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• The size of the vector spaces asymptotically grows as an

exponential in the number of gluons/qq-pairs for finite Nc

• For general Nc the basis size grows as a factorial

Nvec[nq, Ng] = Nvec[nq, Ng − 1](Ng − 1 + nq) +Nvec[nq, Ng − 2](Ng − 1)

where

Nvec[nq, 0] = nq!

Nvec[nq, 1] = nqnq!

• For general Nc and gluon only amplitudes (to all order) the size

is given by Subfactorial(Ng)

• For tree-level gluons amplitudes traces may be used as spanning

vectors giving (Ng − 1)! spanning vectors
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• Counting all contributions from all emitters and all basis vectors

to all new basis vectors and comparing to the squaring step in

the trace basis (preliminary)

Ng Terms Nc = 3 Terms Nc ≥ 2Ng (# tree vectors)2

5→6 2 184 4 136 (120)2

6→7 16 372 42 094 (720)2

7→8 212 914 1 039 456 (5 040)2

8→9 1 758 620 14 544 744 (133 496)2 ∼ 1010

9→10 25 407 328 515 182 440 (362 880)2 ∼ 1011

10→11
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Backup: ColorMath

• Calculations are done using my Mathematica package,

ColorMath, Eur. Phys. J. C 73:2310 (2013), arXiv:1211.2099

• ColorMath is an easy to use Mathematica package for color

summed calculations in QCD, SU(Nc)

• Repeated indices are implicitly summed

In[2]:= Amplitude = I f@g1, g2, gD t@8g<, q1, q2D

Out[2]= ä t8g<q1q2 f
8g1,g2,g<

In[3]:= CSimplify@Amplitude Conjugate@Amplitude �. g ® hDD

Out[3]= 2 Nc I-1 + Nc2M TR2

• The package and tutorial can be downloaded from

http://library.wolfram.com/infocenter/MathSource/8442/

or www.thep.lu.se/~malin/ColorMath.html
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Backup: 2 gluon projectors

• Problem first solved for two gluons by MacFarlane, Sudbery, and

Weisz 1968, however only for Nc = 3

• General Nc solution for two gluons by Butera, Cicuta and

Enriotti 1979

• General Nc solution for two gluons by Cvitanović, in group

theory books, 1984 and 2008, using polynomial equations

• General Nc solution for two gluons by Dokshitzer and

Marchesini 2006, using symmetries and intelligent guesswork
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Backup: Key observation

• Starting in a given multiplet, corresponding to some qq

symmetries, such as 10, from 1 2 ⊗
1
2
, it turns out that for each

way of attaching a quark box to 1 2 and an anti-quark box to 1
2
,

to there is at most one new multiplet! For example, the

projector P10,35 can be seen as coming from

P10P10

1 3
2

1 2 3

after having projected out ”old” multiplets

• In fact, for large enough Nc, there is precisely one new multiplet

for each set of qq symmetries
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Backup: 2 gluon projectors

P
1 =

1

N2
c − 1

, P
8s =

Nc

2TR(N2
c − 4)

, P
8a =

1

2NcTR

,

P
10 =

1

2
+

1

2T 2

R

−
1

2
P

8a

P
10 =

1

2
−

1

2T 2

R

−
1

2
P

8a

P
27 =

1

2
+

1

2T 2

R

−
Nc − 2

2Nc

P
8s

−
Nc − 1

2Nc

P
1

P
0 =

1

2
−

1

2T 2

R

−
Nc + 2

2Nc

P
8s

−
Nc + 1

2Nc

P
1
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Backup: Some 3g example projectors

P
8a,8a
g1 g2 g3 g4 g5 g6

=
1

T 2
R

1

4N2
c

ifg1 g2 i1ifi1 g3 i2ifg4 g5 i3ifi3 g6 i2

P
8s,27
g1 g2 g3 g4 g5 g6

=
1

TR

Nc

2(N2
c − 4)

dg1 g2 i1P
27
i1 g3 i2 g6

di2 g4 g5

P
27,8
g1 g2 g3 g4 g5 g6

=
4(Nc + 1)

N2
c (Nc + 3)

P
27
g1 g2 i1 g3

P
27
i1 g6 g4 g5

P
27,64=c111c111
g1 g2 g3 g4 g5 g6

=
1

T 3
R

T
27,64
g1 g2 g3 g4 g5 g6

−
N2
c

162(Nc + 1)(Nc + 2)
P

27,8
g1 g2 g3 g4 g5 g6

−
N2
c −Nc − 2

81Nc (Nc + 2)
P

27,27s
g1 g2 g3 g4 g5 g6
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Backup: Three gluon multiplets
SU(3) dim 1 8 10 10 27 0

Multiplet c0c0 c1c1 c11c2 c2c11 c11c11 c2c2

((45)8s6)1 2 × ((45)8s6)8s or a ((45)8s6)10 ((45)8s6)10 ((45)8s6)27 ((45)8s6)0

((45)8a6)1 2 × ((45)8a6)8s or a ((45)8a6)10 ((45)8a6)10 ((45)8a6)27 ((45)8a6)0

((45)106)8 ((45)106)10 ((45)106)10 ((45)106)27 ((45)106)0

((45)106)8 ((45)106)10 ((45)106)10 ((45)106)27 ((45)106)0

((45)276)8 ((45)276)10 ((45)276)10 ((45)276)27 ((45)06)0

((45)06)8 ((45)06)10 ((45)06)10 ((45)276)27 ((45)06)0

SU(3) dim 64 35 35 0

Multiplet c111c111 c111c21 c21c111 c21c21

((45)276)64 ((45)106)35 ((45)106)35 ((45)106)c21c21

((45)276)35 ((45)276)35 ((45)106)c21c21

((45)276)c21c21

((45)06)c21c21

SU(3) dim 0 0 0 0 0

Multiplet c111c3 c3c111 c21c3 c3c21 c3c3

((45)106)c111c3 ((45)106)c3c111 ((45)106)c21c3 ((45)106)c3c21 ((45)06)c3c3

((45)06)c21c3 ((45)06)c3c21

Multiplets for g4 ⊗ g5 ⊗ g6
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Backup: Gluon exchange in trace bases

A gluon exchange in this basis “directly” i.e. without using scalar

products gives back a linear combination of (at most 4) basis tensors

=

=

=

−

−

−

− 0=
Nc

+
canceling N  −
suppressed
terms

c

+
canceling N  −
suppressed
terms

c

Fierz

Fierz

2 2

1

2

1

2
__

_
2

• Nc-enhancement possible only for near by partons

→ only “color neighbors” radiate in the Nc → ∞ limit
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Backup: Nc-suppressed terms

That non-leading color terms are suppressed by 1/N2
c , is guaranteed

only for same order αs diagrams with only gluons (’t Hooft 1973)

2

= = TR

= TR = TR CF = TR CF Nc = TR TR
N2
c−1
Nc

Nc ∝ N2
c

= =

= TR −TR
Nc

− TR
Nc

CF Nc = 0 − TR TR
N2
c−1
Nc

∼ Nc= TR

∗
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Backup: Nc-suppressed terms

For a parton shower there may also be terms which only are

suppressed by one power of Nc

= =

∗

= TR
−TR
Nc

Is 0 without emission, with ∼ N2
c

did not enter in any form,

genuine ”shower” contribution

Is ∼ Nc without emission, with
∼ N2

c ”included” in shower,

contribution from hard process

The leading Nc contribution scales as N2
c before emission and N3

c

after
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