

Current status of Test Beam data analysis

Olena Karacheban, CMS weekly meeting, 27 Nov. 2013, DESY-Zeuthen

EUDET Telescope -

tracking device designed for detector prototypes characterisation at the test beam.

- The active area of the telescope consists of six Mimosa26 pixel sensors.
- Six measurement points per track.
- Geometry can be changed by user.

²⁷ Nov. 2013

Mimosa26 Sensors (21.2mmx10.6mm)

- Pixel size 18.4 um
- MAX Track pointing resolution $\sim 2 \ \mu m$.

27 Nov. 2013

Sapphire detector (DUT)

- 8 individual sapphire plates
 10 x 10 x 0.5 mm.
- Al-Pt-Au metallization from both sides 9 x 9 mm.
- 4 readout channels.
- Beam energy 5 GeV.

TB geometry

EUTelescope software Offline analysis includes few steps:

- converter → format from raw to lcio, create HopPixel;
- clustering → use HotPicel to create SensorOffset;
- filter → minimise clusters;
- hitmaker → use SensorOffset to do PreAlignment;
- align → precise alignment;
- fitter → build final tracks → DUT analysis.

We want one alignment for all files. Alignment parameters were calculated from run without DUT #288. XResidual d0

Residual values. X and Y

EUTelescope sensor number	Residual X (um)		Residual Y (um)	
	mean	RMS	mean	RMS
Plane 1	-5.77	25.44	-17.5	31.09
Plane 2	-1.2	15.48	3.96	18.6
Plane 3	4.35	23.99	-11.04	27.7
Plane 4	-12.53	26.13	-12.07	31.4
Plane 5	46.01	31.95	131.8	42.6
Plane 6	-30.86	34.14	-95.17	39.89

Expected and measured hit distribution at 4-th telescope plane

Telescope plane downstream DUT

0.5 Y, cm 0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.2 0.2 0.4 -0.6 -0.4 0.6 X, cm Plane 4 Monte Carlo GEANT3, 1 million events generated.

27 Nov. 2013

hitMap d4 Entries 958411 604.1 Mean x Mean v 243 500 RMS x 271 RMS y 157.3 400 300 200 100 600 800 200 400 1000

Hit map

Deviation of the electron track from the straight line inside the sensor is within 10 m

Run #268 - run with DUT, 500V

Analysis steps:

- converter → clustering → filter → hitmaker standard steps, applied w/o changes;
- alignment applied from run #288;
- fitter modified to produce ROOT files with hits coordinates;
- hits coordinates are used in analysis program.

Fitted tracks for run #268

Tracks from two arms were fitted separately. $y = a^{*}z + b$ in YZ projection and $x = a^{*}z + b$ in XZ projection.

Angle between tracks in XZ for align run #288 and run #268 with DUT

Impact parameter - delta b in XZ and distance between tracks distribution, Z=0

delta b in YZ is asymmetric for both align run and for run with DUT

Intersection point in XZ for tracks with small impact parameter for align run and run with DUT

Intersection point in YZ for tracks with small impact parameter for align run and run with DUT

Intersection point (X,Y,0) for tracks with small distance & big angle for align run and run with DUT

Intersection point (X,Y,0) for events with 4 or less tracks per events and for full run with DUT

ADC signal

Sampling ADC v1721, 255 channels was used.

For ~96% events baseline is In range 134-135. Rest of events are baseline fluctuations.

Signal from sapphire after subtraction on baseline

Conclusion

- Tracks are reconstructed using UETelescope software.
- Alignment from run #288 applied.
- We can see detector position.
- Averaged signal from detector is 6.5 ADC channels for 800V.

Plans

- We want to go from projections to 3D.
- Last step is synchronisation of ADC signal and track position.

Backup

XvsXResidual_d0

Backup

XvsYResidual_d0

Backup Correlation between the number of hits in neighbouring telescope planes.

200

400

600

800

1000

200

Thanks a lot for help to Sergej Schuwalow, Olga Novgorodova, Vladyslav Libov, Itamar Levy, Hanno Perrey, Konstantin Afanaciev and Wolfgang Lohmann!