The Exercises at the HAP Workshop 2014 - Wednesday

Gernot Maier,
Moritz Hütten (DESY Zeuthen)

Alliance for Astroparticle Physics

Overview: What we want (you) to do

1) Tuesday (Mar 11)

- Calculation of annihilation rates
- Inspection of supersymmetric models and annihilation spectra
- Responsible: Ulli Schwanke, Louise Oakes

2) Today (Mar 12)

- Calculation of astrophysical factors (analytically and using existing tools)
- Calculation of fluxes
- Responsible: Gernot Maier, Moritz Hütten

3) Thursday (Mar 13)

- Calculation of event statistics, background rates
- Statistical tests
- Responsible: Rolf Bühler, Markus Ackermann

Note: The exercises of each day will use the same toy model and the same (not yet existing) detector

Today's Exercises

- all exercises are available on the Indico page
- all necessary files are already stored in the HAPworkshop_Day3_clumpy/ folder
- There is still a wrong Dark Matter density value for the toy model inside the toytarget.txt file and the HAPworkshop.toytarget.py script:

Either find it and correct it or download a newer version of the scripts!

Task 0 - Answers

Units conversion:

```
ln[1]:= pe= 10-3}\mathbf{kpc;
    meter = \frac{pc}{3.0857\times1\mp@subsup{0}{}{16}};
    cm = meter
Out[3]= 3.24076 \10 -22 kpc
    ln[8]:= kg = \frac{msun}{1.9891\times10}30
        eV = 1.782662 \times10-36 kg;
        TeV = 10 12 eV
Out[10]= 8.96215 < 10-55 msun
```


Task 1a - Answers

Task 1a - Answers

Task 1a - Answers

$\operatorname{rhoE}\left[r_{-}\right]:=\operatorname{rhos} * \operatorname{Exp}\left[-\frac{2}{\text { alpha }}\left(\left(\frac{r}{r s}\right)^{\text {alpha }}-1\right)\right]$
rhos = 1;
rs = 1;
alpha $=2$;
Plot $[r h o E[x],\{x, 0,2 * r s\}$, PlotRange \rightarrow All $]$

Task 1a - Answers

$\operatorname{rhoE}\left[r_{-}\right]:=$rhos $* \operatorname{Exp}\left[-\frac{2}{\text { alpha }}\left(\left(\frac{r}{r s}\right)^{\text {alpha }}-1\right)\right]$
rhos = 1;
rs = 1;
alpha $=5$;
\rightarrow All

Task 1a - Answers

Task 1a - Answers

$\operatorname{rhoE}\left[r_{-}\right]:=\operatorname{rhos} * \operatorname{Exp}\left[-\frac{2}{\text { alpha }}\left(\left(\frac{r}{r s}\right)^{\text {alpha }}-1\right)\right]$
rhos = 1;
rs = 1;
alpha $=20$;
Rlot $[$ choe $[x],\{x, 0,2 *$ 2s $\}$, PlotRange \rightarrow All]

Task 1a - Answers

Task 1b - Answers

J-factor skymap plot by clumpy (ROOT):

Task 1b - Answers

line-of-sight integral skymap of toy model source, input resolution $=0.05$ degs, healpix resolution $=0.065$ degs,
total integrated J-factor: $7.09220413262 \mathrm{e}+15 \mathrm{Msol}$ ^2/kpc^5
 $6.23 e+18$

Plots with healpy (Python) \& integrated J-factor:

Task 1b - Answers

folded line-of-sight integral skymap of toy model source, input resolution $=0.05$ degs, healpix resolution $=0.065$ degs,
total integrated J-factor: $7.09220413262 \mathrm{e}+15 \mathrm{Msol}$ ^ $2 / \mathrm{kpc}^{\wedge} 5$
detector resolution $=0.5$ degs, graticule $=0.8$ degs

$1.14 \mathrm{e}+06$

line-of-sight sky map folded with detector resolution:

Task 1b - Answers

clumpy h2 mode result (precision 1.e-3):

Task 1b - Answers

Precision of the numerical result:
CLUMPY precision e-2 (h5 mode): J = 7.(1) Msol^2/kpc^5 CLUMPY precision e-3 (h2 mode): J = 7.2(4) Msol^2/kpc^5 CLUMPY precision e-4 (h2 mode): J = 7.24(0) Msol^2/kpc^5

Analytic result:

$$
\mathrm{J}=7.2366 \mathrm{Msol}^{\wedge} 2 / \mathrm{kpc}^{\wedge} 5
$$

Keep in mind that:

- The constant-density sphere is approximated by an Einasto profile (although sufficiently well for the demanded precision)
- The non-steady density boundary causes numerical problems

Task 2 - Answers

Get $\frac{d \Phi}{d E}$ from $\frac{d N}{d E}$ and J-factor :

$$
\begin{aligned}
\ln [642]:=\quad J & =7.09 \times 10^{15} \frac{\mathrm{msun}^{2}}{\mathrm{kpc}^{5}} \\
\sigma v & =3.0 \times 10^{-26} \frac{\mathrm{~cm}^{3}}{\mathrm{~s}} \\
\mathrm{~m} & =0.5 \mathrm{TeV}
\end{aligned}
$$

$$
\begin{aligned}
& \ln [660]:=\quad \mathrm{kg}=\frac{\mathrm{msun}}{1.9891 \times 10^{30}} ; \\
& \mathrm{eV}=1.782662 \times 10^{-36} \mathrm{~kg} ; \\
& \mathrm{TeV}=10^{12} \mathrm{eV} ; \\
& \mathrm{kpc}=3.0857 \times 10^{21} \mathrm{~cm} ; \\
& \mathrm{kg}=1 ; \\
& \mathrm{cm}=1 ; \\
& \mathbf{s}=1 ;
\end{aligned}
$$

Task 2 - Answers

Fornengo (2004) spectrum:

Annihilation into u, u_bar/d,d_bar, $\mathrm{m}_{\text {_chi }}=500 \mathrm{GeV}$:

```
ln[667]:= a = - 1.5;
\(b=0.047\);
\(\mathrm{c}=-8.7\);
\(\mathrm{d}=9.14\);
\(e=-10.3\);
```

$\ln [679]:=\mathrm{dNdx}\left[x_{-}\right]:=x^{\wedge} a \star \operatorname{Exp}\left[b+c \star x+d \star x^{\wedge} 2+e \star x^{\wedge} 3\right]$
factor $=\frac{1}{8 P i} \times \frac{\sigma v}{\mathrm{~m}^{2}} \times J$
Out[680] $=1.50659 \times 10^{-10} \mathrm{~s}^{\wedge}-1 \mathrm{~cm}^{\wedge}=2$
$\ln [44]=\mathrm{d} \Phi \mathrm{dx}\left[x_{-}\right]:=$factor x dNdx[x];
$\log \log P \operatorname{lot}\left[\frac{\mathrm{TeV}}{\mathrm{m}} \times \mathrm{d} \Phi \mathrm{dx}[\mathrm{x}],\{x, 0.01,1\}\right]$
$\left.x^{\wedge} 3\right]$ Out[45] $=10^{-10}$
$\ln [46]:=\Phi=$ NIntegrate [d $\Phi \mathrm{dx}[\mathrm{x}],\{x, 0.2$, Infinity $\}]$
Out[46] $=3.48552 \times 10^{-11}$ photons $S^{\wedge}-1 \mathrm{~cm}^{\wedge}-2$

Task 2c - Answers

Compare with Crab nebula flux:

MAGIC (2011):
$\ln [684]=\mathrm{dPhidx}\left[x _\right]:=3.27 * 10^{\wedge}(-11) x^{\wedge}(-2.4-0.15 * \log 10[x])$
LogLogPlot[dPhidx[x], $\{x, 0.01,100\}]$

[^0]
Task 2c - Answers

Compare with Crab nebula flux:

MAGIC (2011):
$\ln [684]=\mathrm{dPhidx}\left[x _\right]:=3.27 * 10^{\wedge}(-11) x^{\wedge}(-2.4-0.15 * \log 10[x])$
LogLogPlot[dPhidx[x], $\{x, 0.01,100\}$]

$\ln [687]:=$ PhiCrab $=$ NIntegrate [dPhidx[x], $\{x, 0.1$, Infinity $\}]$
Out[687] 4.84182×10^{-10} photons $S^{\wedge}-1 \mathrm{~cm}^{\wedge}-2$

The End

That's it.

[^0]: $\ln [687]:=$ PhiCrab $=$ NIntegrate [dPhidx [x], $\{x, 0.1$, Infinity $\}]$
 Out[687] 4.84182×10^{-10} photons $S^{\wedge}-1 \mathrm{~cm}^{\wedge}-2$

